1
|
Stojilkovic SS, Sokanovic SJ, Constantin S. What is known and unknown about the role of neuroendocrine genes Ptprn and Ptprn2. Front Endocrinol (Lausanne) 2025; 16:1531723. [PMID: 39926347 PMCID: PMC11802530 DOI: 10.3389/fendo.2025.1531723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The protein tyrosine phosphatase receptors N and N2 are encoded by the Ptprn and Ptprn2 genes expressed in neuroendocrine cells of the hypothalamus, pituitary gland, and diffuse neuroendocrine system, including the pancreas, lung, and intestine. Unlike other members of the protein tyrosine phosphatase receptor family, PTPRN and PTPRN2 lack protein tyrosine phosphatase activity due to mutation of two residues in their intracellular catalytic domains. However, during evolution these proteins acquired new cellular roles beyond tyrosine dephosphorylation in the centralized and diffuse neuroendocrine systems. Here we discuss the current understanding and lack of information about the actions of these proteins, focusing on neuroendocrine cells of the hypothalamus, pituitary, and pancreas.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | | | | |
Collapse
|
2
|
Neukam M, Sala P, Brunner AD, Ganß K, Palladini A, Grzybek M, Topcheva O, Vasiljević J, Broichhagen J, Johnsson K, Kurth T, Mann M, Coskun Ü, Solimena M. Purification of time-resolved insulin granules reveals proteomic and lipidomic changes during granule aging. Cell Rep 2024; 43:113836. [PMID: 38421874 DOI: 10.1016/j.celrep.2024.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.
Collapse
Affiliation(s)
- Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Pia Sala
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | | | - Katharina Ganß
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michal Grzybek
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Oleksandra Topcheva
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jovana Vasiljević
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Thomas Kurth
- TU Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, 01307 Dresden, Saxony, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
3
|
El Badaoui L, Barr AJ. Analysis of Receptor-Type Protein Tyrosine Phosphatase Extracellular Regions with Insights from AlphaFold. Int J Mol Sci 2024; 25:820. [PMID: 38255894 PMCID: PMC10815196 DOI: 10.3390/ijms25020820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The receptor-type protein tyrosine phosphatases (RPTPs) are involved in a wide variety of physiological functions which are mediated via their diverse extracellular regions. They play key roles in cell-cell contacts, bind various ligands and are regulated by dimerization and other processes. Depending on the subgroup, they have been described as everything from 'rigid rods' to 'floppy tentacles'. Here, we review current experimental structural knowledge on the extracellular region of RPTPs and draw on AlphaFold structural predictions to provide further insights into structure and function of these cellular signalling molecules, which are often mutated in disease and are recognised as drug targets. In agreement with experimental data, AlphaFold predicted structures for extracellular regions of R1, and R2B subgroup RPTPs have an extended conformation, whereas R2B RPTPs are twisted, reflecting their high flexibility. For the R3 PTPs, AlphaFold predicts that members of this subgroup adopt an extended conformation while others are twisted, and that certain members, such as CD148, have one or more large, disordered loop regions in place of fibronectin type 3 domains suggested by sequence analysis.
Collapse
Affiliation(s)
| | - Alastair J. Barr
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| |
Collapse
|
4
|
Kubota C, Torii R, Hosaka M, Takeuchi T, Gomi H, Torii S. Phogrin Regulates High-Fat Diet-Induced Compensatory Pancreatic β-Cell Growth by Switching Binding Partners. Nutrients 2024; 16:169. [PMID: 38201998 PMCID: PMC10780347 DOI: 10.3390/nu16010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The receptor protein tyrosine phosphatase phogrin primarily localizes to hormone secretory granules in neuroendocrine cells. Concurrent with glucose-stimulated insulin secretion, phogrin translocates to pancreatic β-cell plasma membranes, where it interacts with insulin receptors (IRs) to stabilize insulin receptor substrate 2 (IRS2) that, in turn, contributes to glucose-responsive β-cell growth. Pancreatic β-cell development was not altered in β-cell-specific, phogrin-deficient mice, but the thymidine incorporation rate decreased in phogrin-deficient islets with a moderate reduction in IRS2 protein expression. In this study, we analyzed the β-cell response to high-fat diet stress and found that the compensatory expansion in β-cell mass was significantly suppressed in phogrin-deficient mice. Phogrin-IR interactions occurred only in high-fat diet murine islets and proliferating β-cell lines, whereas they were inhibited by the intercellular binding of surface phogrin under confluent cell culture conditions. Thus, phogrin could regulate glucose-stimulated compensatory β-cell growth by changing its binding partner from another β-cell phogrin to IR in the same β-cells.
Collapse
Affiliation(s)
- Chisato Kubota
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
- Department of Nutrition, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan
| | - Ryoko Torii
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
| | - Masahiro Hosaka
- Department of Biotechnology, Akita Prefectural University, Akita 010-0195, Akita, Japan;
| | - Toshiyuki Takeuchi
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Kanagawa, Japan;
| | - Seiji Torii
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
- Center for Food Science and Wellness, Gunma University, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|
5
|
Franz M, Papiol S, Simon MS, Barton BB, Glockner C, Spellmann I, Riedel M, Heilbronner U, Zill P, Schulze TG, Musil R. Association of clinical parameters and polygenic risk scores for body mass index, schizophrenia, and diabetes with antipsychotic-induced weight gain. J Psychiatr Res 2024; 169:184-190. [PMID: 38042056 DOI: 10.1016/j.jpsychires.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Antipsychotic-induced weight gain (AIWG) is a common adverse event in schizophrenia. Genome-wide association studies (GWAS) and polygenic risk scores (PRS) for other diseases or traits are recent approaches to disentangling the genetic architecture of AIWG. 200 patients with schizophrenia treated monotherapeutically with antipsychotics were included in this study. A multiple linear regression analysis with ten-fold crossvalidation was performed to predict the percentage weight change after five weeks of treatment. Independent variables were sex, age, body mass index (BMI) at baseline, medication-associated risk, and PRSs (BMI, schizophrenia, diabetes, and metabolic syndrome). An explorative GWAS analysis was performed on the same subjects and traits. PRSs for BMI (β = 3.78; p = 0.0041), schizophrenia (β = 5.38; p = 0.021) and diabetes type 2 (β = 13.4; p = 0.046) were significantly associated with AIWG. Other significant factors were sex, baseline BMI and medication. Compared to the model without genetic factors, the addition of PRSs for BMI, schizophrenia, and diabetes type 2 increased the goodness of fit by 6.5 %. The GWAS identified the association of three variants (rs10668573, rs10249381 and rs1988834) with AIWG at a genome-wide level of p < 1 · 10-6. Using PRS for schizophrenia, BMI, and diabetes type 2 increased the explained variation of predicted weight gain, compared to a model without PRSs. For more precise results, PRSs derived from other traits (ideally AIWG) should be investigated. Potential risk variants identified in our GWAS need to be further investigated and replicated in independent samples.
Collapse
Affiliation(s)
- Maria Franz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, 80336, Germany
| | - Maria S Simon
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany.
| | - Barbara B Barton
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Catherine Glockner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Ilja Spellmann
- Zentrum für Seelische Gesundheit, Klinikum Stuttgart, Stuttgart, 70174, Germany
| | | | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, 80336, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, 80336, Germany; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| |
Collapse
|
6
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Ferri G, Pesce L, Tesi M, Marchetti P, Cardarelli F. β-Cell Pathophysiology: A Review of Advanced Optical Microscopy Applications. Int J Mol Sci 2021; 22:ijms222312820. [PMID: 34884624 PMCID: PMC8657725 DOI: 10.3390/ijms222312820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
β-cells convert glucose (input) resulting in the controlled release of insulin (output), which in turn has the role to maintain glucose homeostasis. β-cell function is regulated by a complex interplay between the metabolic processing of the input, its transformation into second-messenger signals, and final mobilization of insulin-containing granules towards secretion of the output. Failure at any level in this process marks β-cell dysfunction in diabetes, thus making β-cells obvious potential targets for therapeutic purposes. Addressing quantitatively β-cell (dys)function at the molecular level in living samples requires probing simultaneously the spatial and temporal dimensions at the proper resolution. To this aim, an increasing amount of research efforts are exploiting the potentiality of biophysical techniques. In particular, using excitation light in the visible/infrared range, a number of optical-microscopy-based approaches have been tailored to the study of β-cell-(dys)function at the molecular level, either in label-free mode (i.e., exploiting intrinsic autofluorescence of cells) or by the use of organic/genetically-encoded fluorescent probes. Here, relevant examples from the literature are reviewed and discussed. Based on this, new potential lines of development in the field are drawn.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Luca Pesce
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Marta Tesi
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56127 Pisa, Italy; (M.T.); (P.M.)
| | - Piero Marchetti
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56127 Pisa, Italy; (M.T.); (P.M.)
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
- Correspondence:
| |
Collapse
|
8
|
Kang T, Ye J, Qin P, Li H, Yao Z, Liu Y, Ling Y, Zhang Y, Yu T, Cao H, Li Y, Wang J, Fang F. Knockdown of Ptprn-2 delays the onset of puberty in female rats. Theriogenology 2021; 176:137-148. [PMID: 34607132 DOI: 10.1016/j.theriogenology.2021.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
In the present study, we evaluated how Ptprn-2 (encoding tyrosine phosphatase, receptor type, N2 polypeptide protein) affects the onset of puberty in female rats. We evaluated the expression of Ptprn-2 mRNA and protein in the hypothalamus-pituitary-ovary axis of female rats using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence at infancy, prepuberty, puberty, peripuberty, and adulthood. We evaluated the effects of Ptprn-2 gene knockdown on different aspects of reproduction-related biology in female rats, including the expression levels of puberty-related genes in vivo and in vitro, the time to onset of puberty, the concentration of serum reproductive hormones, the morphology of ovaries, and the ultrastructure of pituitary gonadotropin cells. Our results demonstrated that PTPRN-2 was primarily distributed in the arcuate nucleus (ARC), periventricular nucleus (PeN), adenohypophysis, and the ovarian follicular theca, stroma, and granulosa cells of female rats at various stages. Ptprn-2 mRNA levels significantly varied between peripuberty and puberty (P < 0.05) in the hypothalamus and pituitary gland. In hypothalamic cells, Ptprn-2 knockdown decreased the expression of Ptprn-2 and Rfrp-3 mRNA (P < 0.05) and increased the levels of Gnrh and Kiss-1 mRNA (P < 0.05). Ptprn-2 knockdown in the hypothalamus resulted in delayed vaginal opening compared to the control group (n = 12, P < 0.01), and Ptprn-2, Gnrh, and Kiss-1 mRNA levels (P < 0.05) all decreased, while the expression of Igf-1 (P < 0.05) and Rfrp-3 mRNA (P < 0.01) increased. The concentrations of FSH and P4 in the serum of Ptprn-2 knockdown rats were lower than in control animals (P < 0.05). Large transverse perimeters and longitudinal perimeters (P < 0.05) were found in the ovaries of Ptprn-2 knockdown rats. There were fewer large secretory particles from gonadotropin cells in adenohypophysis tissue of the Ptprn-2 knockdown group compared to the control group. This indicates that Ptprn-2 knockdown can regulate levels of Gnrh, Kiss-1, and Rfrp-3 mRNA in the hypothalamus, regulate the concentration of serum FSH and P4, and alter the morphology of ovarian and gonadotropin cells, delaying the onset of puberty in female rats.
Collapse
Affiliation(s)
- Tiezhu Kang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ping Qin
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hailing Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Zhiqiu Yao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Tong Yu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hongguo Cao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Juhua Wang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
9
|
Lu C, Zhao Q, Wang D, Feng Y, Feng L, Li Z, Shi Q. Rab35 regulates insulin secretion via phogrin in pancreatic β cells. Clin Exp Pharmacol Physiol 2021; 49:104-112. [PMID: 34448213 DOI: 10.1111/1440-1681.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Dysfunction of pancreatic β cell insulin secretion is related to the pathogenesis of type 2 diabetes (T2D). Rab proteins have been shown to be key players in insulin secretion by pancreatic β cells, and phogrin is a marker for the processes of exocytosis and insulin secretion. The purposes of this study were to clarify the regulatory role of Rab35 in insulin secretion and analyse the Rab35/phogrin interaction mechanism in β-TC-6 cells. We studied the effects of Rab35 gene overexpression and interference on insulin secretion and phogrin expression and levels in β-TC-6 cells. The Rab35/phogrin interaction was verified by GST pulldown, co-IP and co-localisation experiments. Here, we report that Rab35 is mainly distributed in the β-TC-6-cell plasma membrane and cytoplasm. Rab35 overexpression promotes insulin secretion and decreases phogrin expression in β-TC-6 cells, whereas its silencing significantly inhibits insulin secretion, promotes phogrin expression (p < 0.05) and causes phogrin redistribution. Furthermore, Rab35 silencing suppresses exocytosis of insulin. Rab35 interacts with phogrin, and both proteins co-localise in the plasma membranes and cytoplasm of β-TC-6 cells. Our study presents novel evidence that Rab35 regulates insulin secretion by inhibiting phogrin expression and causing intracellular phogrin redistribution in pancreatic β cells.
Collapse
Affiliation(s)
- Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Medical Centre of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Dan Wang
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yunlu Feng
- South China Normal University Hospital, Guangzhou, China
| | - Lie Feng
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zejian Li
- Medical Centre of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiping Shi
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Yang G, Li L, Liu Y, Liang K, Wei L, Chen L. Hyperglycemia-Induced Dysregulated Fusion Intermediates in Insulin-Secreting Cells Visualized by Super-Resolution Microscopy. Front Cell Dev Biol 2021; 9:650167. [PMID: 33937248 PMCID: PMC8083903 DOI: 10.3389/fcell.2021.650167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Impaired insulin release is a hallmark of type 2 diabetes and is closely related to chronically elevated glucose concentrations, known as “glucotoxicity.” However, the molecular mechanisms by which glucotoxicity impairs insulin secretion remain poorly understood. In addition to known kiss-and-run and kiss-and-stay fusion events in INS-1 cells, ultrafast Hessian structured illumination microscopy (Hessian SIM) enables full fusion to be categorized according to the newly identified structures, such as ring fusion (those with enlarged pores) or dot fusion (those without apparent pores). In addition, we identified four fusion intermediates during insulin exocytosis: initial pore opening, vesicle collapse, enlarged pore formation, and final pore dilation. Long-term incubation in supraphysiological doses of glucose reduced exocytosis in general and increased the occurrence of kiss-and-run events at the expense of reduced full fusion. In addition, hyperglycemia delayed pore opening, vesicle collapse, and enlarged pore formation in full fusion events. It also reduced the size of apparently enlarged pores, all of which contributed to the compromised insulin secretion. These phenotypes were mostly due to the hyperglycemia-induced reduction in syntaxin-1A (Stx-1A) and SNAP-25 protein, since they could be recapitulated by the knockdown of endogenous Stx-1A and SNAP-25. These findings suggest essential roles for the vesicle fusion type and intermediates in regulating insulin secretion from pancreatic beta cells in normal and disease conditions.
Collapse
Affiliation(s)
- Guoyi Yang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing, China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing, China.,Institute for Brain Research and Rehabilitation, Key Laboratory of Brain, Cognition and Education Science, South China Normal University, Guangzhou, China
| | - Kuo Liang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Beijing Academy of Artificial Intelligence, Beijing, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
11
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
12
|
Transcriptome signatures from discordant sibling pairs reveal changes in peripheral blood immune cell composition in Autism Spectrum Disorder. Transl Psychiatry 2020; 10:106. [PMID: 32291385 PMCID: PMC7156413 DOI: 10.1038/s41398-020-0778-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD suggests that through accurate experimental design it is possible to extract important information on the disease pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD, the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene expression between affected and unaffected siblings were small. In order to assess the contribution of differences in the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD.
Collapse
|
13
|
Rotunno MS, Lane M, Zhang W, Wolf P, Oliva P, Viel C, Wills AM, Alcalay RN, Scherzer CR, Shihabuddin LS, Zhang K, Sardi SP. Cerebrospinal fluid proteomics implicates the granin family in Parkinson's disease. Sci Rep 2020; 10:2479. [PMID: 32051502 PMCID: PMC7015906 DOI: 10.1038/s41598-020-59414-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Better understanding of the underlying disease mechanism(s) is an urgent need for the development of disease-modifying therapeutics. Limited studies have been performed in large patient cohorts to identify protein alterations in cerebrospinal fluid (CSF), a proximal site to pathology. We set out to identify disease-relevant protein changes in CSF to gain insights into the etiology of Parkinson's disease and potentially assist in disease biomarker identification. In this study, we used liquid chromatography-tandem mass spectrometry in data-independent acquisition (DIA) mode to identify Parkinson's-relevant biomarkers in cerebrospinal fluid. We quantified 341 protein groups in two independent cohorts (n = 196) and a longitudinal cohort (n = 105 samples, representing 40 patients) consisting of Parkinson's disease and healthy control samples from three different sources. A first cohort of 53 Parkinson's disease and 72 control samples was analyzed, identifying 53 proteins with significant changes (p < 0.05) in Parkinson's disease relative to healthy control. We established a biomarker signature and multiple protein ratios that differentiate Parkinson's disease from healthy controls and validated these results in an independent cohort. The second cohort included 28 Parkinson's disease and 43 control samples. Independent analysis of these samples identified 41 proteins with significant changes. Evaluation of the overlapping changes between the two cohorts identified 13 proteins with consistent and significant changes (p < 0.05). Importantly, we found the extended granin family proteins as reduced in disease, suggesting a potential common mechanism for the biological reduction in monoamine neurotransmission in Parkinson's patients. Our study identifies several novel protein changes in Parkinson's disease cerebrospinal fluid that may be exploited for understanding etiology of disease and for biomarker development.
Collapse
Affiliation(s)
- Melissa S Rotunno
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.,Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Monica Lane
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Wenfei Zhang
- Translational Medicine, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Pavlina Wolf
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - Petra Oliva
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,ARCHIMED Life Sciences GmbH, Leberstraße 20/2, 1110, Vienna, Austria
| | - Catherine Viel
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, NY, 10032-3784, USA
| | - Clemens R Scherzer
- Precision Neurology Program, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,APDA Center for Advance Parkinson Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Lamya S Shihabuddin
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Kate Zhang
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - S Pablo Sardi
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.
| |
Collapse
|
14
|
Chen G, Yuan A, Cai T, Li CM, Bentley AR, Zhou J, N Shriner D, A Adeyemo A, N Rotimi C. Measuring gene-gene interaction using Kullback-Leibler divergence. Ann Hum Genet 2019; 83:405-417. [PMID: 31206606 DOI: 10.1111/ahg.12324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies (GWAS) are used to investigate genetic variants contributing to complex traits. Despite discovering many loci, a large proportion of "missing" heritability remains unexplained. Gene-gene interactions may help explain some of this gap. Traditionally, gene-gene interactions have been evaluated using parametric statistical methods such as linear and logistic regression, with multifactor dimensionality reduction (MDR) used to address sparseness of data in high dimensions. We propose a method for the analysis of gene-gene interactions across independent single-nucleotide polymorphisms (SNPs) in two genes. Typical methods for this problem use statistics based on an asymptotic chi-squared mixture distribution, which is not easy to use. Here, we propose a Kullback-Leibler-type statistic, which follows an asymptotic, positive, normal distribution under the null hypothesis of no relationship between SNPs in the two genes, and normally distributed under the alternative hypothesis. The performance of the proposed method is evaluated by simulation studies, which show promising results. The method is also used to analyze real data and identifies gene-gene interactions among RAB3A, MADD, and PTPRN on type 2 diabetes (T2D) status.
Collapse
Affiliation(s)
- Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ao Yuan
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Tao Cai
- Experimental Medicine Section, Laboratory of Sensory Biology, NIDCR, NIH, Bethesda, Maryland
| | - Chuan-Ming Li
- Division of Scientific Program, National Institute of Deafness and Other Communication Disorders, Rockville, Maryland, 20892
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel N Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Ferri G, Digiacomo L, Lavagnino Z, Occhipinti M, Bugliani M, Cappello V, Caracciolo G, Marchetti P, Piston DW, Cardarelli F. Insulin secretory granules labelled with phogrin-fluorescent proteins show alterations in size, mobility and responsiveness to glucose stimulation in living β-cells. Sci Rep 2019; 9:2890. [PMID: 30814595 PMCID: PMC6393586 DOI: 10.1038/s41598-019-39329-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
The intracellular life of insulin secretory granules (ISGs) from biogenesis to secretion depends on their structural (e.g. size) and dynamic (e.g. diffusivity, mode of motion) properties. Thus, it would be useful to have rapid and robust measurements of such parameters in living β-cells. To provide such measurements, we have developed a fast spatiotemporal fluctuation spectroscopy. We calculate an imaging-derived Mean Squared Displacement (iMSD), which simultaneously provides the size, average diffusivity, and anomalous coefficient of ISGs, without the need to extract individual trajectories. Clustering of structural and dynamic quantities in a multidimensional parametric space defines the ISGs' properties for different conditions. First, we create a reference using INS-1E cells expressing proinsulin fused to a fluorescent protein (FP) under basal culture conditions and validate our analysis by testing well-established stimuli, such as glucose intake, cytoskeleton disruption, or cholesterol overload. After, we investigate the effect of FP-tagged ISG protein markers on the structural and dynamic properties of the granule. While iMSD analysis produces similar results for most of the lumenal markers, the transmembrane marker phogrin-FP shows a clearly altered result. Phogrin overexpression induces a substantial granule enlargement and higher mobility, together with a partial de-polymerization of the actin cytoskeleton, and reduced cell responsiveness to glucose stimulation. Our data suggest a more careful interpretation of many previous ISG-based reports in living β-cells. The presented data pave the way to high-throughput cell-based screening of ISG structure and dynamics under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Margherita Occhipinti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | | | - Giulio Caracciolo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francesco Cardarelli
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy.
| |
Collapse
|
16
|
Li M, Du W, Zhou M, Zheng L, Song E, Hou J. Proteomic analysis of insulin secretory granules in INS-1 cells by protein correlation profiling. BIOPHYSICS REPORTS 2018; 4:329-338. [PMID: 30596141 PMCID: PMC6276070 DOI: 10.1007/s41048-018-0061-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/08/2018] [Indexed: 11/30/2022] Open
Abstract
Abstract Insulin secretory granules (ISGs), a group of distinguishing organelles in pancreatic β cells, are responsible for the storage and secretion of insulin to maintain blood glucose homeostasis. The molecular mechanisms of ISG biogenesis, maturation, transportation, and exocytosis are still largely unknown because the proteins involved in these distinct steps have not been fully identified. Subcellular fractionation by density gradient centrifugation has been successfully employed to analyze the proteomes of numerous organelles. However, use of this method to elucidate the ISG proteome is limited by co-fractionated contaminants because ISGs are very dynamic and have abundant exchanges or contacts with other organelles, such as the Golgi apparatus, lysosomes, and endosomes. In this study, we developed a new strategy for identifying ISG proteins by protein correlation profiling (PCP)-based proteomics, which included ISG purification by OptiPrep density gradient centrifugation, label-free quantitative proteome, and identification of ISG proteins by correlating fractionation profiles between candidates and known ISG markers. Using this approach, we were able to identify 81 ISG proteins. Among them, TM9SF3, a nine-transmembrane protein, was considered a high confidence ISG candidate protein highlighted in the PCP network. Further biochemical and immunofluorescence assays indicated that TM9SF3 localized in ISGs, suggesting that it is a potential new ISG marker. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s41048-018-0061-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Li
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wen Du
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Maoge Zhou
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Li Zheng
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Eli Song
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Junjie Hou
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
17
|
Gentilini D, Scala S, Gaudenzi G, Garagnani P, Capri M, Cescon M, Grazi GL, Bacalini MG, Pisoni S, Dicitore A, Circelli L, Santagata S, Izzo F, Di Blasio AM, Persani L, Franceschi C, Vitale G. Epigenome-wide association study in hepatocellular carcinoma: Identification of stochastic epigenetic mutations through an innovative statistical approach. Oncotarget 2018; 8:41890-41902. [PMID: 28514750 PMCID: PMC5522036 DOI: 10.18632/oncotarget.17462] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) results from accumulation of both genetic and epigenetic alterations. We investigated the genome-wide DNA methylation profile in 69 pairs of HCC and adjacent non-cancerous liver tissues using the Infinium HumanMethylation 450K BeadChip array. An innovative analytical approach has been adopted to identify Stochastic Epigenetic Mutations (SEMs) in HCC.HCC and peritumoral tissues showed a different epigenetic profile, mainly characterized by loss of DNA methylation in HCC. Total number of SEMs was significantly higher in HCC tumor (median: 77,370) than in peritumoral (median: 5,656) tissues and correlated with tumor grade. A significant positive association emerged between SEMs measured in peritumoral tissue and hepatitis B and/or C virus infection status. A restricted number of SEMs resulted to be shared by more than 90% of HCC tumor samples and never present in peritumoral tissue. This analysis allowed the identification of four epigenetically regulated candidate genes (AJAP1, ADARB2, PTPRN2, SDK1), potentially involved in the pathogenesis of HCC.In conclusion, HCC showed a methylation profile completely deregulated and very far from adjacent non-cancerous liver tissues. The SEM analysis provided valuable clues for further investigations in understanding the process of tumorigenesis in HCC.
Collapse
Affiliation(s)
- Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center
| | - Matteo Cescon
- DIMEC-Department of General Surgery and Medicine Sciences, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Gian Luca Grazi
- Regina Elena National Cancer Institute Via Elio Chianesi 53, Rome, Italy
| | | | - Serena Pisoni
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | | | - Luisa Circelli
- Department of Experimental Oncology, Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Sara Santagata
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Francesco Izzo
- Department of Surgical Oncology, Abdominal and Hepatobiliary Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Fondazione " G. Pascale", Napoli, Italy
| | | | - Luca Persani
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center.,IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| |
Collapse
|
18
|
Kotsiri M, Protopapa M, Mouratidis S, Zachariadis M, Vassilakos D, Kleidas I, Samiotaki M, Dedos SG. Should I stay or should I go? The settlement-inducing protein complex guides barnacle settlement decisions. J Exp Biol 2018; 221:jeb.185348. [DOI: 10.1242/jeb.185348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/01/2018] [Indexed: 01/16/2023]
Abstract
Reproduction in barnacles relies on chemical cues that guide their gregarious settlement. These cues have been pinned down to several sources of settlement pheromones, one of which is a protein termed Settlement-Inducing Protein Complex (SIPC), a large glycoprotein acting as a pheromone to induce larval settlement and as an adhesive in the surface exploration by the cyprids. Settlement assays in laboratory conditions with Amphibalanus (=Balanus) amphitrite cyprids in the presence of SIPC showed that cyprids exhibit settlement preference behaviour at lower concentrations (EC50=3.73 nM) and settlement avoidance behaviour at higher concentrations of SIPC (EC50=101 nM). By using truncated fragments of SIPC in settlement assays, we identify that domains at the N-terminal of SIPC transduce settlement preference cues that mask the settlement avoidance cues transduced by domains at its C-terminal. Removing the N-terminal 600 amino acids from SIPC resulted in truncated fragments that transduced only settlement avoidance cues to the cyprids. From the sexual reproduction point of view, this bimodal response of barnacles to SIPC suggests that barnacles will settle gregariously when conspecific cues are sparse but will not settle if conspecific cues inform of overcrowding that will increase reproductive competition and diminish their reproductive chances.
Collapse
Affiliation(s)
- Manto Kotsiri
- Department of Biology, National and Kapodistrian University of Athens, Athens 157 84, Greece
| | - Maria Protopapa
- Department of Biology, National and Kapodistrian University of Athens, Athens 157 84, Greece
| | - Sofoklis Mouratidis
- Department of Biology, National and Kapodistrian University of Athens, Athens 157 84, Greece
| | - Michael Zachariadis
- Department of Biology, National and Kapodistrian University of Athens, Athens 157 84, Greece
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens 15310, Greece
| | - Demetrios Vassilakos
- Department of Biology, National and Kapodistrian University of Athens, Athens 157 84, Greece
| | - Ioannis Kleidas
- Department of Biology, National and Kapodistrian University of Athens, Athens 157 84, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672, Vari, Greece
| | - Skarlatos G. Dedos
- Department of Biology, National and Kapodistrian University of Athens, Athens 157 84, Greece
| |
Collapse
|
19
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
20
|
Chen MJ, Dixon JE, Manning G. Genomics and evolution of protein phosphatases. Sci Signal 2017; 10:10/474/eaag1796. [DOI: 10.1126/scisignal.aag1796] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Bourgonje AM, Verrijp K, Schepens JTG, Navis AC, Piepers JAF, Palmen CBC, van den Eijnden M, Hooft van Huijsduijnen R, Wesseling P, Leenders WPJ, Hendriks WJAJ. Comprehensive protein tyrosine phosphatase mRNA profiling identifies new regulators in the progression of glioma. Acta Neuropathol Commun 2016; 4:96. [PMID: 27586084 PMCID: PMC5009684 DOI: 10.1186/s40478-016-0372-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
The infiltrative behavior of diffuse gliomas severely reduces therapeutic potential of surgical resection and radiotherapy, and urges for the identification of new drug-targets affecting glioma growth and migration. To address the potential role of protein tyrosine phosphatases (PTPs), we performed mRNA expression profiling for 91 of the 109 known human PTP genes on a series of clinical diffuse glioma samples of different grades and compared our findings with in silico knowledge from REMBRANDT and TCGA databases. Overall PTP family expression levels appeared independent of characteristic genetic aberrations associated with lower grade or high grade gliomas. Notably, seven PTP genes (DUSP26, MTMR4, PTEN, PTPRM, PTPRN2, PTPRT and PTPRZ1) were differentially expressed between grade II-III gliomas and (grade IV) glioblastomas. For DUSP26, PTEN, PTPRM and PTPRT, lower expression levels correlated with poor prognosis, and overexpression of DUSP26 or PTPRT in E98 glioblastoma cells reduced tumorigenicity. Our study represents the first in-depth analysis of PTP family expression in diffuse glioma subtypes and warrants further investigations into PTP-dependent signaling events as new entry points for improved therapy.
Collapse
|
22
|
Li Yim AYF, Duijvis NW, Zhao J, de Jonge WJ, D'Haens GRAM, Mannens MMAM, Mul ANPM, Te Velde AA, Henneman P. Peripheral blood methylation profiling of female Crohn's disease patients. Clin Epigenetics 2016; 8:65. [PMID: 27279921 PMCID: PMC4897922 DOI: 10.1186/s13148-016-0230-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/22/2016] [Indexed: 01/17/2023] Open
Abstract
Background Crohn’s disease (CD) is a chronic inflammatory disorder belonging to the inflammatory bowel diseases (IBD). CD affects distinct parts of the gastrointestinal tract, leading to symptoms including diarrhea, fever, abdominal pain, weight loss, and anemia. The aim of this study was to assess whether the DNA methylome of peripheral blood cells can be associated with CD in women. Methods Samples were obtained from 18 female patients with histologically confirmed ileal or ileocolic CD and 25 healthy age- and gender-matched controls (mean age and standard deviation: 30.5 ± 6.5 years for both groups). Genome-wide DNA methylation was determined using the Illumina HumanMethylation 450k BeadChip. Results Our analysis implicated 4287 differentially methylated positions (DMPs; corrected p < 0.05) that are associated to 2715 unique genes. Gene ontology enrichment analysis revealed significant enrichment of our DMPs in immune response processes and inflammatory pathways. Of the 4287 DMPs, 32 DMPs were located on chromosome X with several hits for MIR223 and PABPC5. Comparison with previously performed (epi)genome-wide studies revealed that we replicated 33 IBD-associated genes. In addition to DMPs, we found eight differentially methylated regions (DMRs). Conclusions CD patients display a characteristic DNA methylation landscape, with the differentially methylated genes being implicated in immune response. Additionally, DMPs were found on chromosome X suggesting X-linked manifestations of CD that could be associated with female-specific symptoms. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0230-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Y F Li Yim
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Academic Medical Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Epinova Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Nicolette W Duijvis
- Tytgat Institute for Liver & Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jing Zhao
- Tytgat Institute for Liver & Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver & Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Geert R A M D'Haens
- Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel M A M Mannens
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Academic Medical Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Adri N P M Mul
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Academic Medical Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver & Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Academic Medical Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Zimmermann MT, Oberg AL, Grill DE, Ovsyannikova IG, Haralambieva IH, Kennedy RB, Poland GA. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination. PLoS One 2016; 11:e0152034. [PMID: 27031986 PMCID: PMC4816338 DOI: 10.1371/journal.pone.0152034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 01/11/2023] Open
Abstract
Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.
Collapse
Affiliation(s)
- Michael T. Zimmermann
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ann L. Oberg
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Diane E. Grill
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
24
|
Sengelaub CA, Navrazhina K, Ross JB, Halberg N, Tavazoie SF. PTPRN2 and PLCβ1 promote metastatic breast cancer cell migration through PI(4,5)P2-dependent actin remodeling. EMBO J 2015; 35:62-76. [PMID: 26620550 PMCID: PMC4717998 DOI: 10.15252/embj.201591973] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Altered abundance of phosphatidyl inositides (PIs) is a feature of cancer. Various PIs mark the identity of diverse membranes in normal and malignant cells. Phosphatidylinositol 4,5‐bisphosphate (PI(4,5)P2) resides predominantly in the plasma membrane, where it regulates cellular processes by recruiting, activating, or inhibiting proteins at the plasma membrane. We find that PTPRN2 and PLCβ1 enzymatically reduce plasma membrane PI(4,5)P2 levels in metastatic breast cancer cells through two independent mechanisms. These genes are upregulated in highly metastatic breast cancer cells, and their increased expression associates with human metastatic relapse. Reduction in plasma membrane PI(4,5)P2 abundance by these enzymes releases the PI(4,5)P2‐binding protein cofilin from its inactive membrane‐associated state into the cytoplasm where it mediates actin turnover dynamics, thereby enhancing cellular migration and metastatic capacity. Our findings reveal an enzymatic network that regulates metastatic cell migration through lipid‐dependent sequestration of an actin‐remodeling factor.
Collapse
Affiliation(s)
- Caitlin A Sengelaub
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Kristina Navrazhina
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Jason B Ross
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Nils Halberg
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| |
Collapse
|
25
|
Xu H, Abuhatzira L, Carmona GN, Vadrevu S, Satin LS, Notkins AL. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia 2015; 58:2298-306. [PMID: 26141787 PMCID: PMC6754265 DOI: 10.1007/s00125-015-3683-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/11/2015] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS miR-153 is an intronic miRNA embedded in the genes that encode IA-2 (also known as PTPRN) and IA-2β (also known as PTPRN2). Islet antigen (IA)-2 and IA-2β are major autoantigens in type 1 diabetes and are important transmembrane proteins in dense core and synaptic vesicles. miR-153 and its host genes are co-regulated in pancreas and brain. The present experiments were initiated to decipher the regulatory network between miR-153 and its host gene Ia-2β (also known as Ptprn2). METHODS Insulin secretion was determined by ELISA. Identification of miRNA targets was assessed using luciferase assays and by quantitative real-time PCR and western blots in vitro and in vivo. Target protector was also employed to evaluate miRNA target function. RESULTS Functional studies revealed that miR-153 mimic suppresses both glucose- and potassium-induced insulin secretion (GSIS and PSIS, respectively), whereas miR-153 inhibitor enhances both GSIS and PSIS. A similar effect on dopamine secretion also was observed. Using miRNA target prediction software, we found that miR-153 is predicted to target the 3'UTR region of the calcium channel gene, Cacna1c. Further studies confirmed that Cacna1c mRNA and protein are downregulated by miR-153 mimics and upregulated by miR-153 inhibitors in insulin-secreting freshly isolated mouse islets, in the insulin-secreting mouse cell line MIN6 and in the dopamine-secreting cell line PC12. CONCLUSIONS/INTERPRETATION miR-153 is a negative regulator of both insulin and dopamine secretion through its effect on Cacna1c expression, which suggests that IA-2β and miR-153 have opposite functional effects on the secretory pathway.
Collapse
Affiliation(s)
- Huanyu Xu
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Liron Abuhatzira
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Gilberto N Carmona
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Suryakiran Vadrevu
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Leslie S Satin
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abner L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Abuhatzira L, Xu H, Tahhan G, Boulougoura A, Schäffer AA, Notkins AL. Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA-2, IA-2β, and GAD65. FASEB J 2015; 29:4374-83. [PMID: 26148972 DOI: 10.1096/fj.15-273649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/30/2015] [Indexed: 12/25/2022]
Abstract
Islet antigen (IA)-2, IA-2β, and glutamate decarboxylase (GAD65) are major autoantigens in type 1 diabetes (T1D). Autoantibodies to these autoantigens appear years before disease onset and are widely used as predictive markers. Little is known, however, about what regulates the expression of these autoantigens. The present experiments were initiated to test the hypothesis that microRNAs (miRNAs) can target and affect the levels of these autoantigens. Bioinformatics was used to identify miRNAs predicted to target the mRNAs coding IA-2, IA-2β, and GAD65. RNA interference for the miRNA processing enzyme Dicer1 and individual miRNA mimics and inhibitors were used to confirm the effect in mouse islets and MIN6 cells. We show that the imprinted 14q32 miRNA cluster contains 56 miRNAs, 32 of which are predicted to target the mRNAs of T1D autoantigens and 12 of which are glucose-sensitive. Using miRNA mimics and inhibitors, we confirmed that at least 7 of these miRNAs modulate the mRNA levels of the T1D autoantigens. Dicer1 knockdown significantly reduced the mRNA levels of all 3 autoantigens, further confirming the importance of miRNAs in this regulation. We conclude that miRNAs are involved in regulating the expression of the major T1D autoantigens.
Collapse
Affiliation(s)
- Liron Abuhatzira
- *Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Huanyu Xu
- *Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Georges Tahhan
- *Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Afroditi Boulougoura
- *Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Alejandro A Schäffer
- *Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Abner L Notkins
- *Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Dislich B, Wohlrab F, Bachhuber T, Müller SA, Kuhn PH, Hogl S, Meyer-Luehmann M, Lichtenthaler SF. Label-free Quantitative Proteomics of Mouse Cerebrospinal Fluid Detects β-Site APP Cleaving Enzyme (BACE1) Protease Substrates In Vivo. Mol Cell Proteomics 2015; 14:2550-63. [PMID: 26139848 DOI: 10.1074/mcp.m114.041533] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1-/- and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1-/- and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1-/- mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors.
Collapse
Affiliation(s)
- Bastian Dislich
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; §Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Felix Wohlrab
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; §Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Teresa Bachhuber
- ¶Adolf Butenandt Institute, Ludwig-Maximilians University, Munich Biochemistry, Munich Germany
| | - Stephan A Müller
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; §Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peer-Hendrik Kuhn
- §Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; **Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Sebastian Hogl
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; §Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Stefan F Lichtenthaler
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; §Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; **Institute for Advanced Study, Technische Universität München, Garching, Germany; ‡‡Munich Center for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
28
|
Sorokin AV, Nair BC, Wei Y, Aziz KE, Evdokimova V, Hung MC, Chen J. Aberrant Expression of proPTPRN2 in Cancer Cells Confers Resistance to Apoptosis. Cancer Res 2015; 75:1846-58. [PMID: 25877877 DOI: 10.1158/0008-5472.can-14-2718] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/01/2015] [Indexed: 01/09/2023]
Abstract
The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells, where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers, including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome. Loss of proPTPRN2 in breast cancer cells promoted apoptosis and blocked tumor formation in mice, whereas enforced expression of proPTPRN2 in nontransformed human mammary epithelial cells exerted a converse effect. Mechanistic investigations suggested that ProPTPRN2 elicited these effects through direct interaction with TRAF2, a hub scaffold protein for multiple kinase cascades, including ones that activate NF-κB. Overall, our results suggest PTPRN2 as a novel candidate biomarker and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Alexey V Sorokin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Binoj C Nair
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn E Aziz
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Valentina Evdokimova
- Department of Genomics, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
X-ray structure of the mature ectodomain of phogrin. ACTA ACUST UNITED AC 2014; 16:1-9. [PMID: 25421040 DOI: 10.1007/s10969-014-9191-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Phogrin/IA-2β and ICA512/IA-2 are two paralogs receptor-type protein-tyrosine phosphatases (RPTP) that localize in secretory granules of various neuroendocrine cells. In pancreatic islet β-cells, they participate in the regulation of insulin secretion, ensuring proper granulogenesis, and β-cell proliferation. The role of their cytoplasmic tail has been partially unveiled, while that of their luminal region remains unclear. To advance the understanding of its structure-function relationship, the X-ray structure of the mature ectodomain of phogrin (ME phogrin) at pH 7.4 and 4.6 has been solved at 1.95- and 2.01-Å resolution, respectively. Similarly to the ME of ICA512, ME phogrin adopts a ferredoxin-like fold: a sheet of four antiparallel β-strands packed against two α-helices. Sequence conservation among vertebrates, plants and insects suggests that the structural similarity extends to all the receptor family. Crystallized ME phogrin is monomeric, in agreement with solution studies but in striking contrast with the behavior of homodimeric ME ICA512. The structural details that may cause the quaternary structure differences are analyzed. The results provide a basis for building models of the overall orientation and oligomerization state of the receptor in biological membranes.
Collapse
|
30
|
Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T, Ling C. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014; 10:e1004735. [PMID: 25375650 PMCID: PMC4222689 DOI: 10.1371/journal.pgen.1004735] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/05/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans. Inter-individual variation in genetics and epigenetics affects biological processes and disease susceptibility. However, most studies have investigated genetic and epigenetic mechanisms independently and to uncover novel mechanisms affecting disease susceptibility there is a highlighted need to study interactions between these factors on a genome-wide scale. To identify novel loci affecting islet function and potentially diabetes, we performed the first genome-wide methylation quantitative trait locus (mQTL) analysis in human pancreatic islets including DNA methylation of 468,787 CpG sites located throughout the genome. Our results showed that DNA methylation of 11,735 CpGs in 4,504 unique genes is regulated by genetic factors located in cis (67,438 SNP-CpG pairs). Furthermore, significant mQTLs cover previously reported diabetes loci including KCNJ11, INS, HLA, PDX1 and GRB10. We also found mQTLs associated with gene expression and insulin secretion in human islets. By performing causality inference tests (CIT), we identified CpGs where DNA methylation potentially mediates the genetic impact on gene expression and insulin secretion. Our functional follow-up experiments further demonstrated that identified mQTLs/genes (GPX7, GSTT1 and SNX19) directly affect pancreatic β-cell function. Together, our study provides a detailed map of genome-wide associations between genetic and epigenetic variation, which affect gene expression and insulin secretion in human pancreatic islets.
Collapse
Affiliation(s)
- Anders H. Olsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tasnim Dayeh
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Elin Hall
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Emma A. Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
- * E-mail:
| |
Collapse
|
31
|
Carmona GN, Nishimura T, Schindler CW, Panlilio LV, Notkins AL. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning. Neuroscience 2014; 269:35-42. [PMID: 24662847 DOI: 10.1016/j.neuroscience.2014.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
The islet-antigens IA-2 and IA-2β are major autoantigens in type-1 diabetes and transmembrane proteins in dense core vesicles (DCV). Recently we showed that deletion of both IA-2 and IA-2β alters the secretion of hormones and neurotransmitters and impairs behavior and learning. The present study was designed to evaluate the contribution to learning of each of these genes by using single knockout (SKO) and double knockout (DKO) mice in an active avoidance test. After 5 days of training, wild-type (WT) mice showed 60-70% active avoidance responses, whereas the DKO mice showed only 10-15% active avoidance responses. The degree of active avoidance responses in the IA-2 SKO mice was similar to that of the DKO mice, but in contrast, the IA-2β SKO mice behaved like WT mice showing 60-70% active avoidance responses. Molecular studies revealed a marked decrease in the phosphorylation of the cAMP response element-binding protein (CREB) and Ca(2+)/calmodulin-dependent protein kinase II (CAMKII) in the striatum and hippocampus of the IA-2 SKO and DKO mice, but not in the IA-2β SKO mice. To evaluate the role of CREB and CAMKII in the SKO and DKO mice, GBR-12909, which selectively blocks the dopamine uptake transporter and increases CREB and CAMKII phosphorylation, was administered. GBR-12909 restored the phosphorylation of CREB and CAMKII and increased active avoidance learning in the DKO and IA-2 SKO to near the normal levels found in the WT and IA-2β SKO mice. We conclude that in the absence of the DCV protein IA-2, active avoidance learning is impaired.
Collapse
Affiliation(s)
- G N Carmona
- Experimental Medicine Section, Laboratory of Sensory Biology Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - T Nishimura
- Experimental Medicine Section, Laboratory of Sensory Biology Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - C W Schindler
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - L V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - A L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Li C, Kim K. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Front Endocrinol (Lausanne) 2014; 5:150. [PMID: 25352828 PMCID: PMC4196577 DOI: 10.3389/fendo.2014.00150] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022] Open
Abstract
Neuropeptides regulate all aspects of behavior in multicellular organisms. Because of their ability to act at long distances, neuropeptides can exert their effects beyond the conventional synaptic connections, thereby adding an intricate layer of complexity to the activity of neural networks. In the nematode Caenorhabditis elegans, a large number of neuropeptide genes that are expressed throughout the nervous system have been identified. The actions of these peptides supplement the synaptic connections of the 302 neurons, allowing for fine tuning of neural networks and increasing the ways in which behaviors can be regulated. In this review, we focus on a large family of genes encoding FMRFamide-related peptides (FaRPs). These genes, the flp genes, have been used as a starting point to identifying flp genes throughout Nematoda. Nematodes have the largest family of FaRPs described thus far. The challenges in the future are the elucidation of their functions and the identification of the receptors and signaling pathways through which they function.
Collapse
Affiliation(s)
- Chris Li
- Department of Biology, City College of New York and The Graduate Center, City University of New York, New York, NY, USA
- *Correspondence: Chris Li, 160 Convent Avenue, MR526, New York, NY 10031, USA e-mail: ; Kyuhyung Kim, 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873, South Korea e-mail:
| | - Kyuhyung Kim
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- *Correspondence: Chris Li, 160 Convent Avenue, MR526, New York, NY 10031, USA e-mail: ; Kyuhyung Kim, 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873, South Korea e-mail:
| |
Collapse
|
33
|
Subramani J, Ghosh M, Rahman MM, Caromile LA, Gerber C, Rezaul K, Han DK, Shapiro LH. Tyrosine phosphorylation of CD13 regulates inflammatory cell-cell adhesion and monocyte trafficking. THE JOURNAL OF IMMUNOLOGY 2013; 191:3905-12. [PMID: 23997214 DOI: 10.4049/jimmunol.1301348] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CD13 is a large cell surface peptidase expressed on the monocytes and activated endothelial cells that is important for homing to and resolving the damaged tissue at sites of injury. We showed previously that cross-linking of human monocytic CD13 with activating Abs induces strong adhesion to endothelial cells in a tyrosine kinase- and microtubule-dependent manner. In the current study, we examined the molecular mechanisms underlying these observations in vitro and in vivo. We found that cross-linking of CD13 on U937 monocytic cells induced phosphorylation of a number of proteins, including Src, FAK, and ERK, and inhibition of these abrogated CD13-dependent adhesion. We found that CD13 itself was phosphorylated in a Src-dependent manner, which was an unexpected finding because its 7-aa cytoplasmic tail was assumed to be inert. Furthermore, CD13 was constitutively associated with the scaffolding protein IQGAP1, and CD13 cross-linking induced complex formation with the actin-binding protein α-actinin, linking membrane-bound CD13 to the cytoskeleton, further supporting CD13 as an inflammatory adhesion molecule. Mechanistically, mutation of the conserved CD13 cytoplasmic tyrosine to phenylalanine abrogated adhesion; Src, FAK, and ERK phosphorylation; and cytoskeletal alterations upon Ab cross-linking. Finally, CD13 was phosphorylated in isolated murine inflammatory peritoneal exudate cells, and adoptive transfer of monocytic cell lines engineered to express the mutant CD13 were severely impaired in their ability to migrate into the inflamed peritoneum, confirming that CD13 phosphorylation is relevant to inflammatory cell trafficking in vivo. Therefore, this study identifies CD13 as a novel, direct activator of intracellular signaling pathways in pathophysiological conditions.
Collapse
Affiliation(s)
- Jaganathan Subramani
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pulido R, Stoker AW, Hendriks WJAJ. PTPs emerge as PIPs: protein tyrosine phosphatases with lipid-phosphatase activities in human disease. Hum Mol Genet 2013; 22:R66-76. [PMID: 23900072 DOI: 10.1093/hmg/ddt347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) constitute a family of key homeostatic regulators, with wide implications on physiology and disease. Recent findings have unveiled that the biological activity of PTPs goes beyond the dephosphorylation of phospho-proteins to shut down protein tyrosine kinase-driven signaling cascades. Substrates dephosphorylated by clinically relevant PTPs extend to phospholipids and phosphorylated carbohydrates as well. In addition, non-catalytic functions are also used by PTPs to regulate essential cellular functions. Consequently, PTPs have emerged as novel potential therapeutic targets for human diseases, including cancer predispositions, myopathies and neuropathies. In this review, we highlight recent advances on the multifaceted role of lipid-phosphatase PTPs in human pathology, with an emphasis on hereditary diseases. The involved PTP regulatory networks and PTP modulatory strategies with potential therapeutic application are discussed.
Collapse
|
35
|
Mandemakers W, Abuhatzira L, Xu H, Caromile LA, Hébert SS, Snellinx A, Morais VA, Matta S, Cai T, Notkins AL, De Strooper B. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 β: identification of miR-153 target genes with functions related to IA-2β in pancreas and brain. Diabetologia 2013; 56:1547-56. [PMID: 23595248 PMCID: PMC3671108 DOI: 10.1007/s00125-013-2901-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/26/2013] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function. METHODS A bioinformatics approach was used to identify miR-153's genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out. RESULTS Two copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels. CONCLUSIONS/INTERPRETATION This study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release.
Collapse
Affiliation(s)
- W. Mandemakers
- VIB Center for the Biology of Disease, Gasthuisberg O&N4, Herestraat 49-bus 602, 3000 Leuven, Belgium
- Center for Human Genetics, LIND and Universitaire Ziekenhuizen, KULeuven, Leuven, Belgium
| | - L. Abuhatzira
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD USA
| | - H. Xu
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD USA
| | - L. A. Caromile
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD USA
| | - S. S. Hébert
- VIB Center for the Biology of Disease, Gasthuisberg O&N4, Herestraat 49-bus 602, 3000 Leuven, Belgium
- Center for Human Genetics, LIND and Universitaire Ziekenhuizen, KULeuven, Leuven, Belgium
- Present Address: Neurosciences, Centre de Recherche du CHUQ (CHUL), RC-9800, 2705 boul. Laurier, Québec, QC Canada
| | - A. Snellinx
- VIB Center for the Biology of Disease, Gasthuisberg O&N4, Herestraat 49-bus 602, 3000 Leuven, Belgium
- Center for Human Genetics, LIND and Universitaire Ziekenhuizen, KULeuven, Leuven, Belgium
| | - V. A. Morais
- VIB Center for the Biology of Disease, Gasthuisberg O&N4, Herestraat 49-bus 602, 3000 Leuven, Belgium
- Center for Human Genetics, LIND and Universitaire Ziekenhuizen, KULeuven, Leuven, Belgium
| | - S. Matta
- VIB Center for the Biology of Disease, Gasthuisberg O&N4, Herestraat 49-bus 602, 3000 Leuven, Belgium
- Center for Human Genetics, LIND and Universitaire Ziekenhuizen, KULeuven, Leuven, Belgium
| | - T. Cai
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD USA
| | - A. L. Notkins
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD USA
| | - B. De Strooper
- VIB Center for the Biology of Disease, Gasthuisberg O&N4, Herestraat 49-bus 602, 3000 Leuven, Belgium
- Center for Human Genetics, LIND and Universitaire Ziekenhuizen, KULeuven, Leuven, Belgium
- Center for Human Genetics-CB4, VIB Center for the Biology of Disease–VIB11, Gasthuisberg O&N4, Herestraat 49-bus 602, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
37
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
38
|
Cai T, Hirai H, Zhang G, Zhang M, Takahashi N, Kasai H, Satin LS, Leapman RD, Notkins AL. Deletion of Ia-2 and/or Ia-2β in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia 2011; 54:2347-57. [PMID: 21732083 PMCID: PMC3168514 DOI: 10.1007/s00125-011-2221-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/23/2011] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Islet antigen 2 (IA-2) and IA-2β are dense core vesicle (DCV) transmembrane proteins and major autoantigens in type 1 diabetes. The present experiments were initiated to test the hypothesis that the knockout of the genes encoding these proteins impairs the secretion of insulin by reducing the number of DCV. METHODS Insulin secretion, content and DCV number were evaluated in islets from single knockout (Ia-2 [also known as Ptprn] KO, Ia-2β [also known as Ptprn2] KO) and double knockout (DKO) mice by a variety of techniques including electron and two-photon microscopy, membrane capacitance, Ca(2+) currents, DCV half-life, lysosome number and size and autophagy. RESULTS Islets from single and DKO mice all showed a significant decrease in insulin content, insulin secretion and the number and half-life of DCV (p < 0.05 to 0.001). Exocytosis as evaluated by two-photon microscopy, membrane capacitance and Ca(2+) currents supports these findings. Electron microscopy of islets from KO mice revealed a marked increase (p < 0.05 to 0.001) in the number and size of lysosomes and enzymatic studies showed an increase in cathepsin D activity (p < 0.01). LC3 protein, an indicator of autophagy, also was increased in islets of KO compared with wild-type mice (p < 0.05 to 0.01) suggesting that autophagy might be involved in the deletion of DCV. CONCLUSIONS/INTERPRETATION We conclude that the decrease in insulin content and secretion, resulting from the deletion of Ia-2 and/or Ia-2β, is due to a decrease in the number of DCV.
Collapse
Affiliation(s)
- T. Cai
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - H. Hirai
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - G. Zhang
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland 20892, USA
| | - M. Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - N. Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - H. Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - L. S. Satin
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - R. D. Leapman
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland 20892, USA
| | - A. L. Notkins
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|