1
|
Gupta D, Kumar M, Saifi S, Rawat S, Ethayathulla AS, Kaur P. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int J Biol Macromol 2024; 265:130913. [PMID: 38508544 DOI: 10.1016/j.ijbiomac.2024.130913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Aurora kinases (AURKs) are a family of serine /threonine protein kinases that have a crucial role in cell cycle process mainly in the event of chromosomal segregation, centrosome maturation and cytokinesis. The family consists of three members including Aurora kinase A (AURK-A), Aurora kinase B (AURK-B) and Aurora kinase C (AURK-C). All AURKs contain a conserved kinase domain for their activity but differ in their cellular localization and functions. AURK-A and AURK-B are expressed mainly in somatic cells while the expression of AURK-C is limited to germ cells. AURK-A promotes G2 to M transition of cell cycle by controlling centrosome maturation and mitotic spindle assembly. AURK-B and AURK-C form the chromosome passenger complex (CPC) that ensures proper chromosomal alignments and segregation. Aberrant expression of AURK-A and AURK-B has been detected in several solid tumours and malignancies. Hence, they have become an attractive therapeutic target against cancer. The first part of this review focuses on AURKs structure, functions, subcellular localization, and their role in tumorigenesis. The review also highlights the functional and clinical impact of selective as well as pan kinase inhibitors. Currently, >60 compounds that target AURKs are in preclinical and clinical studies. The drawbacks of existing inhibitors like selectivity, drug resistance and toxicity have also been addressed. Since, majority of inhibitors are Aurora kinase inhibitor (AKI) type-1 that bind to the active (DFGin and Cin) conformation of the kinase, this information may be utilized to design highly selective kinase inhibitors that can be combined with other therapeutic agents for better clinical outcomes.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sana Saifi
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Shivani Rawat
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India.
| |
Collapse
|
2
|
Chamo M, Koren O, Goldstein O, Bujanover N, Keinan N, Scharff Y, Gazit R. Molecular Mechanisms in Murine Syngeneic Leukemia Stem Cells. Cancers (Basel) 2023; 15:cancers15030720. [PMID: 36765677 PMCID: PMC9913241 DOI: 10.3390/cancers15030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a severe disease with a very high relapse rate. AML relapse may be attributable to leukemic stem cells (LSC). Notably, the "cancer stem cell" theory, which relates to LSCs, is controversial and criticized due to the technical peculiarities of the xenotransplant of human cells into mice. In this study, we searched for possible LSCs in an immunocompetent synergetic mice model. First, we found phenotypic heterogeneity in the ML23 leukemia line. We prospectively isolated a sub-population using the surface markers cKit+CD9-CD48+Mac1-/low, which have the potency to relapse the disease. Importantly, this sub-population can pass in syngeneic hosts and retrieve the heterogeneity of the parental ML23 leukemia line. The LSC sub-population resides in various organs. We present a unique gene expression signature of the LSC in the ML23 model compared to the other sub-populations. Interestingly, the ML23 LSC sub-population expresses therapeutic targeted genes such as CD47 and CD93. Taken together, we present the identification and molecular characterization of LSCs in a syngeneic murine model.
Collapse
|
3
|
Abaji R, Roux V, Yssaad IR, Kalegari P, Gagné V, Gioia R, Ferbeyre G, Beauséjour C, Krajinovic M. Characterization of the impact of the MYBBP1A gene and rs3809849 on asparaginase sensitivity and cellular functions. Pharmacogenomics 2022; 23:415-430. [PMID: 35485735 DOI: 10.2217/pgs-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To investigate the role of MYBBP1A gene and rs3809849 in pancreatic cancer (PANC1) and lymphoblastic leukemia (NALM6) cell lines and their response to asparaginase treatment. Materials & methods: The authors applied CRISPR-Cas9 to produce MYBBP1A knock-out (KO) and rs3809849 knock-in (KI) cell lines. The authors also interrogated rs3809849's impact on PANC1 cells through allele-specific overexpression. Results: PANC1 MYBBP1A KO cells exhibited lower proliferation capacity (p ≤ 0.05), higher asparaginase sensitivity (p = 0.01), reduced colony-forming potential (p = 0.001), cell cycle blockage in S phase, induction of apoptosis and remarkable morphology changes suggestive of an epithelial-mesenchymal transition. Overexpression of the wild-type (but not the mutant) allele of MYBBP1A-rs3809849 in PANC1 cells increased asparaginase sensitivity. NALM6 MYBBP1A KO displayed resistance to asparaginase (p < 0.0001), whereas no effect for rs3809849 KI was noted. Conclusions:MYBBP1A is important for regulating various cellular functions, and it plays, along with its rs3809849 polymorphism, a tissue-specific role in asparaginase treatment response.
Collapse
Affiliation(s)
- Rachid Abaji
- CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology & Physiology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Vincent Roux
- CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
| | - Ismahène Reguieg Yssaad
- CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology & Physiology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Paloma Kalegari
- Department of Biochemistry & Molecular Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- University of Montreal Hospital Research Centre (CRCHUM), University of Montreal, Montreal, QC, H2X 0A9, Canada
| | - Vincent Gagné
- CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
| | - Romain Gioia
- CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry & Molecular Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- University of Montreal Hospital Research Centre (CRCHUM), University of Montreal, Montreal, QC, H2X 0A9, Canada
| | - Christian Beauséjour
- CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology & Physiology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Maja Krajinovic
- CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology & Physiology, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
4
|
Lymphoid Organ Proteomes Identify Therapeutic Efficacy Biomarkers Following the Intracavitary Administration of Curcumin in a Highly Invasive Rat Model of Peritoneal Mesothelioma. Int J Mol Sci 2021; 22:ijms22168566. [PMID: 34445271 PMCID: PMC8395293 DOI: 10.3390/ijms22168566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to identify the proteomic changes produced by curcumin treatment following stimulation of the host immune system in a rat model of malignant mesothelioma. We analyzed the proteomes of secondary lymphoid organs from four normal rats, four untreated tumor-bearing rats, and four tumor-bearing rats receiving repeated intraperitoneal administrations of curcumin. Cross-comparing proteome analyses of histological sections of the spleen from the three groups first identified a list of eighty-three biomarkers of interest, thirteen of which corresponded to proteins already reported in the literature and involved in the anticancer therapeutic effects of curcumin. In a second step, comparing these data with proteomic analyses of histological sections of mesenteric lymph nodes revealed eight common biomarkers showing a similar pattern of changes in both lymphoid organs. Additional findings included a partial reduction of the increase in spleen-circulating biomarkers, a decrease in C-reactive protein and complement C3 in the spleen and lymph nodes, and an increase in lymph node purine nucleoside phosphorylase previously associated with liver immunodeficiency. Our results suggest some protein abundance changes could be related to the systemic, distant non-target antitumor effects produced by this phytochemical.
Collapse
|
5
|
p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice. Commun Biol 2021; 4:788. [PMID: 34172827 PMCID: PMC8233355 DOI: 10.1038/s42003-021-02290-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.
Collapse
|
6
|
The Tumor Suppressor Roles of MYBBP1A, a Major Contributor to Metabolism Plasticity and Stemness. Cancers (Basel) 2020; 12:cancers12010254. [PMID: 31968688 PMCID: PMC7017249 DOI: 10.3390/cancers12010254] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The MYB binding protein 1A (MYBBP1A, also known as p160) acts as a co-repressor of multiple transcription factors involved in many physiological processes. Therefore, MYBBP1A acts as a tumor suppressor in multiple aspects related to cell physiology, most of them very relevant for tumorigenesis. We explored the different roles of MYBBP1A in different aspects of cancer, such as mitosis, cellular senescence, epigenetic regulation, cell cycle, metabolism plasticity and stemness. We especially reviewed the relationships between MYBBP1A, the inhibitory role it plays by binding and inactivating c-MYB and its regulation of PGC-1α, leading to an increase in the stemness and the tumor stem cell population. In addition, MYBBP1A causes the activation of PGC-1α directly and indirectly through c-MYB, inducing the metabolic change from glycolysis to oxidative phosphorylation (OXPHOS). Therefore, the combination of these two effects caused by the decreased expression of MYBBP1A provides a selective advantage to tumor cells. Interestingly, this only occurs in cells lacking pVHL. Finally, the loss of MYBBP1A occurs in 8%–9% of renal tumors. tumors, and this subpopulation could be studied as a possible target of therapies using inhibitors of mitochondrial respiration.
Collapse
|
7
|
Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA Replication. Genes (Basel) 2019; 10:genes10050331. [PMID: 31052337 PMCID: PMC6563057 DOI: 10.3390/genes10050331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic mini-chromosome maintenance (MCM) complex, composed of MCM proteins 2-7, is the core component of the replisome that acts as the DNA replicative helicase to unwind duplex DNA and initiate DNA replication. MCM10 tightly binds the cell division control protein 45 homolog (CDC45)/MCM2-7/ DNA replication complex Go-Ichi-Ni-San (GINS) (CMG) complex that stimulates CMG helicase activity. The MCM8-MCM9 complex may have a non-essential role in activating the pre-replicative complex in the gap 1 (G1) phase by recruiting cell division cycle 6 (CDC6) to the origin recognition complex (ORC). Each MCM subunit has a distinct function achieved by differential post-translational modifications (PTMs) in both DNA replication process and response to replication stress. Such PTMs include phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, O-N-acetyl-D-glucosamine (GlcNAc)ylation, and acetylation. These PTMs have an important role in controlling replication progress and genome stability. Because MCM proteins are associated with various human diseases, they are regarded as potential targets for therapeutic development. In this review, we summarize the different PTMs of the MCM proteins, their involvement in DNA replication and disease development, and the potential therapeutic implications.
Collapse
|
8
|
Wang X, Angelis N, Thein SL. MYB - A regulatory factor in hematopoiesis. Gene 2018; 665:6-17. [PMID: 29704633 PMCID: PMC10764194 DOI: 10.1016/j.gene.2018.04.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
MYB is a transcription factor which was identified in birds as a viral oncogene (v-MYB). Its cellular counterpart was subsequently isolated as c-MYB which has three functional domains - DNA binding domain, transactivation domain and negative regulatory domain. c-MYB is essential for survival, and deletion of both alleles of the gene results in embryonic death. It is highly expressed in hematopoietic cells, thymus and neural tissue, and required for T and B lymphocyte development and erythroid maturation. Additionally, aberrant MYB expression has been found in numerous solid cancer cells and human leukemia. Recent studies have also implicated c-MYB in the regulation of expression of fetal hemoglobin which is highly beneficial to the β-hemoglobinopathies (beta thalassemia and sickle cell disease). These findings suggest that MYB could be a potential therapeutic target in leukemia, and possibly also a target for therapeutic increase of fetal hemoglobin in the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xunde Wang
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Nikolaos Angelis
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA.
| |
Collapse
|
9
|
Doello S, Liang Z, Cho IK, Kim JB, Li QX. Cytotoxic Effects of 24-Methylenecyloartanyl Ferulate on A549 Nonsmall Cell Lung Cancer Cells through MYBBP1A Up-Regulation and AKT and Aurora B Kinase Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3726-3733. [PMID: 29547267 PMCID: PMC7412982 DOI: 10.1021/acs.jafc.8b00491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lung cancer is the second most prevalent cancer. Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer. The low efficacy in current chemotherapies impels us to find new alternatives to prevent or treat NSCLC. Rice bran oil is cytotoxic to A549 cells, a NSCLC cell line. Here, we identified 24-methylenecyloartanyl ferulate (24-mCAF) as the main component responsible for the cytotoxicity in A549 cells. An iTRAQ-based quantitative proteomics analysis revealed that 24-mCAF inhibits cell proliferation and activates cell death and apoptosis. 24-mCAF induces up-regulation of Myb binding protein 1A (MYBBP1A), a tumor suppressor that halts cancer progression. 24-mCAF inhibits the activity of AKT and Aurora B kinase, two Ser/Thr kinases involved in MYBBP1A regulation and that represent important targets in NSCLC. This study provides the first insight of the effect of 24-mCAF, the main component of rice bran oil, on A459 cells at the cellular and molecular levels.
Collapse
Affiliation(s)
- Sofia Doello
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen , University of Tübingen , Tübingen 72076 , Germany
| | - Zhibin Liang
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Il Kyu Cho
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
- BioControl Research Center , Jeonnam Bioindustry Foundation , Gokseong 57509 , Korea
| | - Jung Bong Kim
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
- Department of Agro-Food Resources , National Institute of Agricultural Sciences , Rural Development Administration , Jeonju 55365 , Korea
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
10
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Nahálková J. The protein-interaction network with functional roles in tumorigenesis, neurodegeneration, and aging. Mol Cell Biochem 2016; 423:187-196. [DOI: 10.1007/s11010-016-2836-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023]
|
12
|
Regulation and function of Myb-binding protein 1A (MYBBP1A) in cellular senescence and pathogenesis of head and neck cancer. Cancer Lett 2014; 358:191-199. [PMID: 25543088 DOI: 10.1016/j.canlet.2014.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/20/2022]
Abstract
Myb-binding protein 1A (MYBBP1A) is a nucleolar protein implicated in stress response and carcinogenesis; however, its functional contribution to senescence remains elusive. In this study we show decreased MYBBP1A protein levels in tumor cells after treatment with etoposide, a potent inducer of DNA damage. Although silencing of MYBBP1A expression was not sufficient to induce senescence, it significantly increased the relative abundance of senescent cells after DNA damage. We found an inverse regulation of MYBBP1A and AKT phosphorylation (pAKT(Ser473)), which was characteristic for the pre-senescent state after etoposide administration in vitro. Tissue microarrays with tumor specimens from primary oropharyngeal squamous cell carcinoma (OPSCC) patients (n = 61) by immunohistochemistry revealed a significant correlation between MYBBP1A(low)pAKT(Ser473)(high) staining pattern and shorter progression-free (p = 0.007) or overall survival (p < 0.001). Multivariate analysis showed that MYBBP1A(low)pAKT(Ser473)(high) staining pattern is an independent prognosticator for OPSCC. Taken together, our study points to a critical role of MYBBP1A in the regulation of senescence under genotoxic stress and that a MYBBP1A(low)AKT(Ser473)(high) staining pattern serves not only as a marker for the pre-senescent stage but also as an indicator of OPSCC patients at high risk for treatment failure.
Collapse
|
13
|
Nahálková J, Tomkinson B. TPPII, MYBBP1A and CDK2 form a protein–protein interaction network. Arch Biochem Biophys 2014; 564:128-35. [DOI: 10.1016/j.abb.2014.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023]
|
14
|
Recher G, Jouralet J, Brombin A, Heuzé A, Mugniery E, Hermel JM, Desnoulez S, Savy T, Herbomel P, Bourrat F, Peyriéras N, Jamen F, Joly JS. Zebrafish midbrain slow-amplifying progenitors exhibit high levels of transcripts for nucleotide and ribosome biogenesis. Development 2013; 140:4860-9. [PMID: 24198278 DOI: 10.1242/dev.099010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Investigating neural stem cell (NSC) behaviour in vivo, which is a major area of research, requires NSC models to be developed. We carried out a multilevel characterisation of the zebrafish embryo peripheral midbrain layer (PML) and identified a unique vertebrate progenitor population. Located dorsally in the transparent embryo midbrain, these large slow-amplifying progenitors (SAPs) are accessible for long-term in vivo imaging. They form a neuroepithelial layer adjacent to the optic tectum, which has transitory fast-amplifying progenitors (FAPs) at its margin. The presence of these SAPs and FAPs in separate domains provided the opportunity to data mine the ZFIN expression pattern database for SAP markers, which are co-expressed in the retina. Most of them are involved in nucleotide synthesis, or encode nucleolar and ribosomal proteins. A mutant for the cad gene, which is strongly expressed in the PML, reveals severe midbrain defects with massive apoptosis and sustained proliferation. We discuss how fish midbrain and retina progenitors might derive from ancient sister cell types and have specific features that are not shared with other SAPs.
Collapse
Affiliation(s)
- Gaëlle Recher
- CNRS, UPR3294 Unité Neurobiologie et Développement, F-91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kassardjian A, Rizkallah R, Riman S, Renfro SH, Alexander KE, Hurt MM. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle. PLoS One 2012; 7:e50645. [PMID: 23226345 PMCID: PMC3511337 DOI: 10.1371/journal.pone.0050645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.
Collapse
Affiliation(s)
- Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Sarah Riman
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States of America
| | - Samuel H. Renfro
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Mori S, Bernardi R, Laurent A, Resnati M, Crippa A, Gabrieli A, Keough R, Gonda TJ, Blasi F. Myb-binding protein 1A (MYBBP1A) is essential for early embryonic development, controls cell cycle and mitosis, and acts as a tumor suppressor. PLoS One 2012; 7:e39723. [PMID: 23056166 PMCID: PMC3466261 DOI: 10.1371/journal.pone.0039723] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/25/2012] [Indexed: 11/24/2022] Open
Abstract
MYBBP1A is a predominantly nucleolar transcriptional regulator involved in rDNA synthesis and p53 activation via acetylation. However little further information is available as to its function. Here we report that MYBBP1A is developmentally essential in the mouse prior to blastocyst formation. In cell culture, down-regulation of MYBBP1A decreases the growth rate of wild type mouse embryonic stem cells, mouse embryo fibroblasts (MEFs) and of human HeLa cells, where it also promotes apoptosis. HeLa cells either arrest at G2/M or undergo delayed and anomalous mitosis. At mitosis, MYBBP1A is localized to a parachromosomal region and gene-expression profiling shows that its down-regulation affects genes controlling chromosomal segregation and cell cycle. However, MYBBP1A down-regulation increases the growth rate of the immortalized NIH3T3 cells. Such Mybbp1a down-regulated NIH3T3 cells are more susceptible to Ras-induced transformation and cause more potent Ras-driven tumors. We conclude that MYBBP1A is an essential gene with novel roles at the pre-mitotic level and potential tumor suppressor activity.
Collapse
Affiliation(s)
- Silvia Mori
- Università Vita Salute San Raffaele, Milan, Italy
| | - Rosa Bernardi
- Università Vita Salute San Raffaele, Milan, Italy
- San Raffaele Scientific Institute, Milan, Italy
| | - Audrey Laurent
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milano, Italy
| | | | | | - Arianna Gabrieli
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milano, Italy
| | - Rebecca Keough
- Flinders University, Bedford Park, Adelaide, South Australia, Australia
- Division of Human Immunology and Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia
| | - Thomas J. Gonda
- University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
- Division of Human Immunology and Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia
| | - Francesco Blasi
- Università Vita Salute San Raffaele, Milan, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milano, Italy
- * E-mail:
| |
Collapse
|
17
|
Tan BCM, Yang CC, Hsieh CL, Chou YH, Zhong CZ, Yung BYM, Liu H. Epigeneitc silencing of ribosomal RNA genes by Mybbp1a. J Biomed Sci 2012; 19:57. [PMID: 22686419 PMCID: PMC3407492 DOI: 10.1186/1423-0127-19-57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription of the ribosomal RNA gene repeats by Pol I occurs in the nucleolus and is a fundamental step in ribosome biogenesis and protein translation. Due to tight coordination between ribosome biogenesis and cell proliferation, transcription of rRNA and stable maintenance of rDNA clusters are thought to be under intricate control by intercalated mechanisms, particularly at the epigenetic level. METHODS AND RESULTS Here we identify the nucleolar protein Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of rRNA expression. Suppression of rDNA transcription by Mybbp1a was linked to promoter regulation as illustrated by its binding to the chromatin around the hypermethylated, inactive rDNA gene promoters. Our data further showed that downregulation of Mybbp1a abrogated the local DNA methylation levels and histone marks associated with gene silencing, and altered the promoter occupancy of various factors such UBF and HDACs, consequently leading to elevated rRNA expression. Mechanistically, we propose that Mybbp1a maintains rDNA repeats in a silenced state while in association with the negative epigenetic modifiers HDAC1/2. CONCLUSIONS Results from our present work reveal a previously unrecognized co-repressor role of Mybbp1a in rRNA expression. They are further consistent with the scenario that Mybbp1a is an integral constituent of the rDNA epigenetic regulation that underlies the balanced state of rDNA clusters.
Collapse
Affiliation(s)
- Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences and Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Hochstatter J, Hölzel M, Rohrmoser M, Schermelleh L, Leonhardt H, Keough R, Gonda TJ, Imhof A, Eick D, Längst G, Németh A. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA. J Biol Chem 2012; 287:24365-77. [PMID: 22645127 DOI: 10.1074/jbc.m111.303719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ribosomal RNA gene transcription, co-transcriptional processing, and ribosome biogenesis are highly coordinated processes that are tightly regulated during cell growth. In this study we discovered that Mybbp1a is associated with both the RNA polymerase I complex and the ribosome biogenesis machinery. Using a reporter assay that uncouples transcription and RNA processing, we show that Mybbp1a represses rRNA gene transcription. In addition, overexpression of the protein reduces RNA polymerase I loading on endogenous rRNA genes as revealed by chromatin immunoprecipitation experiments. Accordingly, depletion of Mybbp1a results in an accumulation of the rRNA precursor in vivo but surprisingly also causes growth arrest of the cells. This effect can be explained by the observation that the modulation of Mybbp1a protein levels results in defects in pre-rRNA processing within the cell. Therefore, the protein may play a dual role in the rRNA metabolism, potentially linking and coordinating ribosomal DNA transcription and pre-rRNA processing to allow for the efficient synthesis of ribosomes.
Collapse
Affiliation(s)
- Julia Hochstatter
- Biochemistry Center Regensburg, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA. Cell division control by the Chromosomal Passenger Complex. Exp Cell Res 2012; 318:1407-20. [PMID: 22472345 DOI: 10.1016/j.yexcr.2012.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/15/2022]
Abstract
The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.
Collapse
Affiliation(s)
- Maike S van der Waal
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
20
|
Acuña Sanhueza GA, Faller L, George B, Koffler J, Misetic V, Flechtenmacher C, Dyckhoff G, Plinkert PP, Angel P, Simon C, Hess J. Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells. BMC Cancer 2012; 12:72. [PMID: 22339894 PMCID: PMC3342895 DOI: 10.1186/1471-2407-12-72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit. Methods We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors. Results One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFκB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth. Conclusion We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy.
Collapse
Affiliation(s)
- Gustavo A Acuña Sanhueza
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang CC, Liu H, Chen SL, Wang TH, Hsieh CL, Huang Y, Chen SJ, Chen HC, Yung BYM, Chin-Ming Tan B. Epigenetic silencing of myogenic gene program by Myb-binding protein 1a suppresses myogenesis. EMBO J 2012; 31:1739-51. [PMID: 22333916 DOI: 10.1038/emboj.2012.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/23/2012] [Indexed: 01/25/2023] Open
Abstract
Skeletal myogenesis involves highly coordinated steps that integrate developmental cues at the chromatin of muscle progenitors. Here, we identify Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of muscle-specific gene expression and myoblast differentiation. The mode of action of Mybbp1a was linked to promoter regulation as illustrated by its interaction with MyoD at the genomic regions of silent muscle-specific genes as well as its negative effect on MyoD-mediated transcriptional activity. We propose that Mybbp1a exerts its repressive role by inducing a less permissible chromatin structure following recruitment of negative epigenetic modifiers such as HDAC1/2 and Suv39h1. At the onset of differentiation, Mybbp1a undergoes a promoter disengagement that may be due to the differentiation-responsive, miR-546-mediated downregulation of Mybbp1a expression. Moreover, such alteration gave rise to promoter enrichment of activators and histone acetylation, an epigenetic status amenable to gene activation. Together, these findings unveil a hitherto unrecognized transcriptional co-repressor role of Mybbp1a in proliferating muscle progenitor cells, and highlight an epigenetic mechanism by which Mybbp1a and miR-546 interplay to control myoblast differentiation transition.
Collapse
Affiliation(s)
- Chang-Ching Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hengeveld RCC, Hertz NT, Vromans MJM, Zhang C, Burlingame AL, Shokat KM, Lens SMA. Development of a chemical genetic approach for human aurora B kinase identifies novel substrates of the chromosomal passenger complex. Mol Cell Proteomics 2012; 11:47-59. [PMID: 22267324 DOI: 10.1074/mcp.m111.013912] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To understand how the chromosomal passenger complex ensures chromosomal stability, it is crucial to identify its substrates and to find ways to specifically inhibit the enzymatic core of the complex, Aurora B. We therefore developed a chemical genetic approach to selectively inhibit human Aurora B. By mutating the gatekeeper residue Leu-154 in the kinase active site, the ATP-binding pocket was enlarged, but kinase function was severely disrupted. A unique second site suppressor mutation was identified that rescued kinase activity in the Leu-154 mutant and allowed the accommodation of bulky N(6)-substituted adenine analogs. Using this analog-sensitive Aurora B kinase, we found that retention of the chromosomal passenger complex at the centromere depends on Aurora B kinase activity. Furthermore, analog-sensitive Aurora B was able to use bulky ATPγS analogs and could thiophosphorylate multiple proteins in cell extracts. Utilizing an unbiased approach for kinase substrate mapping, we identified several novel substrates of Aurora B, including the nucleosomal-binding protein HMGN2. We confirmed that HMGN2 is a bona fide Aurora B substrate in vivo and show that its dynamic association to chromatin is controlled by Aurora B.
Collapse
Affiliation(s)
- Rutger C C Hengeveld
- Department of Medical Oncology, University Medical Center, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic Substrates of the Kinase Aurora with Roles in Chromatin Regulation Identified Through Quantitative Phosphoproteomics of Fission Yeast. Sci Signal 2011; 4:rs6. [DOI: 10.1126/scisignal.2001588] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Barnett C, Krebs JE. WSTF does it all: a multifunctional protein in transcription, repair, and replication. Biochem Cell Biol 2011; 89:12-23. [PMID: 21326359 PMCID: PMC3251257 DOI: 10.1139/o10-114] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Williams syndrome transcription factor (WSTF) has emerged as an incredibly versatile nuclear protein. WSTF and the ATP-dependent chromatin remodeling complexes in which it exists, WINAC, WICH, and B-WICH, have been studied in a variety of organisms. This research has revealed roles for WSTF in a number of diverse molecular events. WSTF function includes chromatin assembly, RNA polymerase I and III gene regulation, vitamin D metabolism, and DNA repair. In addition to functioning as a subunit of several ATP-dependent chromatin remodeling complexes, WSTF binds specifically to acetylated histones and is itself a histone kinase as well as a target of phosphorylation. This review will describe the three known WSTF-containing complexes and discuss their various roles as well as mechanisms of regulating WSTF activity.
Collapse
Affiliation(s)
- Chris Barnett
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508
| | - Jocelyn E. Krebs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508
| |
Collapse
|