1
|
Adams-Brown SE, Reid KZ. The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes. Int J Mol Sci 2025; 26:2845. [PMID: 40243440 PMCID: PMC11989106 DOI: 10.3390/ijms26072845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
One of the biggest challenges to eukaryotic gene expression is coordinating transcription in the nucleus and protein synthesis in the cytoplasm. However, little is known about how these major steps in gene expression are connected. The Target of Rapamycin (TOR) signaling pathway is crucial in connecting these critical phases of gene expression. Highly conserved among eukaryotic cells, TOR regulates growth, metabolism, and cellular equilibrium in response to changes in nutrients, energy levels, and stress conditions. This review examines the extensive role of TOR in gene expression regulation. We highlight how TOR is involved in phosphorylation, remodeling chromatin structure, and managing the factors that facilitate transcription and translation. Furthermore, the critical functions of TOR extend to processing RNA, assembling RNA-protein complexes, and managing their export from the nucleus, demonstrating its wide-reaching impact throughout the cell. Our discussion emphasizes the integral roles of TOR in bridging the processes of transcription and translation and explores how it orchestrates these complex cellular processes.
Collapse
Affiliation(s)
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
2
|
Rashad S, Marahleh A. Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70011. [PMID: 40119534 PMCID: PMC11928779 DOI: 10.1002/wrna.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Transfer RNA (tRNA) is not merely a passive carrier of amino acids, but an active regulator of mRNA translation controlling codon bias and optimality. The synthesis of various tRNA modifications is regulated by many "writer" enzymes, which utilize substrates from metabolic pathways or dietary sources. Metabolic and bioenergetic pathways, such as one-carbon (1C) metabolism and the tricarboxylic acid (TCA) cycle produce essential substrates for tRNA modifications synthesis, such as S-Adenosyl methionine (SAM), sulfur species, and α-ketoglutarate (α-KG). The activity of these metabolic pathways can directly impact codon decoding and translation via regulating tRNA modifications levels. In this review, we discuss the complex interactions between diet, metabolism, tRNA modifications, and mRNA translation. We discuss how nutrient availability, bioenergetics, and intermediates of metabolic pathways, modulate the tRNA modification landscape to fine-tune protein synthesis. Moreover, we highlight how dysregulation of these metabolic-tRNA interactions contributes to disease pathogenesis, including cancer, metabolic disorders, and neurodegenerative diseases. We also discuss the new emerging field of GlycoRNA biology drawing parallels from glycobiology and metabolic diseases to guide future directions in this area. Throughout our discussion, we highlight the links between specific modifications, their metabolic/dietary precursors, and various diseases, emphasizing the importance of a metabolism-centric tRNA view in understanding many pathologies. Future research should focus on uncovering the interplay between metabolism and tRNA in specific cellular and disease contexts. Addressing these gaps will guide new research into novel disease interventions.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
3
|
James NR, O'Neill JS. Circadian Control of Protein Synthesis. Bioessays 2025; 47:e202300158. [PMID: 39668398 PMCID: PMC11848126 DOI: 10.1002/bies.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization-and of circadian rhythmicity in general-is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.
Collapse
Affiliation(s)
- Nathan R. James
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| | - John S. O'Neill
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
4
|
Cao D, Wang YN, Sun CY, Li H, Ren G, Zhou YF, Zhang MY, Wang SC, Mai SJ, Wang HY. MAF1 inhibits hepatocarcinogenesis by fostering an immunostimulatory tumor microenvironment. J Immunother Cancer 2025; 13:e009656. [PMID: 39800372 PMCID: PMC11749189 DOI: 10.1136/jitc-2024-009656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The biological significance of MAF1, a tumor suppressor, in carcinogenesis and immune response of hepatocellular carcinoma (HCC) remains unreported. Understanding the underlying mechanisms by which MAF1 enhances anti-tumor immunity in HCC is crucial for developing novel immunotherapy strategies and enhancing clinical responses to treatment for patients with HCC. METHODS Mice were subjected to hydrodynamic tail vein injections of transposon vectors to overexpress AKT/NRas, or c-Myc, with or without wild-type (WT) or mutant-activated (-4A) MAF1, or short-hairpin MAF1 (shMAF1). Liver tissues and tumors were harvested and analyzed using histology, immunohistochemistry, immunoblotting, quantitative reverse-transcription PCR, and flow cytometry. MAF1 was overexpressed or knocked down in HCC cells via lentiviral transfection. Cell lines were analyzed using RNA sequencing, immunoblotting, dual luciferase reporter, and chromatin precipitation assays. RESULTS Both MAF1-WT and MAF1-4A proteins significantly inhibit hepatocarcinogenesis in mice, with the mutant form exhibiting a stronger suppressive effect. Although MAF1 knockdown alone does not induce abnormalities in the mouse liver, it accelerates c-Myc-induced carcinogenesis. Our results provide the first in vivo evidence that MAF1 plays a tumor suppressor role by activating PTEN to suppress the AKT-mammalian target of rapamycin signaling pathway during hepatocarcinogenesis in physiologically relevant tumor models. More importantly, we found that MAF1 not only enhances the intratumoral infiltration of CD8+ T cells by increasing CXCL10 secretion but also enhances their functional activity by inhibiting PDL1 transcription in mouse liver cancer, which were confirmed in human HCC or in vitro experiments. Furthermore, PDL1 overexpression accelerates mouse hepatocarcinogenesis by antagonizing the tumor-suppressive role of MAF1. CONCLUSIONS Our study uncovers a novel anti-tumor immunity of MAF1 in hepatocarcinogenesis and human HCC. These findings suggest that the stimulated MAF1 could potentially improve immunotherapy in combination with immune checkpoint inhibitors in HCC patients, especially in those with an absence of T cells in HCC tissues.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yue-Ning Wang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Haojiang Li
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ge Ren
- Department of Health Technology and Informatics, Hong Kong Polytechnic University University Learning Hub, Kowloon, Hong Kong
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuo-Cheng Wang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
6
|
Finlay-Schultz J, Paul KV, Erickson B, Fettig LM, Hastings BS, Johnson DL, Bentley DL, Kabos P, Sartorius CA. Maf1 Cooperates with Progesterone Receptor to Repress RNA Polymerase III Transcription of Select tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628719. [PMID: 39763804 PMCID: PMC11702520 DOI: 10.1101/2024.12.16.628719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Progesterone receptors (PR) can regulate transcription by RNA Polymerase III (Pol III), which transcribes small non-coding RNAs, including all transfer RNAs (tRNAs). We have previously demonstrated that PR is associated with the Pol III complex at tRNA genes and that progestins downregulate tRNA transcripts in breast tumor models. To further elucidate the mechanism of PR-mediated regulation of Pol III, we studied the interplay between PR, the Pol III repressor Maf1, and TFIIIB, a core transcription component. ChIP-seq was performed for PR, the Pol III subunit POLR3A, the TFIIIB component Brf1, and Maf1 in breast cancer cells with or without progestin treatment. Upon progestin exposure, PR localized to approximately half of POLR3A-occupied tRNA genes, with Maf1 co-recruited to many of these PR-POLR3A sites. While progestin treatment did not significantly alter the number of tRNA genes occupied by Pol III or Brf1, Brf1 occupancy was stabilized, as indicated by increased peak amplitudes. Analysis of nascent tRNA transcription revealed a specific progestin-induced downregulation of approximately one-third of highly expressed tRNA genes. This repression was significantly reduced by Maf1 knockdown, indicating that Maf1 is necessary for PR-mediated tRNA transcription downregulation. Overall, these findings demonstrate a ligand-dependent PR-mediated repression of tRNA transcription through Maf1.
Collapse
|
7
|
Reimão-Pinto MM, Behrens A, Forcelloni S, Fröhlich K, Kaya S, Nedialkova DD. The dynamics and functional impact of tRNA repertoires during early embryogenesis in zebrafish. EMBO J 2024; 43:5747-5779. [PMID: 39402326 PMCID: PMC11574265 DOI: 10.1038/s44318-024-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Embryogenesis entails dramatic shifts in mRNA translation and turnover that reprogram gene expression during cellular proliferation and differentiation. Codon identity modulates mRNA stability during early vertebrate embryogenesis, but how the composition of tRNA pools is matched to translational demand is unknown. By quantitative profiling of tRNA repertoires in zebrafish embryos during the maternal-to-zygotic transition, we show that zygotic tRNA repertoires are established after the onset of gastrulation, succeeding the major wave of zygotic mRNA transcription. Maternal and zygotic tRNA pools are distinct, but their reprogramming does not result in a better match to the codon content of the zygotic transcriptome. Instead, we find that an increase in global translation at gastrulation sensitizes decoding rates to tRNA supply, thus destabilizing maternal mRNAs enriched in slowly translated codons. Translational activation and zygotic tRNA expression temporally coincide with an increase of TORC1 activity at gastrulation, which phosphorylates and inactivates the RNA polymerase III repressor Maf1a/b. Our data indicate that a switch in global translation, rather than tRNA reprogramming, determines the onset of codon-dependent maternal mRNA decay during zebrafish embryogenesis.
Collapse
Affiliation(s)
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Selay Kaya
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, 85748, Garching, Germany.
| |
Collapse
|
8
|
Daigh LH, Saha D, Rosenthal DL, Ferrick KR, Meyer T. Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence. Nat Commun 2024; 15:9181. [PMID: 39448567 PMCID: PMC11502682 DOI: 10.1038/s41467-024-52820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
DNA damage is a primary trigger for cellular senescence, which in turn causes organismal aging and is a promising target of anti-aging therapies. Most DNA damage occurs when DNA is fragile during DNA replication in S phase, but senescent cells maintain DNA damage long-after DNA replication has stopped. How senescent cells induce DNA damage and why senescent cells fail to repair damaged DNA remain open questions. Here, we combine reversible expression of the senescence-inducing CDK4/6 inhibitory protein p16INK4 (p16) with live single-cell analysis and show that sustained mTORC1 signaling triggers senescence in non-proliferating cells by increasing transcriptional DNA damage and inflammation signaling that persists after p16 is degraded. Strikingly, we show that activation of E2F transcriptional program, which is regulated by CDK4/6 activity and promotes expression of DNA repair proteins, repairs transcriptionally damaged DNA without requiring DNA replication. Together, our study suggests that senescence can be maintained by ongoing mTORC1-induced transcriptional DNA damage that cannot be sufficiently repaired without induction of protective E2F target genes.
Collapse
Affiliation(s)
- Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Debarya Saha
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David L Rosenthal
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Katherine R Ferrick
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Zhao T, Fan J, Abu-Zaid A, Burley SK, Zheng XS. Nuclear mTOR Signaling Orchestrates Transcriptional Programs Underlying Cellular Growth and Metabolism. Cells 2024; 13:781. [PMID: 38727317 PMCID: PMC11083943 DOI: 10.3390/cells13090781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.
Collapse
Affiliation(s)
- Tinghan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jialin Fan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ahmed Abu-Zaid
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Stephen K. Burley
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - X.F. Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
11
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
12
|
Chatterjee S, Ganguly A, Bhattacharyya D. Reprogramming nucleolar size by genetic perturbation of the extranuclear Rab GTPases Ypt6 and Ypt32. FEBS Lett 2024; 598:283-301. [PMID: 37994551 DOI: 10.1002/1873-3468.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
Reprogramming organelle size has been proposed as a potential therapeutic approach. However, there have been few reports of nucleolar size reprogramming. We addressed this question in Saccharomyces cerevisiae by studying mutants having opposite effects on the nucleolar size. Mutations in genes involved in nuclear functions (KAR3, CIN8, and PRP45) led to enlarged nuclei/nucleoli, whereas mutations in secretory pathway family genes, namely the Rab-GTPases YPT6 and YPT32, reduced nucleolar size. When combined with mutations leading to enlarged nuclei/nucleoli, the YPT6 or YPT32 mutants can effectively reprogram the nuclear/nucleolar size almost back to normal. Our results further indicate that null mutation of YPT6 causes secretory stress that indirectly influences nuclear localization of Maf1, the negative regulator of RNA Polymerase III, which might reduce the nucleolar size by inhibiting nucleolar transcript enrichment.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Abira Ganguly
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Dibyendu Bhattacharyya
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Gao L, Behrens A, Rodschinka G, Forcelloni S, Wani S, Strasser K, Nedialkova DD. Selective gene expression maintains human tRNA anticodon pools during differentiation. Nat Cell Biol 2024; 26:100-112. [PMID: 38191669 PMCID: PMC10791582 DOI: 10.1038/s41556-023-01317-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
Transfer RNAs are essential for translating genetic information into proteins. The human genome contains hundreds of predicted tRNA genes, many in multiple copies. How their expression is regulated to control tRNA repertoires is unknown. Here we combined quantitative tRNA profiling and chromatin immunoprecipitation with sequencing to measure tRNA expression following the differentiation of human induced pluripotent stem cells into neuronal and cardiac cells. We find that tRNA transcript levels vary substantially, whereas tRNA anticodon pools, which govern decoding rates, are more stable among cell types. Mechanistically, RNA polymerase III transcribes a wide range of tRNA genes in human induced pluripotent stem cells but on differentiation becomes constrained to a subset we define as housekeeping tRNAs. This shift is mediated by decreased mTORC1 signalling, which activates the RNA polymerase III repressor MAF1. Our data explain how tRNA anticodon pools are buffered to maintain decoding speed across cell types and reveal that mTORC1 drives selective tRNA expression during differentiation.
Collapse
Affiliation(s)
- Lexi Gao
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sascha Wani
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katrin Strasser
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
14
|
Akiyama Y, Ivanov P. tRNA-derived RNAs: Biogenesis and roles in translational control. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1805. [PMID: 37406666 PMCID: PMC10766869 DOI: 10.1002/wrna.1805] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Transfer RNA (tRNA)-derived RNAs (tDRs) are a class of small non-coding RNAs that play important roles in different aspects of gene expression. These ubiquitous and heterogenous RNAs, which vary across different species and cell types, are proposed to regulate various biological processes. In this review, we will discuss aspects of their biogenesis, and specifically, their contribution into translational control. We will summarize diverse roles of tDRs and the molecular mechanisms underlying their functions in the regulation of protein synthesis and their impact on related events such as stress-induced translational reprogramming. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Tsang CK, Mi Q, Su G, Hwa Lee G, Xie X, D'Arcangelo G, Huang L, Steven Zheng XF. Maf1 is an intrinsic suppressor against spontaneous neural repair and functional recovery after ischemic stroke. J Adv Res 2023; 51:73-90. [PMID: 36402285 PMCID: PMC10491990 DOI: 10.1016/j.jare.2022.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Spontaneous recovery after CNS injury is often very limited and incomplete, leaving most stroke patients with permanent disability. Maf1 is known as a key growth suppressor in proliferating cells. However, its role in neuronal cells after stroke remains unclear. OBJECTIVE We aimed to investigate the mechanistic role of Maf1 in spontaneous neural repair and evaluated the therapeutic effect of targeting Maf1 on stroke recovery. METHODS We used mouse primary neurons to determine the signaling mechanism of Maf1, and the cleavage-under-targets-and-tagmentation-sequencing to map the whole-genome promoter binding sites of Maf1 in isolated mature cortical neurons. Photothrombotic stroke model was used to determine the therapeutic effect on neural repair and functional recovery by AAV-mediated Maf1 knockdown. RESULTS We found that Maf1 mediates mTOR signaling to regulate RNA polymerase III (Pol III)-dependent rRNA and tRNA transcription in mouse cortical neurons. mTOR regulates neuronal Maf1 phosphorylation and subcellular localization. Maf1 knockdown significantly increases Pol III transcription, neurite outgrowth and dendritic spine formation in neurons. Conversely, Maf1 overexpression suppresses such activities. In response to photothrombotic stroke in mice, Maf1 expression is increased and accumulates in the nucleus of neurons in the peripheral region of infarcted cortex, which is the key region for neural remodeling and repair during spontaneous recovery. Intriguingly, Maf1 knockdown in the peri-infarct cortex significantly enhances neural plasticity and functional recovery. Mechanistically, Maf1 not only interacts with the promoters and represses Pol III-transcribed genes, but also those of CREB-associated genes that are critical for promoting plasticity during neurodevelopment and neural repair. CONCLUSION These findings indicate Maf1 as an intrinsic neural repair suppressor against regenerative capability of mature CNS neurons, and suggest that Maf1 is a potential therapeutic target for enhancing functional recovery after ischemic stroke and other CNS injuries.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Qiongjie Mi
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Guangpu Su
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gum Hwa Lee
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li'an Huang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou, Guangdong, China.
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
16
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Carabulea AL, Janeski JD, Naik VD, Chen K, Mor G, Ramadoss J. A multi-organ analysis of the role of mTOR in fetal alcohol spectrum disorders. FASEB J 2023; 37:e22897. [PMID: 37000494 PMCID: PMC10841000 DOI: 10.1096/fj.202201865r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Alcohol exposure during gestation can lead to fetal alcohol spectrum disorders (FASD), an array of cognitive and physical developmental impairments. Over the past two and a half decades, Mammalian Target of Rapamycin (mTOR) has emerged at the nexus of many fields of study, and has recently been implicated in FASD etiology. mTOR plays an integral role in modulating anabolic and catabolic activities, including protein synthesis and autophagy. These processes are vital for proper development and can have long lasting effects following alcohol exposure, such as impaired hippocampal and synapse formation, reduced brain size, as well as cognitive, behavioral, and memory impairments. We highlight recent advances in the field of FASD, primarily with regard to animal model discoveries and discuss the interaction between alcohol and mTOR in the context of various tissues, including brain, placenta, bone, and muscle, with respect to developmental alcohol exposure paradigms. The current review focuses on novel FASD research within the context of the mTOR signaling and sheds light on mechanistic etiologies at various biological levels including molecular, cellular, and functional, across multiple stages of development and illuminates the dichotomy between the different mTOR complexes and their unique signaling roles.
Collapse
Affiliation(s)
- Alexander L. Carabulea
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Joseph D. Janeski
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Vishal D. Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Kang Chen
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Barbara Ann Karmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Gil Mor
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Department of Physiology, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Jayanth Ramadoss
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Department of Physiology, School of MedicineWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
18
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
19
|
Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol 2023; 24:414-429. [PMID: 36732602 DOI: 10.1038/s41580-022-00573-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/04/2023]
Abstract
One of the first biological machineries to be created seems to have been the ribosome. Since then, organisms have dedicated great efforts to optimize this apparatus. The ribosomal RNA (rRNA) contained within ribosomes is crucial for protein synthesis and maintenance of cellular function in all known organisms. In eukaryotic cells, rRNA is produced from ribosomal DNA clusters of tandem rRNA genes, whose organization in the nucleolus, maintenance and transcription are strictly regulated to satisfy the substantial demand for rRNA required for ribosome biogenesis. Recent studies have elucidated mechanisms underlying the integrity of ribosomal DNA and regulation of its transcription, including epigenetic mechanisms and a unique recombination and copy-number control system to stably maintain high rRNA gene copy number. In this Review, we disucss how the crucial maintenance of rRNA gene copy number through control of gene amplification and of rRNA production by RNA polymerase I are orchestrated. We also discuss how liquid-liquid phase separation controls the architecture and function of the nucleolus and the relationship between rRNA production, cell senescence and disease.
Collapse
|
20
|
H’ng CH, Khaladkar A, Rosello-Diez A. Look who's TORking: mTOR-mediated integration of cell status and external signals during limb development and endochondral bone growth. Front Cell Dev Biol 2023; 11:1153473. [PMID: 37152288 PMCID: PMC10154674 DOI: 10.3389/fcell.2023.1153473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged. Among them, mechanistic target of rapamycin (mTOR) signaling, despite being active in several cell types and developmental stages, is one of the least understood in limb development, perhaps because of its multiple potential roles and interactions with other pathways. In the body of this review, we have collated and integrated what is known about the role of mTOR signaling in three aspects of tetrapod limb development: 1) limb outgrowth; 2) chondrocyte differentiation after mesenchymal condensation and 3) endochondral ossification-driven longitudinal bone growth. We conclude that, given its ability to interact with the most common signaling pathways, its presence in multiple cell types, and its ability to influence cell proliferation, size and differentiation, the mTOR pathway is a critical integrator of external stimuli and internal status, coordinating developmental transitions as complex as those taking place during limb development. This suggests that the study of the signaling pathways and transcription factors involved in limb patterning, morphogenesis and growth could benefit from probing the interaction of these pathways with mTOR components.
Collapse
Affiliation(s)
- Chee Ho H’ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Ashwini Khaladkar
- Department of Biochemistry, Central University of Hyderabad, Hyderabad, India
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Alberto Rosello-Diez, ,
| |
Collapse
|
21
|
Zamkova MA, Persiyantseva NA, Tatarskiy VV, Shtil AA. Therapy-Induced Tumor Cell Senescence: Mechanisms and Circumvention. BIOCHEMISTRY (MOSCOW) 2023; 88:86-104. [PMID: 37068872 DOI: 10.1134/s000629792301008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Plasticity of tumor cells (multitude of molecular regulation pathways) allows them to evade cytocidal effects of chemo- and/or radiation therapy. Metabolic adaptation of the surviving cells is based on transcriptional reprogramming. Similarly to the process of natural cell aging, specific features of the survived tumor cells comprise the therapy-induced senescence phenotype. Tumor cells with this phenotype differ from the parental cells since they become less responsive to drugs and form aggressive progeny. Importance of the problem is explained by the general biological significance of transcriptional reprogramming as a mechanism of adaptation to stress, and by the emerging potential of its pharmacological targeting. In this review we analyze the mechanisms of regulation of the therapy-induced tumor cell senescence, as well as new drug combinations aimed to prevent this clinically unfavorable phenomenon.
Collapse
Affiliation(s)
- Maria A Zamkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Nadezhda A Persiyantseva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPHI, Moscow, 115409, Russia
| |
Collapse
|
22
|
Abstract
tRNAs are key adaptor molecules that decipher the genetic code during translation of mRNAs in protein synthesis. In contrast to the traditional view of tRNAs as ubiquitously expressed housekeeping molecules, awareness is now growing that tRNA-encoding genes display tissue-specific and cell type-specific patterns of expression, and that tRNA gene expression and function are both dynamically regulated by post-transcriptional RNA modifications. Moreover, dysregulation of tRNAs, mediated by alterations in either their abundance or function, can have deleterious consequences that contribute to several distinct human diseases, including neurological disorders and cancer. Accumulating evidence shows that reprogramming of mRNA translation through altered tRNA activity can drive pathological processes in a codon-dependent manner. This Review considers the emerging evidence in support of the precise control of functional tRNA levels as an important regulatory mechanism that coordinates mRNA translation and protein expression in physiological cell homeostasis, and highlights key examples of human diseases that are linked directly to tRNA dysregulation.
Collapse
Affiliation(s)
- Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Siegal
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Initiative for RNA Medicine, Harvard University, Boston, MA, USA.
| |
Collapse
|
23
|
Yue S, Li G, He S, Li T. The central role of mTORC1 in amino acid sensing. Cancer Res 2022; 82:2964-2974. [PMID: 35749594 DOI: 10.1158/0008-5472.can-21-4403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth that controls cell homeostasis in response to nutrients, growth factors, and other environmental cues. Recent studies have emphasized the importance of lysosomes as a hub for nutrient sensing, especially amino acid sensing by mTORC1. This review highlights recent advances in understanding the amino acid-mTORC1 signaling axis and the role of mTORC1 in cancer.
Collapse
|
24
|
Lian Z, Yan X, Diao Y, Cui D, Liu H. T cell differentiation protein 2 facilitates cell proliferation by enhancing mTOR-mediated ribosome biogenesis in non-small cell lung cancer. Discov Oncol 2022; 13:26. [PMID: 35437691 PMCID: PMC9016107 DOI: 10.1007/s12672-022-00488-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of T cell differentiation protein 2 (MAL2) has been observed in multiple cancers, but its exact role in lung cancer is poorly understood. Here we report a role of MAL2 in accelerating cell proliferation in non-small cell lung cancer (NSCLC). MAL2 expression enhances cell proliferation in both cell and nude mouse models. Mechanistically, overexpression of MAL2 results in the hyper-activation of the MAPK/mTOR signaling pathway in NSCLC cells which leads to active ribosome biogenesis. Importantly, pharmacological inhibition of mTOR or MEK lowered the abundance of PCNA, a marker of tumor cell proliferation, and subsequently suppressed ribosome biogenesis, cell growth and xenograft growth in mouse model. MAL2 upregulation in clinical tumors is also linked to worse prognosis. Overall our data reveal that MAL2 is a potential diagnostic biomarker and targeting the MAL2/MAPK/mTOR signaling pathway may improve therapeutic strategy and efficacy for this subset of NSCLC patients.
Collapse
Affiliation(s)
- Zhenying Lian
- Center for Basic Medical Research, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China
- Institute of Basic Medicine, Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Xingyu Yan
- Center for Basic Medical Research, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China
- Institute of Basic Medicine, Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Yutao Diao
- Institute of Basic Medicine, Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Hongyan Liu
- Center for Basic Medical Research, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China.
- Institute of Basic Medicine, Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
25
|
Surya A, Sarinay-Cenik E. Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways. Open Biol 2022; 12:210308. [PMID: 35472285 PMCID: PMC9042575 DOI: 10.1098/rsob.210308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023] Open
Abstract
Translation machinery is responsible for the production of cellular proteins; thus, cells devote the majority of their resources to ribosome biogenesis and protein synthesis. Single-copy loss of function in the translation machinery components results in rare ribosomopathy disorders, such as Diamond-Blackfan anaemia in humans and similar developmental defects in various model organisms. Somatic copy number alterations of translation machinery components are also observed in specific tumours. The organism-wide response to haploinsufficient loss-of-function mutations in ribosomal proteins or translation machinery components is complex: variations in translation machinery lead to reduced ribosome biogenesis, protein translation and altered protein homeostasis and cellular signalling pathways. Cells are affected both autonomously and non-autonomously by changes in translation machinery or ribosome biogenesis through cell-cell interactions and secreted hormones. We first briefly introduce the model organisms where mutants or knockdowns of protein synthesis and ribosome biogenesis are characterized. Next, we specifically describe observations in Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein synthesis in a subset of cells triggers cell non-autonomous growth or apoptosis responses that affect nearby cells and tissues. We then cover the characterized signalling pathways that interact with ribosome biogenesis/protein synthesis machinery with an emphasis on their respective functions during organism development.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay-Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
26
|
Blayney J, Geary J, Chrisp R, Violet J, Barratt L, Tavukçu L, Paine K, Vaistij FE, Graham IA, Denby KJ, White RJ. Impact on Arabidopsis growth and stress resistance of depleting the Maf1 repressor of RNA polymerase III. Gene 2022; 815:146130. [PMID: 35017035 DOI: 10.1016/j.gene.2021.146130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Maf1 is a transcription factor that is conserved in sequence and structure between yeasts, animals and plants. Its principal molecular function is also well conserved, being to bind and repress RNA polymerase (pol) III, thereby inhibiting synthesis of tRNAs and other noncoding RNAs. Restrictions on tRNA production and hence protein synthesis can provide a mechanism to preserve resources under conditions that are suboptimal for growth. Accordingly, Maf1 is found in some organisms to influence growth and/or stress survival. Because of their sessile nature, plants are especially vulnerable to environmental changes and molecular adaptations that enhance growth under benign circumstances can increase sensitivity to external challenges. We tested if Maf1 depletion in the model plant Arabidopsis affects growth, pathogen resistance and tolerance of drought or soil salinity, a common physiological challenge that imposes both osmotic and ionic stress. We find that disruption of the Maf1 gene or RNAi-mediated depletion of its transcript is well-tolerated and confers a modest growth advantage without compromising resistance to common biotic and abiotic challenges.
Collapse
Affiliation(s)
- Joseph Blayney
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - James Geary
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ruby Chrisp
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Joseph Violet
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Liam Barratt
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Laçin Tavukçu
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katherine Paine
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katherine J Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
27
|
Zhong Y, Zhou X, Guan KL, Zhang J. Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chem Biol 2022; 29:1037-1045.e4. [PMID: 35294906 DOI: 10.1016/j.chembiol.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
The small GTPase Ras homolog enriched in brain (Rheb) plays a critical role in activating the mechanistic target of rapamycin complex 1 (mTORC1), a signaling hub that regulates various cellular functions. We recently observed nuclear mTORC1 activity, raising an intriguing question as to how Rheb, which is known to be farnesylated and localized to intracellular membranes, regulates nuclear mTORC1. In this study, we found that active Rheb is present in the nucleus and required for nuclear mTORC1 activity. We showed that inhibition of farnesyltransferase reduced cytosolic, but not nuclear, mTORC1 activity. Furthermore, a farnesylation-deficient Rheb mutant, with preferential nuclear localization and specific lysosome tethering, enables nuclear and cytosolic mTORC1 activities, respectively. These data suggest that non-farnesylated Rheb is capable of interacting with and activating mTORC1, providing mechanistic insights into the molecular functioning of Rheb as well as regulation of the recently observed, active pool of nuclear mTORC1.
Collapse
Affiliation(s)
- Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Xu X, Ahmed T, Wang L, Cao X, Zhang Z, Wang M, Lv Y, Kanwal S, Tariq M, Lin R, Zhang H, Huang Y, Peng H, Lin D, Shi X, Geng D, Liu B, Zhang X, Yi W, Qin Y, Esteban MA, Qin B. The mTORC1-eIF4F axis controls paused pluripotency. EMBO Rep 2022; 23:e53081. [PMID: 34866316 PMCID: PMC8811634 DOI: 10.15252/embr.202153081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can self-renew indefinitely and maintain pluripotency. Inhibition of mechanistic target of rapamycin (mTOR) by the kinase inhibitor INK128 is known to induce paused pluripotency in mESCs cultured with traditional serum/LIF medium (SL), but the underlying mechanisms remain unclear. In this study, we demonstrate that mTOR complex 1 (mTORC1) but not complex 2 (mTORC2) mediates mTOR inhibition-induced paused pluripotency in cells grown in both SL and 2iL medium (GSK3 and MEK inhibitors and LIF). We also show that mTORC1 regulates self-renewal in both conditions mainly through eIF4F-mediated translation initiation that targets mRNAs of both cytosolic and mitochondrial ribosome subunits. Moreover, inhibition of mitochondrial translation is sufficient to induce paused pluripotency. Interestingly, eIF4F also regulates maintenance of pluripotency in an mTORC1-independent but MEK/ERK-dependent manner in SL, indicating that translation of pluripotency genes is controlled differently in SL and 2iL. Our study reveals a detailed picture of how mTOR governs self-renewal in mESCs and uncovers a context-dependent function of eIF4F in pluripotency regulation.
Collapse
Affiliation(s)
- Xueting Xu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Tanveer Ahmed
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Lulu Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xintao Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zeyu Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Ming Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease PreventionDepartment of Biochemistry & Molecular BiologyShenzhen University Health Science CenterShenzhenChina
| | - Yuan Lv
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Shahzina Kanwal
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Muqddas Tariq
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Runxia Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yinghua Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Hao Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Danni Lin
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xue Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease PreventionDepartment of Biochemistry & Molecular BiologyShenzhen University Health Science CenterShenzhenChina
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Qin
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Miguel A Esteban
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Institute of Stem Cells and RegenerationChinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health and Guangzhou Medical UniversityGuangzhouChina
| | - Baoming Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health and Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
29
|
tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR. PLoS Genet 2021; 17:e1009953. [PMID: 34928935 PMCID: PMC8722728 DOI: 10.1371/journal.pgen.1009953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/03/2022] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Oncogenes or chemotherapy treatments trigger the induction of suppressive pathways such as apoptosis or senescence. Senescence was initially defined as a definitive arrest of cell proliferation but recent results have shown that this mechanism is also associated with cancer progression and chemotherapy resistance. Senescence is therefore much more heterogeneous than initially thought. How this response varies is not really understood, it has been proposed that its outcome relies on the secretome of senescent cells and on the maintenance of their epigenetic marks. Using experimental models of senescence escape, we now described that the stability of this proliferative arrest relies on specific tRNAs and aminoacyl-tRNA synthetases. Following chemotherapy treatment, the DNA binding of the type III RNA polymerase was reduced to prevent tRNA transcription and induce a complete cell cycle arrest. By contrast, during senescence escape, specific tRNAs such as tRNA-Leu-CAA and tRNA-Tyr-GTA were up-regulated. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition through BRF1 depletion maintained senescence and blocked the generation of escaping cells. mTOR inhibition also prevented chemotherapy-induced senescence escape in association with a reduction of tRNA-Leu-CAA and tRNA-Tyr-GTA expression. Further confirming the role of the tRNA-Leu-CAA and tRNA-Tyr-GTA, results showed that their corresponding tRNA ligases, LARS and YARS, were necessary for senescence escape. This effect was specific since the CARS ligase had no effect on persistence. By contrast, the down-regulation of LARS and YARS reduced the emergence of persistent cells and this was associated with the modulation of E2F1 target genes expression. Overall, these findings highlight a new regulation of tRNA biology during senescence and suggest that specific tRNAs and ligases contribute to the strength and heterogeneity of this tumor suppressive pathway. Senescence is a tumor suppressive mechanism induced in response to oncogenes or chemotherapy. Senescence was initially defined as a definitive arrest of cell proliferation but doubts have emerged as to the value of this mechanism in terms of suppression. Recent findings published by several laboratories including our own have shown that some cells escape senescence to become more transformed. This study shows that different tRNAs are expressed in growing, senescent or emerging cells. The tRNA-Leu-CAA and tRNA-Tyr-GTA are up-regulated during senescence escape whereas this was not the case of the other tRNAs tested. In addition, using proteomic analysis and inactivation experiments, we found that the corresponding tRNA ligases, YARS for tRNA-Tyr-GTA and LARS for the tRNA-Leu-CAA, are necessary for senescence escape. Results also show that the expression of the tRNA-Leu-CAA and tRNA-Tyr-GTA are controlled by the mTOR pathway and that this kinase is necessary for senescence escape. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition maintained senescence and blocked the generation of escaping cells. In light of these results, we propose the hypothesis that the heterogeneity of tRNAs and ligases expression leads to distinct states of light or deep senescence.
Collapse
|
30
|
Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer 2021; 7:863-877. [PMID: 34052137 DOI: 10.1016/j.trecan.2021.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer. A growing number of recent studies are reporting that oncogenes, such as RAS, and targeted cancer treatments, such as bromodomain and extraterminal motif (BET) bromodomain inhibitors, increase global transcription, leading to R-loop accumulation, transcription-replication conflicts, and the activation of replication stress responses. Here we discuss our mechanistic understanding of hypertranscription-induced replication stress and the resulting cellular responses, in the context of oncogenes and targeted cancer therapies.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
31
|
Fernandes SA, Demetriades C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. FRONTIERS IN AGING 2021; 2:707372. [PMID: 35822019 PMCID: PMC9261424 DOI: 10.3389/fragi.2021.707372] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
The mechanistic Target of Rapamycin (mTOR) is a growth-related kinase that, in the context of the mTOR complex 1 (mTORC1), touches upon most fundamental cellular processes. Consequently, its activity is a critical determinant for cellular and organismal physiology, while its dysregulation is commonly linked to human aging and age-related disease. Presumably the most important stimulus that regulates mTORC1 activity is nutrient sufficiency, whereby amino acids play a predominant role. In fact, mTORC1 functions as a molecular sensor for amino acids, linking the cellular demand to the nutritional supply. Notably, dietary restriction (DR), a nutritional regimen that has been shown to extend lifespan and improve healthspan in a broad spectrum of organisms, works via limiting nutrient uptake and changes in mTORC1 activity. Furthermore, pharmacological inhibition of mTORC1, using rapamycin or its analogs (rapalogs), can mimic the pro-longevity effects of DR. Conversely, nutritional amino acid overload has been tightly linked to aging and diseases, such as cancer, type 2 diabetes and obesity. Similar effects can also be recapitulated by mutations in upstream mTORC1 regulators, thus establishing a tight connection between mTORC1 signaling and aging. Although the role of growth factor signaling upstream of mTORC1 in aging has been investigated extensively, the involvement of signaling components participating in the nutrient sensing branch is less well understood. In this review, we provide a comprehensive overview of the molecular and cellular mechanisms that signal nutrient availability to mTORC1, and summarize the role that nutrients, nutrient sensors, and other components of the nutrient sensing machinery play in cellular and organismal aging.
Collapse
Affiliation(s)
- Stephanie A. Fernandes
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
32
|
Sadova AA, Panteleev DY, Pavlova GV. Zooming in: PAGE-Northern Blot Helps to Analyze Anti-Sense Transcripts Originating from Human rIGS under Transcriptional Stress. Noncoding RNA 2021; 7:ncrna7030050. [PMID: 34449671 PMCID: PMC8395900 DOI: 10.3390/ncrna7030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Ribosomal intergenic spacer (rIGS), located between the 45S rRNA coding arrays in humans, is a deep, unexplored source of small and long non-coding RNA molecules transcribed in certain conditions to help a cell generate a stress response, pass through a differentiation state or fine tune the functioning of the nucleolus as a ribosome biogenesis center of the cell. Many of the non-coding transcripts originating from the rIGS are not characterized to date. Here, we confirm the transcriptional activity of the region laying a 2 kb upstream of the rRNA promoter, and demonstrate its altered expression under transcriptional stress, induced by a wide range of known transcription inhibitors. We managed to show an increased variability of anti-sense transcripts in alpha-amanitin treated cells by applying the low-molecular RNA fraction extracted from agarose gel to PAGE-northern. Also, the fractioning of RNA by size using agarose gel slices occurred, being applicable for determining the sizes of target transcripts via RT-PCR.
Collapse
Affiliation(s)
- Anastasia A. Sadova
- Academic Chair of Biochemistry and Molecular Biology, Faculty of General Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (D.Y.P.); (G.V.P.)
- Correspondence:
| | - Dmitry Y. Panteleev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (D.Y.P.); (G.V.P.)
| | - Galina V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (D.Y.P.); (G.V.P.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of X-ray and Radioisotope Diagnostic Methods, Burdenko Neurosurgical Institute, 125047 Moscow, Russia
| |
Collapse
|
33
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
34
|
The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021; 148:1277-1287. [PMID: 34099078 PMCID: PMC8383288 DOI: 10.1017/s0031182021000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.
Collapse
|
35
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
36
|
Zhou X, Zhong Y, Zhang J. Regulation of nuclear mTORC1. Mol Cell Oncol 2021; 8:1896348. [PMID: 34027037 DOI: 10.1080/23723556.2021.1896348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
mTORC1 integrates diverse upstream signals to control cell growth and metabolism. We previously showed that mTORC1 activity is spatially compartmentalized to ensure its signaling specificity. In a recently published study, we demonstrated the existence of mTORC1 activity in the nucleus and identified a unique mode of its regulation in the nuclear compartment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA.,Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
37
|
Böhm R, Imseng S, Jakob RP, Hall MN, Maier T, Hiller S. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Mol Cell 2021; 81:2403-2416.e5. [PMID: 33852892 DOI: 10.1016/j.molcel.2021.03.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.
Collapse
Affiliation(s)
- Raphael Böhm
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Stefan Imseng
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | | |
Collapse
|
38
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
39
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
40
|
Popova NV, Jücker M. The Role of mTOR Signaling as a Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms22041743. [PMID: 33572326 PMCID: PMC7916160 DOI: 10.3390/ijms22041743] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to summarize current available information about the role of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling in cancer as a potential target for new therapy options. The mTOR and PI3K/AKT/mTORC1 (mTOR complex 1) signaling are critical for the regulation of many fundamental cell processes including protein synthesis, cell growth, metabolism, survival, catabolism, and autophagy, and deregulated mTOR signaling is implicated in cancer, metabolic dysregulation, and the aging process. In this review, we summarize the information about the structure and function of the mTOR pathway and discuss the mechanisms of its deregulation in human cancers including genetic alterations of PI3K/AKT/mTOR pathway components. We also present recent data regarding the PI3K/AKT/mTOR inhibitors in clinical studies and the treatment of cancer, as well the attendant problems of resistance and adverse effects.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
41
|
Molecular Characterization of Paralichthys olivaceus MAF1 and Its Potential Role as an Anti-Viral Hemorrhagic Septicaemia Virus Factor in Hirame Natural Embryo Cells. Int J Mol Sci 2021; 22:ijms22031353. [PMID: 33572970 PMCID: PMC7866426 DOI: 10.3390/ijms22031353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
MAF1 is a global suppressor of RNA polymerase III-dependent transcription, and is conserved from yeast to human. Growing evidence supports the involvement of MAF1 in the immune response of mammals, but its biological functions in fish are unknown. We isolated and characterized Maf1 from the olive flounder Paralichthys olivaceus (PoMaf1). The coding region of PoMaf1 comprised 738 bp encoding a 245-amino-acid protein. The deduced PoMAF1 amino acid sequence shared features with those of MAF1 orthologues from vertebrates. PoMaf1 mRNA was detected in all tissues examined, and the levels were highest in eye and muscle tissue. The PoMaf1 mRNA level increased during early development. In addition, the PoMaf1 transcript level decreased during viral hemorrhagic septicemia virus (VHSV) infection of flounder hirame natural embryo (HINAE) cells. To investigate the role of PoMaf1 in VHSV infection, single-cell-derived PoMaf1 knockout HINAE cells were generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) system, and cell clones with complete disruption of PoMaf1 were selected. PoMaf1 disruption increased the VHSV glycoprotein (G) mRNA levels during VHSV infection of HINAE cells, implicating PoMAF1 in the immune response to VSHV infection. To our knowledge, this is the first study to characterize fish Maf1, which may play a role in the response to viral infection.
Collapse
|
42
|
Abstract
Skeletal muscle hypertrophy can be induced by hormones and growth factors acting directly as positive regulators of muscle growth or indirectly by neutralizing negative regulators, and by mechanical signals mediating the effect of resistance exercise. Muscle growth during hypertrophy is controlled at the translational level, through the stimulation of protein synthesis, and at the transcriptional level, through the activation of ribosomal RNAs and muscle-specific genes. mTORC1 has a central role in the regulation of both protein synthesis and ribosomal biogenesis. Several transcription factors and co-activators, including MEF2, SRF, PGC-1α4, and YAP promote the growth of the myofibers. Satellite cell proliferation and fusion is involved in some but not all muscle hypertrophy models.
Collapse
Affiliation(s)
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Italy
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | | | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
43
|
Kumar M, Skillman K, Duraisingh MT. Linking nutrient sensing and gene expression in Plasmodium falciparum blood-stage parasites. Mol Microbiol 2020; 115:891-900. [PMID: 33236377 DOI: 10.1111/mmi.14652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, caused by infection of humans with parasites of the genus Plasmodium. The complex life cycle of Plasmodium parasites is shared between two hosts, with infection of multiple cell types, and the parasite needs to adapt for survival and transmission through significantly different metabolic environments. Within the blood-stage alone, parasites encounter changing levels of key nutrients, including sugars, amino acids, and lipids, due to differences in host dietary nutrition, cellular tropism, and pathogenesis. In this review, we consider the mechanisms that the most lethal of malaria parasites, Plasmodium falciparum, uses to sense nutrient levels and elicit changes in gene expression during blood-stage infections. These changes are brought about by several metabolic intermediates and their corresponding sensor proteins. Sensing of distinct nutritional signals can drive P. falciparum to alter the key blood-stage processes of proliferation, antigenic variation, and transmission.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kristen Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
44
|
Zhou X, Zhong Y, Molinar-Inglis O, Kunkel MT, Chen M, Sun T, Zhang J, Shyy JYJ, Trejo J, Newton AC, Zhang J. Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nat Commun 2020; 11:6088. [PMID: 33257668 PMCID: PMC7705703 DOI: 10.1038/s41467-020-19937-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates growth, nutrient and energy status cues to control cell growth and metabolism. While mTORC1 activation at the lysosome is well characterized, it is not clear how this complex is regulated at other subcellular locations. Here, we combine location-selective kinase inhibition, live-cell imaging and biochemical assays to probe the regulation of growth factor-induced mTORC1 activity in the nucleus. Using a nuclear targeted Akt Substrate-based Tandem Occupancy Peptide Sponge (Akt-STOPS) that we developed for specific inhibition of Akt, a critical upstream kinase, we show that growth factor-stimulated nuclear mTORC1 activity requires nuclear Akt activity. Further mechanistic dissection suggests that nuclear Akt activity mediates growth factor-induced nuclear translocation of Raptor, a regulatory scaffolding component in mTORC1, and localization of Raptor to the nucleus results in nuclear mTORC1 activity in the absence of growth factor stimulation. Taken together, these results reveal a mode of regulation of mTORC1 that is distinct from its lysosomal activation, which controls mTORC1 activity in the nuclear compartment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | | | - Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mingyuan Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Tengqian Sun
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jiao Zhang
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Roles for the RNA polymerase III regulator MAFR-1 in regulating sperm quality in Caenorhabditis elegans. Sci Rep 2020; 10:19367. [PMID: 33168938 PMCID: PMC7652826 DOI: 10.1038/s41598-020-76423-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
The negative regulator of RNA polymerase (pol) III mafr-1 has been shown to affect RNA pol III transcript abundance, lipid biosynthesis and storage, progeny output, and lifespan. We deleted mafr-1 from the Caenorhabditis elegans genome and found that animals lacking mafr-1 replicated many phenotypes from previous RNAi-based studies and discovered a new sperm-specific role. Utilizing a yeast two-hybrid assay, we discovered several novel interactors of MAFR-1 that are expressed in a sperm- and germline-enriched manner. In support of a role for MAFR-1 in the male germline, we found mafr-1 null males have smaller spermatids that are less capable in competition for fertilization; a phenotype that was dependent on RNA pol III activity. Restoration of MAFR-1 expression specifically in the germline rescued the spermatid-related phenotypes, suggesting a cell autonomous role for MAFR-1 in nematode male fertility. Based on the high degree of conservation of Maf1 activity across species, our study may inform similar roles for Maf1 and RNA pol III in mammalian male fertility.
Collapse
|
46
|
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A. The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 2020; 34:1176-1199. [PMID: 32854585 DOI: 10.1177/0269881120944159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to drugs of abuse induces neuroadaptations in critical nodes of the so-called reward systems that are thought to mediate the transition from controlled drug use to the compulsive drug-seeking that characterizes addictive disorders. These neural adaptations are likely to require protein synthesis, which is regulated, among others, by the mechanistic target of the rapamycin kinase (mTOR) signalling cascade. METHODS We have performed a narrative review of the literature available in PubMed about the involvement of the mTOR pathway in drug-reward and addiction-related phenomena. AIMS The aim of this study was to review the underlying architecture of this complex intracellular network and to discuss the alterations of its components that are evident after exposure to drugs of abuse. The aim was also to delineate the effects that manipulations of the mTOR network have on models of drug reward and on paradigms that recapitulate some of the psychological components of addiction. RESULTS There is evidence for the involvement of the mTOR pathway in the acute and rewarding effects of drugs of abuse, especially psychostimulants. However, the data regarding opiates are scarce. There is a need to use sophisticated animal models of addiction to ascertain the real role of the mTOR pathway in this pathology and not just in drug-mediated reward. The involvement of this pathway in behavioural addictions and impulsivity should also be studied in detail in the future. CONCLUSIONS Although there is a plethora of data about the modulation of mTOR by drugs of abuse, the involvement of this signalling pathway in addictive disorders requires further research.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
47
|
Oliveira Andrade M, Sforça ML, Batista FAH, Figueira ACM, Benedetti CE. The MAF1 Phosphoregulatory Region Controls MAF1 Interaction with the RNA Polymerase III C34 Subunit and Transcriptional Repression in Plants. THE PLANT CELL 2020; 32:3019-3035. [PMID: 32641350 PMCID: PMC7474290 DOI: 10.1105/tpc.20.00297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 05/13/2023]
Abstract
MAF1 is a phosphoprotein that plays a critical role in cell growth control as the central regulator of RNA polymerase (Pol) III activity. Citrus MAF1 (CsMAF1) was identified as a direct target of PthA4, a bacterial effector protein required to induce tumors in citrus. CsMAF1 binds to Pol III to restrict transcription; however, exactly how CsMAF1 interacts with the polymerase and how phosphorylation modulates this interaction is unknown. Moreover, how CsMAF1 binds PthA4 is also obscure. Here we show that CsMAF1 binds predominantly to the WH1 domain of the citrus Pol III subunit C34 (CsC34) and that its phosphoregulatory region, comprising loop-3 and α-helix-2, contributes to this interaction. We also show that phosphorylation of this region decreases CsMAF1 affinity to CsC34, leading to Pol III derepression, and that Ser 45, found only in plant MAF1 proteins, is critical for CsC34 interaction and is phosphorylated by a new citrus AGC1 kinase. Additionally, we show that the C-terminal region of the citrus TFIIIB component BRF1 competes with CsMAF1 for CsC34 interaction, whereas the C-terminal region of CsMAF1 is essential for PthA4 binding. Based on CsMAF1 structural data, we propose a mechanism for how CsMAF1 represses Pol III transcription and how phosphorylation controls this process.
Collapse
Affiliation(s)
- Maxuel Oliveira Andrade
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Fernanda Aparecida Heleno Batista
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| |
Collapse
|
48
|
Otsubo Y, Kamada Y, Yamashita A. Novel Links between TORC1 and Traditional Non-Coding RNA, tRNA. Genes (Basel) 2020; 11:E956. [PMID: 32825021 PMCID: PMC7563549 DOI: 10.3390/genes11090956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Target of rapamycin (TOR) is a serine/threonine kinase that modulates cell growth and metabolism in response to environmental changes. Transfer RNA (tRNA) is an abundant and ubiquitous small non-coding RNA that is essential in the translation of mRNAs. Beyond its canonical role, it has been revealed that tRNAs have more diverse functions. TOR complex 1 (TORC1), which is one of the two TOR complexes, regulates tRNA synthesis by controlling RNA polymerase III. In addition to tRNA synthesis regulation, recent studies have revealed hidden connections between TORC1 and tRNA, which are both essential players in eukaryotic cellular activities. Here, we review the accumulating findings on the regulatory links between TORC1 and tRNA-particularly those links in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Yoko Otsubo
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshiaki Kamada
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
49
|
Laribee RN, Weisman R. Nuclear Functions of TOR: Impact on Transcription and the Epigenome. Genes (Basel) 2020; 11:E641. [PMID: 32532005 PMCID: PMC7349558 DOI: 10.3390/genes11060641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The target of rapamycin (TOR) protein kinase is at the core of growth factor- and nutrient-dependent signaling pathways that are well-known for their regulation of metabolism, growth, and proliferation. However, TOR is also involved in the regulation of gene expression, genomic and epigenomic stability. TOR affects nuclear functions indirectly through its activity in the cytoplasm, but also directly through active nuclear TOR pools. The mechanisms by which TOR regulates its nuclear functions are less well-understood compared with its cytoplasmic activities. TOR is an important pharmacological target for several diseases, including cancer, metabolic and neurological disorders. Thus, studies of the nuclear functions of TOR are important for our understanding of basic biological processes, as well as for clinical implications.
Collapse
Affiliation(s)
- R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, University Road 1, Ra’anana 4353701, Israel
| |
Collapse
|
50
|
Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol Cell 2020; 78:765-778.e7. [PMID: 32298650 DOI: 10.1016/j.molcel.2020.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.
Collapse
|