1
|
Yang F, Chen Y, Zheng G, Gu K, Fan L, Li T, Zhu L, Yan Y. LIMA1 O-GlcNAcylation Promotes Hepatic Lipid Deposition through Inducing β-catenin-Regulated FASn Expression in Metabolic Dysfunction-Associated Steatotic Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415941. [PMID: 39921472 PMCID: PMC12005730 DOI: 10.1002/advs.202415941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Hepatic lipid deposition is a key factor in progressing metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates the impact of the LIM domain and actin-binding protein 1 (LIMA1) on hepatic steatotic in MASLD and explore the underlying mechanisms. Increased levels of LIMA1 is observed in both serum and serum sEV of metabolic dysfunction-associated steatohepatitis (MASH) patients compared to healthy controls, with AUROC values of 0.76 and 0.86, respectively. Furthermore, increased LIMA1 O-GlcNAcylation is observed in mouse models of MASLD, and steatotic hepatocytes. Mechanistic studies revealed that steatosis upregulated Host cell factor 1 (HCF1) and O-GlcNAc transferase (OGT) expression, leading to catalyzed O-GlcNAcylation at the T662 site of LIMA1 and subsequent inhibition of its ubiquitin-dependent degradation. O-GlcNAcylation of LIMA1 enhances hepatocyte lipid deposition by activating β-catenin/FASn-associated signaling. Additionally, compared with their AAV8-TBG-LIMA1-WT counterparts, AAV8-TBG-LIMA1ΔT662 injection exhibited decreases in systemic insulin resistance, steatosis severity, inflammation and fibrosis in HFD-fed and CDAHFD-fed LIMA1 HKO (hepatocyte-specific knockout) mice. Moreover, LTH-sEV-mediated delivery of LIMA1 promoted MASLD progression by promoting hepatic stellate cell (HSC) activation. The findings suggest that serum sEV LIMA1 may be a potential noninvasive biomarker and therapeutic target for individuals with MASH.
Collapse
Affiliation(s)
- Fuji Yang
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Yifei Chen
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Guojun Zheng
- Department of Laboratory MedicineThe Third People's Hospital of ChangzhouChangzhou213017China
| | - Kefeng Gu
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Lin Fan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Tingfen Li
- Department of laboratory medicineThe Second People's Hospital of ChangzhouChangzhou213614China
| | - Ling Zhu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Yongmin Yan
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| |
Collapse
|
2
|
Uslupehlivan M, Deveci R. Glycosylation analysis of transcription factor TFIIB using bioinformatics and experimental methods. J Biomol Struct Dyn 2024:1-11. [PMID: 39601751 DOI: 10.1080/07391102.2024.2434031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 11/29/2024]
Abstract
Transcription is a fundamental process involving the interaction of RNA polymerase II and related transcription factors. TFIIB is a transcription factor that plays a significant role in the formation and stability of the preinitiation complex in a precise orientation, as well as in the control of initiation and pre-elongation steps. At the initiation step, TFIIB interacts with three structures: the end of the TATA-binding protein, a GC-rich DNA sequence followed by the TATA box, and the C-terminal domain of RNA polymerase II. It is known that RNA polymerase II is a glycoprotein and contains O-GlcNAc sugar at the C-terminal domain during the initiation stage of transcription. However, it is unclear whether the transcription factors interacting with RNA polymerase II are glycoproteins or not. The study aims to determine the glycosylation (N- and/or O-linked glycosylations) of TFIIB by using bioinformatics in one invertebrate and seven vertebrate species and experimental methods in the sea urchin Paracentrotus lividus oocyte. Both bioinformatics and experimental analysis have shown that TFIIB is a glycoprotein. In addition, PNGase-F enzyme treatment, lectin blotting, and colloidal-gold conjugated lectin labeling results revealed that TFIIB contains O-linked GalNAc, mannose, GlcNAc, and α-2,3-linked sialic acid. Based on our results, we suggest that glycosylation modification may be involved in the transcription mechanism of the TFIIB protein.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| |
Collapse
|
3
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
4
|
Zhai L, Yang X, Dong J, Qian L, Gao Y, Lv Y, Chen L, Chen B, Zhou F. O‑GlcNAcylation mediates endometrial cancer progression by regulating the Hippo‑YAP pathway. Int J Oncol 2023; 63:90. [PMID: 37350405 PMCID: PMC10552701 DOI: 10.3892/ijo.2023.5538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
The incidence of endometrial cancer (EC) is rapidly increasing worldwide. The majority of endometrial cancers are diagnosed at an early stage and are associated with a good prognosis; however, patients with advanced‑stage EC have a poor prognosis and present with invasive metastasis. The mechanisms responsible for the invasion and metastasis of endometrial cancer remain unknown. Here, the present study aimed to examine the effects of O‑GlcNAcylation on the malignancy of EC and its association with Yes‑associated protein (YAP). It was found that the expression of O‑GlcNAc transferase (OGT) and O‑GlcNAcylation were increased in EC tissues; the decrease in O‑GlcNAcylation levels was found to lead to the decreased proliferation, migration and invasion of EC cells. Mass spectrometric analysis revealed that OGT knockdown reduced the O‑GlcNAcylation of YAP. Furthermore, it was found that the reduction in the O‑GlcNAcylation of YAP promoted its phosphorylation, which in turn inhibited the access of YAP to the nucleus and downstream target gene activation, demonstrating that the level of O‑GlcNAcylation affects the development of EC. On the whole, the findings of the present study indicate that YAP is a key molecule linking the O‑GlcNAcylation and Hippo pathways, which together regulate the progression of EC.
Collapse
Affiliation(s)
- Lianghao Zhai
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Xiaoshan Yang
- Stomatology Hospital, Southern Medical University, Guangzhou, Guangdong 510280
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Jian Dong
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Luomeng Qian
- Department of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yunge Gao
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Yanhong Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Ligang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Fuxing Zhou
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| |
Collapse
|
5
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
6
|
Contribution of the STAT Family of Transcription Factors to the Expression of the Serotonin 2B (HTR2B) Receptor in Human Uveal Melanoma. Int J Mol Sci 2022; 23:ijms23031564. [PMID: 35163491 PMCID: PMC8836204 DOI: 10.3390/ijms23031564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Uveal melanoma (UM) remains the most common intraocular malignancy among diseases affecting the adult eye. The primary tumor disseminates to the liver in half of patients and leads to a 6 to 12-month survival rate, making UM a particularly aggressive type of cancer. Genomic analyses have led to the development of gene-expression profiles that can efficiently predict metastatic progression. Among these genes, that encoding the serotonin receptor 2B (HTR2B) represents the most discriminant from this molecular signature, its aberrant expression being the hallmark of UM metastatic progression. Recent evidence suggests that expression of HTR2B might be regulated through the Janus kinase/Signal Transducer and Activator of Transcription proteins (JAK/STAT) intracellular signalization pathway. However, little is actually known about the molecular mechanisms involved in the abnormally elevated expression of the HTR2B gene in metastatic UM and whether activated STAT proteins participates to this mechanism. In this study, we determined the pattern of STAT family members expressed in both primary tumors and UM cell-lines, and evaluated their contribution to HTR2B gene expression. Examination of the HTR2B promoter sequence revealed the presence of a STAT putative target site (5′-TTC (N)3 GAA3′) located 280 bp upstream of the mRNA start site that is completely identical to the high affinity binding site recognized by these TFs. Gene profiling on microarrays provided evidence that metastatic UM cell lines with high levels of HTR2B also express high levels of STAT proteins whereas low levels of these TFs are observed in non-metastatic UM cells with low levels of HTR2B, suggesting that STAT proteins contribute to HTR2B gene expression in UM cells. All UM cell lines tested were found to express their own pattern of STAT proteins in Western blot analyses. Furthermore, T142 and T143 UM cells responded to interleukins IL-4 and IL-6 by increasing the phosphorylation status of STAT1. Most of all, expression of HTR2B also considerably increased in response to both IL-4 and IL-6 therefore providing evidence that HTR2B gene expression is modulated by STAT proteins in UM cells. The binding of STAT proteins to the −280 HTR2B/STAT site was also demonstrated by electrophoretic mobility shift assay (EMSA) analyses and site-directed mutation of that STAT site also abolished both IL-4 and IL-6 responsiveness in in vitro transfection analyses. The results of this study therefore demonstrate that members from the STAT family of TFs positively contribute to the expression of HTR2B in uveal melanoma.
Collapse
|
7
|
Discovery proteomics defines androgen-regulated glycoprotein networks in prostate cancer cells, as well as putative biomarkers of prostatic diseases. Sci Rep 2021; 11:22208. [PMID: 34782677 PMCID: PMC8592995 DOI: 10.1038/s41598-021-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Supraphysiologic androgen (SPA) inhibits cell proliferation in prostate cancer (PCa) cells by transcriptional repression of DNA replication and cell-cycle genes. In this study, quantitative glycoprotein profiling identified androgen-regulated glycoprotein networks associated with SPA-mediated inhibition of PCa cell proliferation, and androgen-regulated glycoproteins in clinical prostate tissues. SPA-regulated glycoprotein networks were enriched for translation factors and ribosomal proteins, proteins that are known to be O-GlcNAcylated in response to various cellular stresses. Thus, androgen-regulated glycoproteins are likely to be targeted for O-GlcNAcylation. Comparative analysis of glycosylated proteins in PCa cells and clinical prostate tissue identified androgen-regulated glycoproteins that are differentially expressed prostate tissues at various stages of cancer. Notably, the enzyme ectonucleoside triphosphate diphosphohydrolase 5 was found to be an androgen-regulated glycoprotein in PCa cells, with higher expression in cancerous versus non-cancerous prostate tissue. Our glycoproteomics study provides an experimental framework for characterizing androgen-regulated proteins and glycoprotein networks, toward better understanding how this subproteome leads to physiologic and supraphysiologic proliferation responses in PCa cells, and their potential use as druggable biomarkers of dysregulated AR-dependent signaling in PCa cells.
Collapse
|
8
|
Rybarczyk J, Khalenkow D, Kieckens E, Skirtach AG, Cox E, Vanrompay D. Lactoferrin translocates to the nucleus of bovine rectal epithelial cells in the presence of Escherichia coli O157:H7. Vet Res 2019; 50:75. [PMID: 31570109 PMCID: PMC6771091 DOI: 10.1186/s13567-019-0694-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen which causes illness in humans. Ruminants are the main reservoirs and EHEC predominantly colonizes the epithelium of the recto-anal junction of cattle. Immunosuppression by EHEC promotes re-infection of cattle. However, bovine lactoferrin (bLF) apparently can overrule the immunosuppression by inducing EHEC-specific IgA responses at the mucosal site. The IgA responses are significantly correlated with reduced EHEC shedding and the absence of colonization at the rectal mucosa following re-infection. Therefore, to examine the interaction between bLF and bovine rectal epithelial cells, we first developed a method to establish a primary cell culture of epithelial cells of the rectum of cattle. Furthermore, we used LC–MS/MS to demonstrate the presence of secreted lactoferrin in bovine milk and the absence of a “delta” isoform which is known to translocate to the nucleus of cells. Nevertheless, lactoferrin derived from bovine milk was internalized by rectal epithelial cells and translocated to the nuclei. Moreover, nuclear translocation of bLF was significantly enhanced when the epithelial cells were inoculated with EHEC, as demonstrated by confocal fluorescence microscopy and confirmed by Raman microscopy and 3D imaging.
Collapse
Affiliation(s)
- Joanna Rybarczyk
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Dmitry Khalenkow
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Evelien Kieckens
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Andre G Skirtach
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, 9000, Ghent, Belgium
| | - Daisy Vanrompay
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Masclef L, Dehennaut V, Mortuaire M, Schulz C, Leturcq M, Lefebvre T, Vercoutter-Edouart AS. Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation. Front Endocrinol (Lausanne) 2019; 10:106. [PMID: 30853938 PMCID: PMC6395391 DOI: 10.3389/fendo.2019.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is the regulatory partner of the cyclin-dependent kinases (CDKs) CDK4 or CDK6. Once associated and activated, the cyclin D1/CDK complexes drive the cell cycle entry and G1 phase progression in response to extracellular signals. To ensure their timely and accurate activation during cell cycle progression, cyclin D1 turnover is finely controlled by phosphorylation and ubiquitination. Here we show that the dynamic and reversible O-linked β-N-Acetyl-glucosaminylation (O-GlcNAcylation) regulates also cyclin D1 half-life. High O-GlcNAc levels increase the stability of cyclin D1, while reduction of O-GlcNAcylation strongly decreases it. Moreover, elevation of O-GlcNAc levels through O-GlcNAcase (OGA) inhibition significantly slows down the ubiquitination of cyclin D1. Finally, biochemical and cell imaging experiments in human cancer cells reveal that the O-GlcNAc transferase (OGT) binds to and glycosylates cyclin D1. We conclude that O-GlcNAcylation promotes the stability of cyclin D1 through modulating its ubiquitination.
Collapse
Affiliation(s)
- Louis Masclef
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Institut Pasteur de Lille, Université de Lille, CNRS, UMR 8161, M3T: Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Marlène Mortuaire
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maïté Leturcq
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Anne-Sophie Vercoutter-Edouart
| |
Collapse
|
10
|
O-Linked β- N-acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy. Clin Sci (Lond) 2018; 132:185-198. [PMID: 29352075 DOI: 10.1042/cs20171454] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
The incidence of diabetes continues to rise among all ages and ethnic groups worldwide. Diabetic retinopathy (DR) is a complication of diabetes that affects the retinal neurovasculature causing serious vision problems, including blindness. Its pathogenesis and severity is directly linked to the chronic exposure to high glucose conditions. No treatments are currently available to stop the development and progression of DR. To develop new and effective therapeutic approaches, it is critical to better understand how hyperglycemia contributes to the pathogenesis of DR at the cellular and molecular levels. We propose alterations in O-GlcNAc modification of target proteins during diabetes contribute to the development and progression of DR. The O-GlcNAc modification is regulated through hexosamine biosynthetic pathway. We showed this pathway is differentially activated in various retinal vascular cells under high glucose conditions perhaps due to their selective metabolic activity. O-GlcNAc modification can alter protein stability, activity, interactions, and localization. By targeting the same amino acid residues (serine and threonine) as phosphorylation, O-GlcNAc modification can either compete or cooperate with phosphorylation. Here we will summarize the effects of hyperglycemia-induced O-GlcNAc modification on the retinal neurovasculature in a cell-specific manner, providing new insight into the role of O-GlcNAc modification in early loss of retinal pericytes and the pathogenesis of DR.
Collapse
|
11
|
Steenackers A, Olivier-Van Stichelen S, Baldini SF, Dehennaut V, Toillon RA, Le Bourhis X, El Yazidi-Belkoura I, Lefebvre T. Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines. Front Endocrinol (Lausanne) 2016; 7:46. [PMID: 27252680 PMCID: PMC4879930 DOI: 10.3389/fendo.2016.00046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT) transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP), whereas O-GlcNAcase (OGA) removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context, we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein, we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically decreased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of migration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disorganize microfilament, microtubule, and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migratory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biological properties of cancer cell lines but also for normal cells.
Collapse
Affiliation(s)
- Agata Steenackers
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
| | - Stéphanie Olivier-Van Stichelen
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Steffi F. Baldini
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
| | - Vanessa Dehennaut
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
- CNRS, UMR 8161, M3T, Mechanisms of Tumorigenesis and Targeted Therapies, «Institut de Biologie de Lille», Pasteur Institute of Lille, FRABio FR 3688, University of Lille, Lille Cedex, France
| | - Robert-Alain Toillon
- U908, CPAC, Cell Plasticity and Cancer, INSERM, University of Lille, Lille, France
| | - Xuefen Le Bourhis
- U908, CPAC, Cell Plasticity and Cancer, INSERM, University of Lille, Lille, France
| | - Ikram El Yazidi-Belkoura
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
| | - Tony Lefebvre
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
- *Correspondence: Tony Lefebvre,
| |
Collapse
|
12
|
Mao X, Zhang D, Tao T, Liu X, Sun X, Wang Y, Shen A. O-GlcNAc glycosylation of p27(kip1) promotes astrocyte migration and functional recovery after spinal cord contusion. Exp Cell Res 2015; 339:197-205. [PMID: 26562163 DOI: 10.1016/j.yexcr.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022]
Abstract
Glial scar formation derived from astrocyte proliferation and migration influences the functional recovery after spinal cord injury. Cyclin-dependent kinase inhibitor p27(kip1), whose activity is closely related to its phosphorylation state, reportedly regulates astrocyte proliferation and migration. In this study, we reported that p27(Kip1) undergoes O-GlcNAc modification at Ser 2, Ser 110 and Thr 197. Inhibiting O-GlcNAcylation on Ser 2 by gene mutation (S2A) attenuated the phosphorylation of Ser 10, and vice versa. Interestingly, compared with wild type p27(Kip1), S2A p27(Kip1) displayed a decreased interaction with CRM1 and reduced nuclear export following serum starvation and release. In addition, the interaction between stathmin and S2A p27(Kip1) was also decreased. Cytoskeletal proteins microtubules appeared high density in astrocytes transfected with S2A p27(Kip1) especially at the leading edge of the scratch wound. Accordingly, scratch-wound assay revealed that the motility of astrocytes transfected with S2A p27(Kip1) was faster than that of control. Finally, we injected lentiviral vectors immediately after spinal cord contusion, and found the lesion volume of the rat injected with S2A p27(Kip1) was smaller than that of rat injected with wild type p27(Kip1). Besides, the BBB and CBS behavioral tests showed greater functional recovery in S2A p27(Kip1) treated rats. Taken together, our findings revealed a novel function of O-GlcNAc modification of p27(Kip1) in mediating astrocytes migration and functional recovery after spinal cord contusion.
Collapse
Affiliation(s)
- Xingxing Mao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, China
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaojuan Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaolei Sun
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, China
| | - Youhua Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, China; Coinnovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
13
|
Ha C, Lim K. O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities. Biochem Biophys Res Commun 2015; 467:341-7. [PMID: 26431879 DOI: 10.1016/j.bbrc.2015.09.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
The addition of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine modifies a myriad of proteins and regulates their function, stability and localization. O-GlcNAc modification is common among chromosome-associated proteins, such as transcription factors, suggesting its extensive involvement in gene expression regulation. In this study, we demonstrate the O-GlcNAc status of the Sp family members of transcription factors and the functional impact on their transcriptional activities. We highlight the presence of O-GlcNAc residues in Sp3 and Sp4, but not Sp2, as demonstrated by their enrichment in GlcNAc positive protein fractions and by detection of O-GlcNAc residues on Sp3 and Sp4 co-expressed in Escherichia coli together with O-GlcNAc transferase (OGT) using an O-GlcNAc-specific antibody. Deletion mutants of Sp3 and Sp4 indicate that the majority of O-GlcNAc sites reside in their N-terminal transactivation domain. Overall, using reporter gene assays and co-immunoprecipitations, we demonstrate a functional inhibitory role of O-GlcNAc modifications in Sp3 and Sp4 transcription factors. Thereby, our study strengthens the current notion that O-GlcNAc modification is an important regulator of protein interactome.
Collapse
Affiliation(s)
- Changhoon Ha
- ASAN Institute for Life Science, ASAN Medical Center, Seoul, Republic of Korea
| | - Kihong Lim
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, NY 14642, USA.
| |
Collapse
|
14
|
Escobar-Ramirez A, Vercoutter-Edouart AS, Mortuaire M, Huvent I, Hardivillé S, Hoedt E, Lefebvre T, Pierce A. Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin. PLoS One 2015; 10:e0129965. [PMID: 26090800 PMCID: PMC4474976 DOI: 10.1371/journal.pone.0129965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Delta-lactoferrin is a transcription factor, the expression of which is downregulated or silenced in case of breast cancer. It possesses antitumoral activities and when it is re-introduced in mammary epithelial cancer cell lines, provokes antiproliferative effects. It is posttranslationally modified and our earlier investigations showed that the O-GlcNAcylation/phosphorylation interplay plays a major role in the regulation of both its stability and transcriptional activity. Here, we report the covalent modification of delta-lactoferrin with the small ubiquitin-like modifier SUMO-1. Mutational and reporter gene analyses identified five different lysine residues at K13, K308, K361, K379 and K391 as SUMO acceptor sites. The SUMOylation deficient M5S mutant displayed enhanced transactivation capacity on a delta-lactoferrin responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of delta-lactoferrin. K13, K308 and K379 are the main SUMO sites and among them, K308, which is located in a SUMOylation consensus motif of the NDSM-like type, is a key SUMO site involved in repression of delta-lactoferrin transcriptional activity. K13 and K379 are both targeted by other posttranslational modifications. We demonstrated that K13 is the main acetylation site and that favoring acetylation at K13 reduced SUMOylation and increased delta-lactoferrin transcriptional activity. K379, which is either ubiquitinated or SUMOylated, is a pivotal site for the control of delta-lactoferrin stability. We showed that SUMOylation competes with ubiquitination and protects delta-lactoferrin from degradation by positively regulating its stability. Collectively, our results indicate that multi-SUMOylation occurs on delta-lactoferrin to repress its transcriptional activity. Reciprocal occupancy of K13 by either SUMO-1 or an acetyl group may contribute to the establishment of finely regulated mechanisms to control delta-lactoferrin transcriptional activity. Moreover, competition between SUMOylation and ubiquitination at K379 coordinately regulates the stability of delta-lactoferrin toward proteolysis. Therefore SUMOylation of delta-lactoferrin is a novel mechanism controlling both its activity and stability.
Collapse
Affiliation(s)
- Adelma Escobar-Ramirez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Anne-Sophie Vercoutter-Edouart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Marlène Mortuaire
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Stephan Hardivillé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Esthelle Hoedt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Annick Pierce
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| |
Collapse
|
15
|
Zhu Y, Liu TW, Madden Z, Yuzwa SA, Murray K, Cecioni S, Zachara N, Vocadlo DJ. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J Mol Cell Biol 2015; 8:2-16. [PMID: 26031751 DOI: 10.1093/jmcb/mjv033] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023] Open
Abstract
O-glycosylation of the nuclear pore complex (NPC) by O-linked N-acetylglucosamine (O-GlcNAc) is conserved within metazoans. Many nucleoporins (Nups) comprising the NPC are constitutively O-GlcNAcylated, but the functional role of this modification remains enigmatic. We show that loss of O-GlcNAc, induced by either inhibition of O-GlcNAc transferase (OGT) or deletion of the gene encoding OGT, leads to decreased cellular levels of a number of natively O-GlcNAcylated Nups. Loss of O-GlcNAc enables increased ubiquitination of these Nups and their increased proteasomal degradation. The decreased half-life of these deglycosylated Nups manifests in their gradual loss from the NPC and a downstream malfunction of the nuclear pore selective permeability barrier in both dividing and post-mitotic cells. These findings define a critical role of O-GlcNAc modification of the NPC in maintaining its composition and the function of the selectivity filter. The results implicate NPC glycosylation as a regulator of NPC function and reveal the role of conserved glycosylation of the NPC among metazoans.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ta-Wei Liu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Zarina Madden
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kelsey Murray
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Natasha Zachara
- Department of Biological Chemistry, Johns Hopkins University Medical School, Baltimore, MD 21205, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
16
|
Shibutani M, Mori T, Miyano T, Miyake M. Removal of O-GlcNAcylation is important for pig preimplantation development. J Reprod Dev 2015; 61:341-50. [PMID: 26004176 PMCID: PMC4547992 DOI: 10.1262/jrd.2014-173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose has been recognized as an energy source for a long time, but it has recently been suggested that the hexosamine biosynthesis pathway (HBP) and downstream protein O-GlcNAcylation have important functions in mouse preimplantation development. Thus, whether or not O-GlcNAcylation was present and what functions O-GlcNAcylation has in pig preimplantation development were investigated in the present study. The expressions of mRNA of glutaminefructose-6-phosphate aminotransferase (Gfpt), O-GlcNAc transferase (Ogt) and O-GlcNAcase (Oga), which are involved in the HBP and O-GlcNAc cycling, were examined in pig parthenogenetic diploids at each preimplantation developmental stage. Gfpt and Ogt were detected in diploids at all stages. Though Oga was detected at all stages except the 4-cell stage, OGA proteins were detected in diploids from the 2-cell to
blastocyst stage. Furthermore, O-GlcNAcylated proteins in MII oocytes and diploids were also detected by immunofluorescence at every stage. Inhibition of OGT by 4.0 mM BADGP did not affect development up to the blastocyst stage, while inhibition of OGA by 300 µM PUGNAc decreased the proportion of diploids beyond the 4-cell stage. Four-cell diploids cultured with PUGNAc until 48 h developed to the blastocyst stage after culture in a PUGNAc-free medium until 144 h after electrostimulation. RNA polymerase II (Pol II) phosphorylation, which indicates the onset of mRNA transcription, was detected in nuclei of diploids in the control group at 48 h but not in the PUGNAc-treated group. These results indicate that HBP and O-GlcNAcylation have important functions in pig preimplantation development and that inhibition of OGA is fatal for development. It is also suggested that OGA inhibition disrupts normal Pol II regulation and may cause a zygotic gene activation error.
Collapse
Affiliation(s)
- Mihiro Shibutani
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
17
|
Zhu Y, Liu TW, Cecioni S, Eskandari R, Zandberg WF, Vocadlo DJ. O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat Chem Biol 2015; 11:319-25. [PMID: 25774941 DOI: 10.1038/nchembio.1774] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022]
Abstract
Nucleocytoplasmic glycosylation of proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is recognized as a conserved post-translational modification found in all metazoans. O-GlcNAc has been proposed to regulate diverse cellular processes. Impaired cellular O-GlcNAcylation has been found to lead to decreases in the levels of various proteins, which is one mechanism by which O-GlcNAc seems to exert its varied physiological effects. Here we show that O-GlcNAcylation also occurs cotranslationally. This process protects nascent polypeptide chains from premature degradation by decreasing cotranslational ubiquitylation. Given that hundreds of proteins are O-GlcNAcylated within cells, our findings suggest that cotranslational O-GlcNAcylation may be a phenomenon regulating proteostasis of an array of nucleocytoplasmic proteins. These findings set the stage to assess whether O-GlcNAcylation has a role in protein quality control in a manner that bears similarity with the role played by N-glycosylation within the secretory pathway.
Collapse
Affiliation(s)
- Yanping Zhu
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ta-Wei Liu
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Razieh Eskandari
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David J Vocadlo
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
18
|
Hoedt E, Chaoui K, Huvent I, Mariller C, Monsarrat B, Burlet-Schiltz O, Pierce A. SILAC-based proteomic profiling of the human MDA-MB-231 metastatic breast cancer cell line in response to the two antitumoral lactoferrin isoforms: the secreted lactoferrin and the intracellular delta-lactoferrin. PLoS One 2014; 9:e104563. [PMID: 25116916 PMCID: PMC4130549 DOI: 10.1371/journal.pone.0104563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background Lactoferrins exhibit antitumoral activities either as a secretory lactoferrin or an intracellular delta-lactoferrin isoform. These activities involve processes such as regulation of the cell cycle and apoptosis. While lactoferrin has been shown to exert its function by activating different transduction pathways, delta-lactoferrin has been proven to act as a transcription factor. Like many tumor suppressors, these two proteins are under-expressed in several types of cancer, particularly in breast cancer. Methodology/Principal Findings In order to compare the differential effects of the re-introduction of lactoferrin isoforms in breast cancer cells we chose the cancerous mammary gland MDA-MB-231 cell line as a model. We produced a cell line stably expressing delta-lactoferrin. We also treated these cells with fresh purified human breast lactoferrin. We performed two quantitative proteomic studies in parallel using SILAC coupled to mass spectrometry in order to compare the effects of different doses of the two lactoferrin isoforms. The proteome of untreated, delta-lactoferrin expressing and human lactoferrin treated MDA-MB-231 cells were compared. Overall, around 5300 proteins were identified and quantified using the in-house developed MFPaQ software. Among these, expression was increased by 1.5-fold or more for around 300 proteins in delta-lactoferrin expressing cells and 190 proteins in lactoferrin treated cells. At the same time, about 200 and 40 proteins were found to be downregulated (0-0.7-fold) in response to delta-lactoferrin and lactoferrin, respectively. Conclusions/Significance Re-introduction of delta-lactoferrin and lactoferrin expression in MDA-MB-231 mainly leads to modifications of protein profiles involved in processes such as proliferation, apoptosis, oxidative stress, the ubiquitin pathway, translation and mRNA quality control. Moreover, this study identified new target genes of delta-lactoferrin transcriptional activity such as SelH, GTF2F2 and UBE2E1.
Collapse
Affiliation(s)
- Esthelle Hoedt
- UGSF, UMR 8576 CNRS, USTL, IFR 147, Villeneuve d'Ascq, France
| | - Karima Chaoui
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Isabelle Huvent
- UGSF, UMR 8576 CNRS, USTL, IFR 147, Villeneuve d'Ascq, France
| | | | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Annick Pierce
- UGSF, UMR 8576 CNRS, USTL, IFR 147, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
19
|
Hardivillé S, Hart GW. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 2014; 20:208-13. [PMID: 25100062 PMCID: PMC4159757 DOI: 10.1016/j.cmet.2014.07.014] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 01/23/2023]
Abstract
The nutrient sensor, O-linked N-acetylglucosamine (O-GlcNAc), cycles on and off nuclear and cytosolic proteins to regulate many cellular processes, including transcription and signaling. Dysregulated O-GlcNAcylation and its interplay with phosphorylation contribute to the etiology of diabetes, cancer, and neurodegeneration. Herein, we review recent findings about O-GlcNAc's regulation of cell physiology.
Collapse
Affiliation(s)
- Stéphan Hardivillé
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA.
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
20
|
Delta-lactoferrin induces cell death via the mitochondrial death signaling pathway by upregulating bax expression. Biometals 2014; 27:875-89. [DOI: 10.1007/s10534-014-9744-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
21
|
Yuzwa SA, Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem Soc Rev 2014; 43:6839-58. [PMID: 24759912 DOI: 10.1039/c4cs00038b] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain. Further, type 2 diabetes mellitus (T2DM) is a strong risk factor for the development of AD. These findings have stimulated interest in the possibility that disrupted glucose regulated signaling within the brain could contribute to the progression of AD. One such process of interest is the addition of O-linked N-acetylglucosamine (O-GlcNAc) residues onto nuclear and cytoplasmic proteins within mammals. O-GlcNAc is notably abundant within brain and is present on hundreds of proteins including several, such as tau and the amyloid precursor protein, which are involved in the pathophysiology AD. The cellular levels of O-GlcNAc are coupled to nutrient availability through the action of just two enzymes. O-GlcNAc transferase (OGT) is the glycosyltransferase that acts to install O-GlcNAc onto proteins and O-GlcNAcase (OGA) is the glycoside hydrolase that acts to remove O-GlcNAc from proteins. Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its levels vary with cellular glucose availability because it is generated from glucose through the hexosamine biosynthetic pathway (HBSP). Within the brains of AD patients O-GlcNAc levels have been found to be decreased and aggregates of tau appear to lack O-GlcNAc entirely. Accordingly, glucose hypometabolism within the brain may result in disruption of the normal functions of O-GlcNAc within the brain and thereby contribute to downstream neurodegeneration. While this hypothesis remains largely speculative, recent studies using different mouse models of AD have demonstrated the protective benefit of pharmacologically increased brain O-GlcNAc levels. In this review we summarize the state of knowledge in the area of O-GlcNAc as it pertains to AD while also addressing some of the basic biochemical roles of O-GlcNAc and how these might contribute to protecting against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
22
|
Feng Z, Hui Y, Ling L, Xiaoyan L, Yuqiu W, Peng W, Lianwen Z. FBXW10 is negatively regulated in transcription and expression level by protein O-GlcNAcylation. Biochem Biophys Res Commun 2013; 438:427-32. [PMID: 23899520 DOI: 10.1016/j.bbrc.2013.07.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Intricate cross-talks exist among multiple post-translational modifications that play critical roles in various cellular events, such as the control of gene expression and regulation of protein function. Here, the cross-talk between O-GlcNAcylation and ubiquitination was investigated in HEK293T cells. By PCR array, 84 ubiquitination-related genes were explored in transcription level in response to the elevation of total protein O-GlcNAcylation due to over-expression of OGT, inhibition of OGA or GlcN treatment. Varied genes were transcriptionally regulated by using different method. But FBXW10, an F-box protein targeting specific proteins for ubiquitination, could be negatively regulated in all ways, suggesting its regulation by protein O-GlcNAcylation. By RT-PCR and Western blot analysis, it was found that FBXW10 could be sharply down-regulated in mRNA and protein level in GlcN-treated cells in a time-dependent way, in line with the enhancement of protein O-GlcNAcylation. It was also found that endogenous FBXW10 was modified by O-GlcNAc in HEK293T cells, implying O-GlcNAcylation might regulate FBXW10 in multiple levels. These findings indicate that O-GlcNAcylation is involved in the regulation of ubiquitination-related genes, and help us understand the cross-talk between O-GlcNAcylation and ubiquitination.
Collapse
Affiliation(s)
- Zhou Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Ruan HB, Nie Y, Yang X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics 2013; 12:3489-97. [PMID: 23824911 DOI: 10.1074/mcp.r113.029751] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The post-translational modification of intracellular proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates essential cellular processes such as signal transduction, transcription, translation, and protein degradation. Misfolded, damaged, and unwanted proteins are tagged with a chain of ubiquitin moieties for degradation by the proteasome, which is critical for cellular homeostasis. In this review, we summarize the current knowledge of the interplay between O-GlcNAcylation and ubiquitination in the control of protein degradation. Understanding the mechanisms of action of O-GlcNAcylation in the ubiquitin-proteosome system shall facilitate the development of therapeutics for human diseases such as cancer, metabolic syndrome, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Section of Comparative Medicine, Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520
| | | | | |
Collapse
|
24
|
McBride J, Walker LR, Grange PA, Dupin N, Akula SM. Molecular biology of lactoferrin and its role in modulating immunity and viral pathogenesis. Future Virol 2013. [DOI: 10.2217/fvl.13.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lactoferrin (Lf), also known as lactotransferrin, is a globular glycoprotein belonging to the transferrin family that is widely expressed in several fluids such as milk, tears, gastric fluid and saliva. Apart from its ability to bind and regulate iron levels in body secretions, Lf possesses antimicrobial activity and is specifically a component of the innate immune system. The antibacterial activity of Lf occurs by depriving the environment of iron essential for bacterial growth. In the case of antiviral activity, Lf may act as a competitor for the cell membrane receptors commonly used by viruses to enter cells. This review summarizes the roles of Lf under normal physiology, with a special emphasis on viruses. The authors also discuss in great detail the interactions between Lf and Kaposi’s sarcoma-associated herpesvirus, as well as possible future directions of research that may progress toward designing modern-day therapeutics to counter viral infections.
Collapse
Affiliation(s)
- Jennifer McBride
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lia R Walker
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Philippe A Grange
- Laboratoire de Dermatologie, EA 1833 – Centre National de Référence de la Syphilis, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Nicolas Dupin
- Laboratoire de Dermatologie, EA 1833 – Centre National de Référence de la Syphilis, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
25
|
O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc Natl Acad Sci U S A 2012; 109:17669-74. [PMID: 22988095 DOI: 10.1073/pnas.1205748109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
O-GlcNAcylation is an abundant posttranslational modification in the brain implicated in human neurodegenerative diseases. We have exploited viable null alleles of the enzymes of O-GlcNAc cycling to examine the role of O-GlcNAcylation in well-characterized Caenorhabditis elegans models of neurodegenerative proteotoxicity. O-GlcNAc cycling dramatically modulated the severity of the phenotype in transgenic models of tauopathy, amyloid β-peptide, and polyglutamine expansion. Intriguingly, loss of function of O-GlcNAc transferase alleviated, whereas loss of O-GlcNAcase enhanced, the phenotype of multiple neurodegenerative disease models. The O-GlcNAc cycling mutants act in part by altering DAF-16-dependent transcription and modulating the protein degradation machinery. These findings suggest that O-GlcNAc levels may directly influence neurodegenerative disease progression, thus making the enzymes of O-GlcNAc cycling attractive targets for neurodegenerative disease therapies.
Collapse
|
26
|
Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 2012; 287:35544-35555. [PMID: 22887999 DOI: 10.1074/jbc.m112.402347] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t(½) >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Sara Deleonibus
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Eugenia Karousou
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Barbara Bartolini
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Vincent C Hascall
- Biomedical Engineering ND20, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Giancarlo De Luca
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
27
|
Mariller C, Hardivillé S, Hoedt E, Huvent I, Pina-Canseco S, Pierce A. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor1This article is part of a Special Issue entitled Lactoferrin and has undergone the Journal's usual peer review process. Biochem Cell Biol 2012; 90:307-19. [DOI: 10.1139/o11-070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Delta-lactoferrin (ΔLf) is a transcription factor of which the expression is downregulated in cancer. It is a healthy tissue marker and a high expression level of its transcripts was correlated with a good prognosis in breast cancer. ΔLf results from alternative promoter usage of the hLf gene leading to the production of 2 isoforms with alternative N-termini: lactoferrin, which is secreted, and ΔLf, its nucleocytoplasmic counterpart. ΔLf possesses antiproliferative properties and induces cell cycle arrest. It is an efficient transcription factor interacting in vivo via a ΔLf response element found in the Skp1, Bax, DcpS, and SelH promoters. Since ΔLf possesses different target genes, modifications in its activity or concentration may have crucial effects on cell homeostasis. Posttranslational modifications modulate ΔLf transcription factor activity. Our earlier investigations showed that O-GlcNAcylation negatively regulates ΔLf transcriptional activity, whilst inhibiting its ubiquitination and increasing its half-life. On the other hand, phosphorylation potentiates ΔLf transcriptional activity. Recently, we showed that ΔLf is also modified by SUMOylation. Therefore, cooperation and (or) competition among SUMOylation, ubiquitination, phosphorylation, and O-GlcNAcylation may contribute to the establishment of a fine regulation of ΔLf transcriptional activity depending on the type of target gene and cellular homeostasis.
Collapse
Affiliation(s)
- Christophe Mariller
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-Université des Sciences et Technologies de Lille, IFR 148, 59655 Villeneuve d’Ascq, France
| | - Stephan Hardivillé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-Université des Sciences et Technologies de Lille, IFR 148, 59655 Villeneuve d’Ascq, France
| | - Esthelle Hoedt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-Université des Sciences et Technologies de Lille, IFR 148, 59655 Villeneuve d’Ascq, France
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-Université des Sciences et Technologies de Lille, IFR 148, 59655 Villeneuve d’Ascq, France
| | - Socorro Pina-Canseco
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-Université des Sciences et Technologies de Lille, IFR 148, 59655 Villeneuve d’Ascq, France
| | - Annick Pierce
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-Université des Sciences et Technologies de Lille, IFR 148, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
28
|
Baker HM, Baker EN. A structural perspective on lactoferrin function1This article is part of a Special Issue entitled Lactoferrin and has undergone the Journal's usual peer review process. Biochem Cell Biol 2012; 90:320-8. [PMID: 22292559 DOI: 10.1139/o11-071] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 3-D structure of human lactoferrin was first solved in atomic detail in 1987. Since that time, a variety of proven and postulated activities have been added to the original annotation of lactoferrin as an iron-binding protein. Structural studies have also expanded to include iron-bound and iron-free (apo) forms, mutants, and the lactoferrins of different species. In this review, we take the current information on both structure and function and show that the 3-D structure provides a useful framework for understanding some activities and also points to productive research directions that could help elucidate other reported functions. Some functions relate to iron binding where the role of lactoferrin is to scavenge and retain iron across a wide pH range. We specifically focus on functions that depend on the surface structure of the molecule, identifying features that may determine the many other protective properties of this multifunctional protein.
Collapse
Affiliation(s)
- Heather M. Baker
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Edward N. Baker
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
29
|
Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci U S A 2011; 108:8146-51. [PMID: 21540332 DOI: 10.1073/pnas.1102458108] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic modification of nuclear and cytoplasmic proteins by the monosaccharide N-acetyl-glucosamine (GlcNAc) continues to emerge as an important regulator of many biological processes. Herein we describe the development of an alkynyl-modified GlcNAc analog (GlcNAlk) as a new chemical reporter of O-GlcNAc modification in living cells. This strategy is based on metabolic incorporation of reactive functionality into the GlcNAc biosynthetic pathway. When combined with the Cu(I)-catalyzed [3 + 2] azide-alkyne cycloaddition, this chemical reporter allowed for the robust in-gel fluorescent visualization of O-GlcNAc and affinity enrichment and identification of O-GlcNAc-modified proteins. Using in-gel fluorescence detection, we characterized the metabolic fates of GlcNAlk and the previously reported azido analog, GlcNAz. We confirmed previous results that GlcNAz can be metabolically interconverted to GalNAz, whereas GlcNAlk does not, thereby yielding a more specific metabolic reporter of O-GlcNAc modification. We also used GlcNAlk, in combination with a biotin affinity tag, to identify 374 proteins, 279 of which were not previously reported, and we subsequently confirmed the enrichment of three previously uncharacterized proteins. Finally we confirmed the O-GlcNAc modification of the ubiquitin ligase NEDD4-1, the first reported glycosylation of this protein.
Collapse
|