1
|
Nakagawa M, Nakagawa T. CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective. Cells 2025; 14:63. [PMID: 39851492 PMCID: PMC11763709 DOI: 10.3390/cells14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins. Mammalian genomes encode several CUL proteins (CUL1-9), each contributing to distinct CRLs. Among these CUL proteins, CUL1, CUL3, and CUL4 are believed to be the most ancient and evolutionarily conserved from yeast to mammals, with CUL4 uniquely duplicated in vertebrates. Genetic evidence strongly implicates CUL4-based ubiquitin ligases (CRL4s) in chromatin regulation across various species and suggests that, in vertebrates, CRL4s have also acquired a cytosolic role, which is facilitated by a cytosol-localizing paralog of CUL4. Substrates identified through biochemical studies have elucidated the molecular mechanisms by which CRL4s regulate chromatin and cytosolic processes. The substantial body of knowledge on CUL4 biology amassed over the past two decades provides a unique opportunity to explore the functional evolution of CRL4. In this review, we synthesize the available structural, genetic, and biochemical data on CRL4 from various model organisms and discuss the conserved and novel functions of CRL4s.
Collapse
Affiliation(s)
- Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan;
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan
| |
Collapse
|
2
|
Wan B, Guan D, Li S, Chwat-Edelstein T, Zhao X. Mms22-Rtt107 axis attenuates the DNA damage checkpoint and the stability of the Rad9 checkpoint mediator. Nat Commun 2025; 16:311. [PMID: 39746913 PMCID: PMC11697250 DOI: 10.1038/s41467-024-54624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025] Open
Abstract
The DNA damage checkpoint is a highly conserved signaling pathway induced by genotoxin exposure or endogenous genome stress. It alters many cellular processes such as arresting the cell cycle progression and increasing DNA repair capacities. However, cells can downregulate the checkpoint after prolonged stress exposure to allow continued growth and alternative repair. Strategies that can dampen the DNA damage checkpoint are not well understood. Here, we report that budding yeast employs a pathway composed of the scaffold protein Rtt107, its binding partner Mms22, and an Mms22-associated ubiquitin ligase complex to downregulate the DNA damage checkpoint. Mechanistically, this pathway promotes the proteasomal degradation of a key checkpoint factor, Rad9. Furthermore, Rtt107 binding to Mms22 helps to enrich the ubiquitin ligase complex on chromatin for targeting the chromatin-bound form of Rad9. Finally, we provide evidence that the Rtt107-Mms22 axis operates in parallel with the Rtt107-Slx4 axis, which displaces Rad9 from chromatin. We thus propose that Rtt107 enables a bifurcated "anti-Rad9" strategy to optimally downregulate the DNA damage checkpoint.
Collapse
Affiliation(s)
- Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Danying Guan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tzippora Chwat-Edelstein
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Kimble MT, Sane A, Reid RJD, Johnson MJ, Rothstein R, Symington LS. Repair of replication-dependent double-strand breaks differs between the leading and lagging strands. Mol Cell 2025; 85:61-77.e6. [PMID: 39631395 PMCID: PMC11698654 DOI: 10.1016/j.molcel.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Single-strand breaks (SSBs) are one of the most commonly occurring endogenous lesions with the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate how replication-dependent DSBs are repaired, we employed Cas9 nickase (nCas9) to generate site- and strand-specific nicks in the budding yeast genome. We found that nCas9-induced nicks are converted to mostly double-ended DSBs during S phase. Repair of replication-associated DSBs requires homologous recombination (HR) and is independent of classical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister-chromatid template, we observed minimal induction of inter-chromosomal HR by nCas9. In a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs, we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway. Our findings suggest that the RCNA pathway is especially important to repair DSBs arising from nicks in the leading-strand template through acetylation of histone H3K56.
Collapse
Affiliation(s)
- Michael T Kimble
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aakanksha Sane
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J Johnson
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Noireterre A, Soudet J, Bagdiul I, Stutz F. The cullin Rtt101 promotes ubiquitin-dependent DNA-protein crosslink repair across the cell cycle. Nucleic Acids Res 2024; 52:9654-9670. [PMID: 39077933 PMCID: PMC11381328 DOI: 10.1093/nar/gkae658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
DNA-protein crosslinks (DPCs) challenge faithful DNA replication and smooth passage of genomic information. Our study unveils the cullin E3 ubiquitin ligase Rtt101 as a DPC repair factor. Genetic analyses demonstrate that Rtt101 is essential for resistance to a wide range of DPC types including topoisomerase 1 crosslinks, in the same pathway as the ubiquitin-dependent aspartic protease Ddi1. Using an in vivo inducible Top1-mimicking DPC system, we reveal the significant impact of Rtt101 ubiquitination on DPC removal across different cell cycle phases. High-throughput methods coupled with next-generation sequencing specifically highlight the association of Rtt101 with replisomes as well as colocalization with DPCs. Our findings establish Rtt101 as a main contributor to DPC repair throughout the yeast cell cycle.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Kimble MT, Sane A, Reid RJ, Johnson MJ, Rothstein R, Symington LS. Strand asymmetry in the repair of replication dependent double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598707. [PMID: 38948862 PMCID: PMC11212877 DOI: 10.1101/2024.06.17.598707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-strand breaks (SSBs) are one of the most common endogenous lesions and have the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate the mechanism of replication fork collapse at SSBs and subsequent repair, we employed Cas9 nickase (nCas9) to generate site and strand-specific nicks in the budding yeast genome. We show that nCas9-induced nicks are converted to mostly double-ended DSBs during S-phase. We find that repair of replication-dependent DSBs requires homologous recombination (HR) and is independent of canonical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister chromatid template, we observe minimal induction of inter-chromosomal HR by nCas9. Using nCas9 and a gRNA to nick either the leading or lagging strand template, we carried out a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs. All the core HR genes were recovered in the screen with both gRNAs, but we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway with only the gRNA targeting the leading strand template. By use of additional gRNAs, we find that the RCNA pathway is especially important to repair a leading strand fork collapse.
Collapse
|
6
|
Zhao X, Wan B, Guan D, Li S, Chwat-Edelstein T. The Mms22-Rtt107 axis dampens the DNA damage checkpoint by reducing the stability of the Rad9 checkpoint mediator. RESEARCH SQUARE 2024:rs.3.rs-4417144. [PMID: 38826278 PMCID: PMC11142307 DOI: 10.21203/rs.3.rs-4417144/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The DNA damage checkpoint is a highly conserved signaling pathway induced by genotoxin exposure or endogenous genome stress. It alters many cellular processes such as arresting the cell cycle progression and increasing DNA repair capacities. However, cells can downregulate the checkpoint after prolonged stress exposure to allow continued growth and alternative repair. Strategies that can dampen the DNA damage checkpoint are not well understood. Here, we report that budding yeast employs a pathway composed of the scaffold protein Rtt107, its binding partner Mms22, and an Mms22-associated ubiquitin ligase complex to downregulate the DNA damage checkpoint. Mechanistically, this pathway promotes the proteasomal degradation of a key checkpoint factor, Rad9. Furthermore, Rtt107 binding to Mms22 helps to enrich the ubiquitin ligase complex on chromatin and target the chromatin-bound form of Rad9. Finally, we provide evidence that the Rtt107-Mms22 axis operates in parallel with the Rtt107-Slx4 axis, which displaces Rad9 from chromatin. We thus propose that Rtt107 enables a bifurcated "anti-Rad9" strategy to optimally downregulate the DNA damage checkpoint.
Collapse
Affiliation(s)
| | | | | | - Shibai Li
- Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
7
|
Inada T, Beckmann R. Mechanisms of Translation-coupled Quality Control. J Mol Biol 2024; 436:168496. [PMID: 38365086 DOI: 10.1016/j.jmb.2024.168496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
8
|
Little J, Chikina M, Clark NL. Evolutionary rate covariation is a reliable predictor of co-functional interactions but not necessarily physical interactions. eLife 2024; 12:RP93333. [PMID: 38415754 PMCID: PMC10942632 DOI: 10.7554/elife.93333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Co-functional proteins tend to have rates of evolution that covary over time. This correlation between evolutionary rates can be measured over the branches of a phylogenetic tree through methods such as evolutionary rate covariation (ERC), and then used to construct gene networks by the identification of proteins with functional interactions. The cause of this correlation has been hypothesized to result from both compensatory coevolution at physical interfaces and nonphysical forces such as shared changes in selective pressure. This study explores whether coevolution due to compensatory mutations has a measurable effect on the ERC signal. We examined the difference in ERC signal between physically interacting protein domains within complexes compared to domains of the same proteins that do not physically interact. We found no generalizable relationship between physical interaction and high ERC, although a few complexes ranked physical interactions higher than nonphysical interactions. Therefore, we conclude that coevolution due to physical interaction is weak, but present in the signal captured by ERC, and we hypothesize that the stronger signal instead comes from selective pressures on the protein as a whole and maintenance of the general function.
Collapse
Affiliation(s)
- Jordan Little
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Maria Chikina
- Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Nathan L Clark
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
9
|
Tremblay R, Mehrjoo Y, Ahmed O, Simoneau A, McQuaid ME, Affar EB, Nislow C, Giaever G, Wurtele H. Persistent Acetylation of Histone H3 Lysine 56 Compromises the Activity of DNA Replication Origins. Mol Cell Biol 2023; 43:566-595. [PMID: 37811746 PMCID: PMC10791153 DOI: 10.1080/10985549.2023.2259739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/09/2023] [Indexed: 10/10/2023] Open
Abstract
In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.
Collapse
Affiliation(s)
- Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Yosra Mehrjoo
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Oumaima Ahmed
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Antoine Simoneau
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
10
|
Ghaddar N, Luciano P, Géli V, Corda Y. Chromatin assembly factor-1 preserves genome stability in ctf4Δ cells by promoting sister chromatid cohesion. Cell Stress 2023; 7:69-89. [PMID: 37662646 PMCID: PMC10468696 DOI: 10.15698/cst2023.09.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chromatin assembly and the establishment of sister chromatid cohesion are intimately connected to the progression of DNA replication forks. Here we examined the genetic interaction between the heterotrimeric chromatin assembly factor-1 (CAF-1), a central component of chromatin assembly during replication, and the core replisome component Ctf4. We find that CAF-1 deficient cells as well as cells affected in newly-synthesized H3-H4 histones deposition during DNA replication exhibit a severe negative growth with ctf4Δ mutant. We dissected the role of CAF-1 in the maintenance of genome stability in ctf4Δ yeast cells. In the absence of CTF4, CAF-1 is essential for viability in cells experiencing replication problems, in cells lacking functional S-phase checkpoint or functional spindle checkpoint, and in cells lacking DNA repair pathways involving homologous recombination. We present evidence that CAF-1 affects cohesin association to chromatin in a DNA-damage-dependent manner and is essential to maintain cohesion in the absence of CTF4. We also show that Eco1-catalyzed Smc3 acetylation is reduced in absence of CAF-1. Furthermore, we describe genetic interactions between CAF-1 and essential genes involved in cohesin loading, cohesin stabilization, and cohesin component indicating that CAF-1 is crucial for viability when sister chromatid cohesion is affected. Finally, our data indicate that the CAF-1-dependent pathway required for cohesion is functionally distinct from the Rtt101-Mms1-Mms22 pathway which functions in replicated chromatin assembly. Collectively, our results suggest that the deposition by CAF-1 of newly-synthesized H3-H4 histones during DNA replication creates a chromatin environment that favors sister chromatid cohesion and maintains genome integrity.
Collapse
Affiliation(s)
- Nagham Ghaddar
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Pierre Luciano
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Yves Corda
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| |
Collapse
|
11
|
Sengupta S, Pick E. The Ubiquitin-like Proteins of Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13050734. [PMID: 37238603 DOI: 10.3390/biom13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In this review, we present a comprehensive list of the ubiquitin-like modifiers (Ubls) of Saccharomyces cerevisiae, a common model organism used to study fundamental cellular processes that are conserved in complex multicellular organisms, such as humans. Ubls are a family of proteins that share structural relationships with ubiquitin, and which modify target proteins and lipids. These modifiers are processed, activated and conjugated to substrates by cognate enzymatic cascades. The attachment of substrates to Ubls alters the various properties of these substrates, such as function, interaction with the environment or turnover, and accordingly regulate key cellular processes, including DNA damage, cell cycle progression, metabolism, stress response, cellular differentiation, and protein homeostasis. Thus, it is not surprising that Ubls serve as tools to study the underlying mechanism involved in cellular health. We summarize current knowledge on the activity and mechanism of action of the S. cerevisiae Rub1, Smt3, Atg8, Atg12, Urm1 and Hub1 modifiers, all of which are highly conserved in organisms from yeast to humans.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
| | - Elah Pick
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 3600600, Israel
| |
Collapse
|
12
|
Schindler N, Tonn M, Kellner V, Fung JJ, Lockhart A, Vydzhak O, Juretschke T, Möckel S, Beli P, Khmelinskii A, Luke B. Genetic requirements for repair of lesions caused by single genomic ribonucleotides in S phase. Nat Commun 2023; 14:1227. [PMID: 36869098 PMCID: PMC9984532 DOI: 10.1038/s41467-023-36866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Single ribonucleoside monophosphates (rNMPs) are transiently present in eukaryotic genomes. The RNase H2-dependent ribonucleotide excision repair (RER) pathway ensures error-free rNMP removal. In some pathological conditions, rNMP removal is impaired. If these rNMPs hydrolyze during, or prior to, S phase, toxic single-ended double-strand breaks (seDSBs) can occur upon an encounter with replication forks. How such rNMP-derived seDSB lesions are repaired is unclear. We expressed a cell cycle phase restricted allele of RNase H2 to nick at rNMPs in S phase and study their repair. Although Top1 is dispensable, the RAD52 epistasis group and Rtt101Mms1-Mms22 dependent ubiquitylation of histone H3 become essential for rNMP-derived lesion tolerance. Consistently, loss of Rtt101Mms1-Mms22 combined with RNase H2 dysfunction leads to compromised cellular fitness. We refer to this repair pathway as nick lesion repair (NLR). The NLR genetic network may have important implications in the context of human pathologies.
Collapse
Affiliation(s)
- Natalie Schindler
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| | - Matthias Tonn
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Vanessa Kellner
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Department of Biology, New York University, New York, NY, USA
| | - Jia Jun Fung
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Arianna Lockhart
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Olga Vydzhak
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Thomas Juretschke
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Stefanie Möckel
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Anton Khmelinskii
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Brian Luke
- Johannes Gutenberg University Mainz, Institute for Developmental Neurology (IDN), Biozentrum 1, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany. .,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
13
|
van Schie JJ, de Lint K, Pai GM, Rooimans MA, Wolthuis RM, de Lange J. MMS22L-TONSL functions in sister chromatid cohesion in a pathway parallel to DSCC1-RFC. Life Sci Alliance 2023; 6:e202201596. [PMID: 36622344 PMCID: PMC9733570 DOI: 10.26508/lsa.202201596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The leading strand-oriented alternative PCNA clamp loader DSCC1-RFC functions in DNA replication, repair, and sister chromatid cohesion (SCC), but how it facilitates these processes is incompletely understood. Here, we confirm that loss of human DSCC1 results in reduced fork speed, increased DNA damage, and defective SCC. Genome-wide CRISPR screens in DSCC1-KO cells reveal multiple synthetically lethal interactions, enriched for DNA replication and cell cycle regulation. We show that DSCC1-KO cells require POLE3 for survival. Co-depletion of DSCC1 and POLE3, which both interact with the catalytic polymerase ε subunit, additively impair DNA replication, suggesting that these factors contribute to leading-strand DNA replication in parallel ways. An additional hit is MMS22L, which in humans forms a heterodimer with TONSL. Synthetic lethality of DSCC1 and MMS22L-TONSL likely results from detrimental SCC loss. We show that MMS22L-TONSL, like DDX11, functions in a SCC establishment pathway parallel to DSCC1-RFC. Because both DSCC1-RFC and MMS22L facilitate ESCO2 recruitment to replication forks, we suggest that distinct ESCO2 recruitment pathways promote SCC establishment following either cohesin conversion or de novo cohesin loading.
Collapse
Affiliation(s)
- Janne Jm van Schie
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Klaas de Lint
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Govind M Pai
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Martin A Rooimans
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Rob Mf Wolthuis
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Job de Lange
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
14
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
15
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
16
|
Young TJ, Cui Y, Pfeffer C, Hobbs E, Liu W, Irudayaraj J, Kirchmaier AL. CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac, preventing ectopic silencing. PLoS Genet 2020; 16:e1009226. [PMID: 33284793 PMCID: PMC7746308 DOI: 10.1371/journal.pgen.1009226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/17/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.
Collapse
Affiliation(s)
- Tiffany J. Young
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Cui
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Claire Pfeffer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Emilie Hobbs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Joseph Irudayaraj
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
17
|
Mus81-Mms4 endonuclease is an Esc2-STUbL-Cullin8 mitotic substrate impacting on genome integrity. Nat Commun 2020; 11:5746. [PMID: 33184279 PMCID: PMC7665200 DOI: 10.1038/s41467-020-19503-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
The Mus81-Mms4 nuclease is activated in G2/M via Mms4 phosphorylation to allow resolution of persistent recombination structures. However, the fate of the activated phosphorylated Mms4 remains unknown. Here we find that Mms4 is engaged by (poly)SUMOylation and ubiquitylation and targeted for proteasome degradation, a process linked to the previously described Mms4 phosphorylation cycle. Mms4 is a mitotic substrate for the SUMO-Targeted Ubiquitin ligase Slx5/8, the SUMO-like domain-containing protein Esc2, and the Mms1-Cul8 ubiquitin ligase. In the absence of these activities, phosphorylated Mms4 accumulates on chromatin in an active state in the next G1, subsequently causing abnormal processing of replication-associated recombination intermediates and delaying the activation of the DNA damage checkpoint. Mus81-Mms4 mutants that stabilize phosphorylated Mms4 have similar detrimental effects on genome integrity. Overall, our findings highlight a replication protection function for Esc2-STUbL-Cul8 and emphasize the importance for genome stability of resetting phosphorylated Mms4 from one cycle to another. Mus81-Mms4 endonuclease is critical for processing various DNA recombination structures. Here the authors uncover a regulatory mechanism of the endonuclease via posttranslational modifications involving SUMOylation and ubiquitylation that impact on genome integrity.
Collapse
|
18
|
Santos SM, Hartman JL. A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer Metab 2019; 7:9. [PMID: 31660150 PMCID: PMC6806529 DOI: 10.1186/s40170-019-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. METHODS Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. RESULTS Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions. CONCLUSIONS Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.
Collapse
Affiliation(s)
- Sean M. Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
19
|
Wang Q, Donze D. Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae. Gene 2016; 594:108-116. [PMID: 27601258 DOI: 10.1016/j.gene.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
Abstract
Eukaryotic promoters generally contain nucleosome depleted regions near their transcription start sites. In the model organism Saccharomyces cerevisiae, these regions are adjacent to binding sites for general regulatory transcription factors, and the Reb1 protein is commonly bound to promoter DNA near such regions. The yeast TFC6 promoter is a unique RNA polymerase II promoter in that it is autoregulated by its own gene product Tfc6p, which is part of the RNA polymerase III transcription factor complex TFIIIC. We previously demonstrated that mutation of a potential Reb1 binding site adjacent to the TFIIIC binding site in the TFC6 promoter modestly reduces transcript levels, but leads to a severe decrease in Tfc6 protein levels due to an upstream shift in the TFC6 transcription start site. Here we confirm that Reb1p indeed binds to the TFC6 promoter, and is important for proper transcription start site selection and protein expression. Interestingly, loss of Reb1p association at this site has a similar effect on the adjacent divergently transcribed ESC2 promoter, resulting in a significant increase of 5'-extended ESC2 transcripts and reduction of Esc2 protein levels. This altered divergent transcription may be the result of changes in nucleosome positioning at this locus in the absence of Reb1p binding. We speculate that an important function of general regulatory factors such as Reb1p is to establish and maintain proper transcription start sites at promoters, and that when binding of such factors is compromised, resulting effects on mRNA translation may be an underappreciated aspect of gene regulation studies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
20
|
Wan B, Hang LE, Zhao X. Multi-BRCT scaffolds use distinct strategies to support genome maintenance. Cell Cycle 2016; 15:2561-2570. [PMID: 27580271 DOI: 10.1080/15384101.2016.1218102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome maintenance requires coordinated actions of diverse DNA metabolism processes. Scaffolding proteins, such as those containing multiple BRCT domains, can influence these processes by collaborating with numerous partners. The best-studied examples of multi-BRCT scaffolds are the budding yeast Dpb11 and its homologues in other organisms, which regulate DNA replication, repair, and damage checkpoints. Recent studies have shed light on another group of multi-BRCT scaffolds, including Rtt107 in budding yeast and related proteins in other organisms. These proteins also influence several DNA metabolism pathways, though they use strategies unlike those employed by the Dpb11 family of proteins. Yet, at the same time, these 2 classes of multi-BRCT proteins can collaborate under specific situations. This review summarizes recent advances in our understanding of how these multi-BRCT proteins function in distinct manners and how they collaborate, with a focus on Dpb11 and Rtt107.
Collapse
Affiliation(s)
- Bingbing Wan
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Lisa E Hang
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Xiaolan Zhao
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
21
|
Samora CP, Saksouk J, Goswami P, Wade BO, Singleton MR, Bates PA, Lengronne A, Costa A, Uhlmann F. Ctf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome. Mol Cell 2016; 63:371-84. [PMID: 27397686 PMCID: PMC4980427 DOI: 10.1016/j.molcel.2016.05.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/24/2016] [Accepted: 05/26/2016] [Indexed: 12/02/2022]
Abstract
DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α. We visualize recruitment by EM analysis of a reconstituted Chl1-Ctf4-GINS assembly. The Chl1 helicase facilitates replication fork progression under conditions of nucleotide depletion, partly independently of Ctf4 interaction. Conversely, Ctf4 interaction, but not helicase activity, is required for Chl1's role in sister chromatid cohesion. A physical interaction between Chl1 and the cohesin complex during S phase suggests that Chl1 contacts cohesin to facilitate its acetylation. Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment.
Collapse
MESH Headings
- Acetyltransferases/metabolism
- Acylation
- Cell Cycle Proteins/metabolism
- Chromatids/enzymology
- Chromatids/genetics
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/ultrastructure
- Chromosomes, Fungal/enzymology
- Chromosomes, Fungal/genetics
- DNA, Fungal/biosynthesis
- DNA, Fungal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/ultrastructure
- Microscopy, Electron, Transmission
- Models, Molecular
- Multiprotein Complexes
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- S Phase
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/ultrastructure
- Structure-Activity Relationship
- Time Factors
- Cohesins
Collapse
Affiliation(s)
- Catarina P Samora
- Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | - Julie Saksouk
- Institute of Human Genetics (IGH), CNRS, 34396 Montpellier, France
| | - Panchali Goswami
- Macromolecular Machines Laboratory, Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Ben O Wade
- Structural Biology of Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | | | - Alessandro Costa
- Macromolecular Machines Laboratory, Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK.
| |
Collapse
|
22
|
|
23
|
Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovíc D, Pellegrini L, Labib K. Ctf4 Is a Hub in the Eukaryotic Replisome that Links Multiple CIP-Box Proteins to the CMG Helicase. Mol Cell 2016; 63:385-96. [PMID: 27397685 PMCID: PMC4980431 DOI: 10.1016/j.molcel.2016.06.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022]
Abstract
Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a “Ctf4-interacting-peptide” or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation. Ctf4 is a hub that links factors with diverse functions to the eukaryotic replisome Multiple Ctf4 partners bind via short sequences called “CIP-boxes” The CIP-boxes of Dna2 and Tof2 bind to distinct sites on Ctf4 Interaction of Dna2 and Tof2 with Ctf4 is important for rDNA copy number maintenance
Collapse
Affiliation(s)
- Fabrizio Villa
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Aline C Simon
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Maria Angeles Ortiz Bazan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Mairi L Kilkenny
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK
| | - David Wirthensohn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Mel Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dijana Matak-Vinkovíc
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
24
|
Hang L, Zhao X. The Rtt107 BRCT scaffold and its partner modification enzymes collaborate to promote replication. Nucleus 2016; 7:346-51. [PMID: 27385431 DOI: 10.1080/19491034.2016.1201624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Faithful duplication of the entire genome during each cell cycle is key for genome maintenance. Each stage of DNA replication, including initiation, progression, and termination, is tightly regulated. Some of these regulations enable replisomes to overcome tens of thousands of template obstacles that block DNA synthesis. Previous studies have identified a large number of proteins that are dedicated to this mission, including protein modification enzymes and scaffold proteins. Protein modification enzymes can bestow fast and reversible changes on many substrates, and thus are ideal for coordinating multiple events needed to promptly overcome replication impediments. Scaffold proteins can support specific protein-protein interactions that enable protein complex formation, protein recruitment, and partner enzyme functions. Taken together with previous studies, our recent work elucidates that a group of modification and scaffold proteins form several complexes to aid replication progression and are particularly important for synthesizing large replicons. Additionally, our work reveals that the intrinsic plasticity of the replication initiation program can be used to compensate for deficient replication progression. (1).
Collapse
Affiliation(s)
- Lisa Hang
- a Molecular Biology Program, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | - Xiaolan Zhao
- a Molecular Biology Program, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
25
|
The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress. PLoS Genet 2016; 12:e1005843. [PMID: 26849847 PMCID: PMC4743919 DOI: 10.1371/journal.pgen.1005843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δmms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. Post-translational protein modifications, such as ubiquitylation, are essential for cells to respond to environmental cues. In order to understand how eukaryotes cope with DNA damage, we have investigated a conserved E3 ubiquitin ligase complex required for the resistance to carcinogenic chemicals. This complex, composed of Rtt101, Mms1 and Mms22 in budding yeast, plays a critical role in regulating the fate of stalled DNA replication. Here, we found that the Rtt101Mms22 E3 ubiquitin ligase complex interacts with the replisome during S-phase, and orchestrates the repair/restart of DNA synthesis after stalling by activating a Rad52-dependent homologous recombination pathway. Our findings indicate that Rtt101Mms22 specifically counteracts the replicative activity of Mrc1, a subunit of the fork protection complex, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) helicase complex upon fork stalling. Altogether, our study unravels a functional protein cluster that is essential to understand how eukaryotic cells cope with DNA damage during replication and, thus deepens our knowledge of the biology that underlies carcinogenesis.
Collapse
|
26
|
Simoneau A, Ricard É, Weber S, Hammond-Martel I, Wong LH, Sellam A, Giaever G, Nislow C, Raymond M, Wurtele H. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress. Nucleic Acids Res 2016; 44:2706-26. [PMID: 26748095 PMCID: PMC4824096 DOI: 10.1093/nar/gkv1537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/24/2015] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1-4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δmutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins.
Collapse
Affiliation(s)
- Antoine Simoneau
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Molecular biology program, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Étienne Ricard
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Molecular biology program, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Sandra Weber
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada
| | - Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Molecular biology program, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Adnane Sellam
- Infectious Diseases Research Centre-CRI, CHU de Québec Research Center (CHUQ), Université Laval, Québec, G1V 4G2, Canada Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Québec, G1V 0A6, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Martine Raymond
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, H3C 3J7, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Department of Medicine, Université de Montréal, Montreal, H3T 1J4, Canada
| |
Collapse
|
27
|
Linking replication stress with heterochromatin formation. Chromosoma 2015; 125:523-33. [PMID: 26511280 PMCID: PMC4901112 DOI: 10.1007/s00412-015-0545-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
The eukaryotic genome can be roughly divided into euchromatin and heterochromatin domains that are structurally and functionally distinct. Heterochromatin is characterized by its high compaction that impedes DNA transactions such as gene transcription, replication, or recombination. Beyond its role in regulating DNA accessibility, heterochromatin plays essential roles in nuclear architecture, chromosome segregation, and genome stability. The formation of heterochromatin involves special histone modifications and the recruitment and spreading of silencing complexes that impact the higher-order structures of chromatin; however, its molecular nature varies between different chromosomal regions and between species. Although heterochromatin has been extensively characterized, its formation and maintenance throughout the cell cycle are not yet fully understood. The biggest challenge for the faithful transmission of chromatin domains is the destabilization of chromatin structures followed by their reassembly on a novel DNA template during genomic replication. This destabilizing event also provides a window of opportunity for the de novo establishment of heterochromatin. In recent years, it has become clear that different types of obstacles such as tight protein-DNA complexes, highly transcribed genes, and secondary DNA structures could impede the normal progression of the replisome and thus have the potential to endanger the integrity of the genome. Multiple studies carried out in different model organisms have demonstrated the capacity of such replisome impediments to favor the formation of heterochromatin. Our review summarizes these reports and discusses the potential role of replication stress in the formation and maintenance of heterochromatin and the role that silencing proteins could play at sites where the integrity of the genome is compromised.
Collapse
|
28
|
Hang LE, Peng J, Tan W, Szakal B, Menolfi D, Sheng Z, Lobachev K, Branzei D, Feng W, Zhao X. Rtt107 Is a Multi-functional Scaffold Supporting Replication Progression with Partner SUMO and Ubiquitin Ligases. Mol Cell 2015; 60:268-79. [PMID: 26439300 DOI: 10.1016/j.molcel.2015.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/15/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
Elucidating the individual and collaborative functions of genome maintenance factors is critical for understanding how genome duplication is achieved. Here, we investigate a conserved scaffold in budding yeast, Rtt107, and its three partners: a SUMO E3 complex, a ubiquitin E3 complex, and Slx4. Biochemical and genetic findings show that Rtt107 interacts separately with these partners and contributes to their individual functions, including a role in replisome sumoylation. We also provide evidence that Rtt107 associates with replisome components, and both itself and its associated E3s are important for replicating regions far from initiation sites. Corroborating these results, replication defects due to Rtt107 loss and genotoxic sensitivities in mutants of Rtt107 and its associated E3s are rescued by increasing replication initiation events through mutating two master repressors of late origins, Mrc1 and Mec1. These findings suggest that Rtt107 functions as a multi-functional platform to support replication progression with its partner E3 enzymes.
Collapse
Affiliation(s)
- Lisa E Hang
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jie Peng
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Wei Tan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Barnabas Szakal
- IFOM, The FIRC (Fondazione Italiana per la Ricerca sul Cancro) of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Demis Menolfi
- IFOM, The FIRC (Fondazione Italiana per la Ricerca sul Cancro) of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirill Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Dana Branzei
- IFOM, The FIRC (Fondazione Italiana per la Ricerca sul Cancro) of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Wenyi Feng
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
29
|
Abstract
Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.
Collapse
|
30
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|
31
|
Kirkland JG, Peterson MR, Still CD, Brueggeman L, Dhillon N, Kamakaka RT. Heterochromatin formation via recruitment of DNA repair proteins. Mol Biol Cell 2015; 26:1395-410. [PMID: 25631822 PMCID: PMC4454184 DOI: 10.1091/mbc.e14-09-1413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Double-strand-break repair proteins interact with and recruit Sir proteins to ectopic sites in the genome. Recruitment results in gene silencing, which depends on Sir proteins, as well as on histone H2A modification. Silencing also results in the localization of the locus to the nuclear periphery. Heterochromatin formation and nuclear organization are important in gene regulation and genome fidelity. Proteins involved in gene silencing localize to sites of damage and some DNA repair proteins localize to heterochromatin, but the biological importance of these correlations remains unclear. In this study, we examined the role of double-strand-break repair proteins in gene silencing and nuclear organization. We find that the ATM kinase Tel1 and the proteins Mre11 and Esc2 can silence a reporter gene dependent on the Sir, as well as on other repair proteins. Furthermore, these proteins aid in the localization of silenced domains to specific compartments in the nucleus. We identify two distinct mechanisms for repair protein–mediated silencing—via direct and indirect interactions with Sir proteins, as well as by tethering loci to the nuclear periphery. This study reveals previously unknown interactions between repair proteins and silencing proteins and suggests insights into the mechanism underlying genome integrity.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Misty R Peterson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christopher D Still
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Leo Brueggeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Namrita Dhillon
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
32
|
Sakata T, Fujii K, Ohno M, Kitabatake M. Crt10 directs the cullin-E3 ligase Rtt101 to nonfunctional 25S rRNA decay. Biochem Biophys Res Commun 2014; 457:90-4. [PMID: 25534857 DOI: 10.1016/j.bbrc.2014.12.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 01/04/2023]
Abstract
Nonfunctional mutant ribosomal RNAs in 40S or 60S subunits are selectively degraded in eukaryotic cells (nonfunctional rRNA decay, NRD). We previously reported that NRD of 25S rRNA required cullin-E3 ligase Rtt101 and its associating factor Mms1, both of which are involved in DNA repair. Although Mms22, an accessory component of the E3 complex, was suggested to direct the E3 complex to DNA repair, the factor that directs the complex to 25S NRD currently remains unknown. We herein demonstrated that another accessory component, Crt10 was required for 25S NRD, but not for DNA repair, suggesting that this accessory component specifies the function of the E3 complex differently. We also identified two distinct Crt10-containing E3 complexes, one of which contained the Paf1 complex, a Pol-II binding complex that modulates the transcription of stress-related genes. Our results showed the convergence of multiple pathways for stresses that harm nucleic acids and provided a molecular framework for the substrate diversity of the E3 complex.
Collapse
Affiliation(s)
- Tomoko Sakata
- Institute for Virus Research, Kyoto University, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kotaro Fujii
- Institute for Virus Research, Kyoto University, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Makoto Kitabatake
- Institute for Virus Research, Kyoto University, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
33
|
Amar D, Shamir R. Constructing module maps for integrated analysis of heterogeneous biological networks. Nucleic Acids Res 2014; 42:4208-19. [PMID: 24497192 PMCID: PMC3985673 DOI: 10.1093/nar/gku102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Improved methods for integrated analysis of heterogeneous large-scale omic data are direly needed. Here, we take a network-based approach to this challenge. Given two networks, representing different types of gene interactions, we construct a map of linked modules, where modules are genes strongly connected in the first network and links represent strong inter-module connections in the second. We develop novel algorithms that considerably outperform prior art on simulated and real data from three distinct domains. First, by analyzing protein-protein interactions and negative genetic interactions in yeast, we discover epistatic relations among protein complexes. Second, we analyze protein-protein interactions and DNA damage-specific positive genetic interactions in yeast and reveal functional rewiring among protein complexes, suggesting novel mechanisms of DNA damage response. Finally, using transcriptomes of non-small-cell lung cancer patients, we analyze networks of global co-expression and disease-dependent differential co-expression and identify a sharp drop in correlation between two modules of immune activation processes, with possible microRNA control. Our study demonstrates that module maps are a powerful tool for deeper analysis of heterogeneous high-throughput omic data.
Collapse
Affiliation(s)
- David Amar
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
34
|
Han J, Zhang H, Zhang H, Wang Z, Zhou H, Zhang Z. A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 2014; 155:817-29. [PMID: 24209620 DOI: 10.1016/j.cell.2013.10.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 05/12/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Nucleosome assembly following DNA replication and gene transcription is important to maintain genome stability and epigenetic information. Newly synthesized histones H3-H4 first bind histone chaperone Asf1 and are then transferred to other chaperones for nucleosome assembly. However, it is unknown how H3-H4 is transferred from the Asf1-H3-H4 complex to other chaperones because Asf1 binds H3-H4 with high affinity. Here, we show that yeast Rtt101(Mms1) E3 ubiquitin ligase preferentially binds and ubiquitylates new histone H3 acetylated at lysine 56. Inactivation of Rtt101 or mutating H3 lysine residues ubiquitylated by the Rtt101(Mms1) ligase impairs nucleosome assembly and promotes Asf1-H3 interactions. Similar phenotypes occur in human cells in which the ortholog of Rtt101(Mms1), Cul4A(DDB1), is depleted. These results indicate that the transfer of H3-H4 from the Asf1-H3-H4 complex to other histone chaperones is regulated by a conserved E3 ligase and provide evidence for crosstalk between histone acetylation and ubiquitylation in nucleosome assembly.
Collapse
Affiliation(s)
- Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
35
|
Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol 2013; 3:46. [PMID: 23471416 PMCID: PMC3590461 DOI: 10.3389/fonc.2013.00046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/21/2013] [Indexed: 11/13/2022] Open
Abstract
The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions.
Collapse
Affiliation(s)
- Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
36
|
Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3-GENES GENOMES GENETICS 2013; 3:273-82. [PMID: 23390603 PMCID: PMC3564987 DOI: 10.1534/g3.112.004754] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/09/2012] [Indexed: 12/15/2022]
Abstract
The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled effectively in simpler eukaryotes such as Saccharomyces cerevisiae. Here we analyze and extend genetic networks of CIN cancer gene orthologs in yeast, focusing on essential genes. This identifies hub genes and processes that are candidate targets for synthetic lethal killing of cancer cells with defined somatic mutations. One hub process in these networks is DNA replication. A nonessential, fork-associated scaffold, CTF4, is among the most highly connected genes. As Ctf4 lacks enzymatic activity, potentially limiting its development as a therapeutic target, we exploited its function as a physical interaction hub to rationally predict synthetic lethal interactions between essential Ctf4-binding proteins and CIN cancer gene orthologs. We then validated a subset of predicted genetic interactions in a human colorectal cancer cell line, showing that siRNA-mediated knockdown of MRE11A sensitizes cells to depletion of various replication fork-associated proteins. Overall, this work describes methods to identify, predict, and validate in cancer cells candidate therapeutic targets for tumors with known somatic mutations in CIN genes using data from yeast. We affirm not only replication stress but also the targeting of DNA replication fork proteins themselves as potential targets for anticancer therapeutic development.
Collapse
|
37
|
Yong CH, Liu G, Chua HN, Wong L. Supervised maximum-likelihood weighting of composite protein networks for complex prediction. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 2:S13. [PMID: 23281936 PMCID: PMC3521185 DOI: 10.1186/1752-0509-6-s2-s13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI) data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. RESULTS We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. CONCLUSIONS Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to discover novel complexes. We show improved performance over previous approaches in terms of precision, recall, and number and quality of novel predictions. We present and visualize two novel predicted complexes in yeast and human, and find external evidence supporting these predictions.
Collapse
Affiliation(s)
- Chern Han Yong
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Guimei Liu
- School of Computing, National University of Singapore, Singapore
| | | | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore
| |
Collapse
|
38
|
Burgess RJ, Zhou H, Han J, Li Q, Zhang Z. The SCFDia2 ubiquitin E3 ligase ubiquitylates Sir4 and functions in transcriptional silencing. PLoS Genet 2012; 8:e1002846. [PMID: 22844255 PMCID: PMC3405993 DOI: 10.1371/journal.pgen.1002846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/05/2012] [Indexed: 11/24/2022] Open
Abstract
In budding yeast, transcriptional silencing, which is important to regulate gene expression and maintain genome integrity, requires silent information regulator (Sir) proteins. In addition, Rtt106, a histone chaperone involved in nucleosome assembly, functions in transcriptional silencing. However, how transcriptional silencing is regulated during mitotic cell division is not well understood. We show that cells lacking Dia2, a component of the SCFDia2 E3 ubiquitin ligase involved in DNA replication, display defects in silencing at the telomere and HMR locus and that the F-box and C-terminal regions of Dia2, two regions important for Dia2's ubiquitylation activity, are required for proper transcriptional silencing at these loci. In addition, we show that Sir proteins are mislocalized in dia2Δ mutant cells. Mutations in Dia2 and Rtt106 result in a synergistic loss of silencing at the HMR locus and significant elevation of Sir4 proteins at the HMR locus, suggesting that silencing defects in dia2Δ mutant cells are due, at least in part, to the altered levels of Sir4 at silent chromatin. Supporting this idea, we show that SCFDia2 ubiquitylates Sir4 in vitro and in vivo. Furthermore, Sir4 binding to silent chromatin is dynamically regulated during the cell cycle, and this regulation is lost in dia2Δ mutant cells. These results demonstrate that the SCFDia2 complex is involved in transcriptional silencing, ubiquitylates Sir4, and regulates transcriptional silencing during the cell cycle. Heterochromatin is important for the maintenance of genome stability and regulation of gene expression. Heterochromatin protein 1 (HP1), a protein that binds to histone H3 methylated at lysine 9 (H3K9me3) at heterochromatin loci in mammalian cells, is dynamically regulated during the cell cycle by phosphorylation of histone H3 serine 10 (H3S10ph). Compared to mammalian cells, transcriptional silencing at budding yeast silent chromatin requires silent information regulator (Sir) proteins, and H3K9me3 and H3S10ph are not present in budding yeast. Therefore, it is not known whether and how silent chromatin in budding yeast is regulated during the cell cycle. Here, we show that the SCFDia2 ubiquitin E3 ligase complex regulates transcriptional silencing. We show that SCFDia2 ubiquitylates Sir4, a structural component of yeast silent chromatin, and that Sir4 levels decrease during the cell cycle in a Dia2-dependent manner. Concomitant with the reduction of Sir4 at telomeric silent chromatin during the cell cycle, the expression of a telomere-linked gene increases. Therefore, we propose that transcriptional silencing at budding yeast silent chromatin is regulated during the cell cycle, in part by SCFDia2-mediated Sir4 ubiquitylation on chromatin.
Collapse
Affiliation(s)
- Rebecca J. Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Qing Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
39
|
Braun S, Madhani HD. Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep 2012; 13:619-30. [PMID: 22688965 DOI: 10.1038/embor.2012.78] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022] Open
Abstract
The organization of eukaryotic chromosomes into transcriptionally active euchromatin and repressed heterochromatin requires mechanisms that establish, maintain and distinguish these canonical chromatin domains. Post-translational modifications are fundamental in these processes. Monoubiquitylation of histones was discovered more than three decades ago, but its precise function has been enigmatic until recently. It is now appreciated that the spectrum of chromatin ubiquitylation is not restricted to monoubiquitylation of histones, but includes degradatory ubiquitylation of histones, histone-modifying enzymes and non-histone chromatin factors. These occur in a spatially and temporally controlled manner. In this review, we summarize our understanding of these mechanisms with a particular emphasis on how ubiquitylation shapes the physical landscape of chromatin.
Collapse
Affiliation(s)
- Sigurd Braun
- Department of Biochemistry & Biophysics, University of California, 600 16th Street, San Francisco, California 94158 2200, USA.
| | | |
Collapse
|
40
|
Vaisica JA, Baryshnikova A, Costanzo M, Boone C, Brown GW. Mms1 and Mms22 stabilize the replisome during replication stress. Mol Biol Cell 2011; 22:2396-408. [PMID: 21593207 PMCID: PMC3128540 DOI: 10.1091/mbc.e10-10-0848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A mechanism is shown by which Mms1 and Mms22 promote DNA replication in the presence of replication stress: they stabilize the replisome at stalled replication forks. Mms1 and Mms22 form a Cul4Ddb1-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101Mms1/Mms22 ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to properly regulate DNA replication fork progression when replication stress is present and are defective in recovery from replication fork stress. Consistent with a role in promoting DNA replication, we find that Mms1 is enriched at sites where replication forks have stalled and that this localization requires the known binding partners of Mms1—Rtt101 and Mms22. Mms1 and Mms22 stabilize the replisome during replication stress, as binding of the fork-pausing complex components Mrc1 and Csm3, and DNA polymerase ε, at stalled replication forks is decreased in mms1Δ and mms22Δ. Taken together, these data indicate that Mms1 and Mms22 are important for maintaining the integrity of the replisome when DNA replication forks are slowed by hydroxyurea and thereby promote efficient recovery from replication stress.
Collapse
Affiliation(s)
- Jessica A Vaisica
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
41
|
Piwko W, Olma MH, Held M, Bianco JN, Pedrioli PGA, Hofmann K, Pasero P, Gerlich DW, Peter M. RNAi-based screening identifies the Mms22L-Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO J 2010; 29:4210-22. [PMID: 21113133 DOI: 10.1038/emboj.2010.304] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/05/2010] [Indexed: 01/08/2023] Open
Abstract
Cullin 4 (Cul4)-based ubiquitin ligases emerged as critical regulators of DNA replication and repair. Over 50 Cul4-specific adaptors (DNA damage-binding 1 (Ddb1)-Cul4-associated factors; DCAFs) have been identified and are thought to assemble functionally distinct Cul4 complexes. Using a live-cell imaging-based RNAi screen, we analysed the function of DCAFs and Cul4-linked proteins, and identified specific subsets required for progression through G1 and S phase. We discovered C6orf167/Mms22-like protein (Mms22L) as a putative human orthologue of budding yeast Mms22, which, together with cullin Rtt101, regulates genome stability by promoting DNA replication through natural pause sites and damaged templates. Loss of Mms22L function in human cells results in S phase-dependent genomic instability characterised by spontaneous double-strand breaks and DNA damage checkpoint activation. Unlike yeast Mms22, human Mms22L does not stably bind to Cul4, but is degraded in a Cul4-dependent manner and upon replication stress. Mms22L physically and functionally interacts with the scaffold-like protein Nfkbil2 that co-purifies with histones, several chromatin remodelling and DNA replication/repair factors. Together, our results strongly suggest that the Mms22L-Nfkbil2 complex contributes to genome stability by regulating the chromatin state at stalled replication forks.
Collapse
Affiliation(s)
- Wojciech Piwko
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
O'Donnell L, Panier S, Wildenhain J, Tkach JM, Al-Hakim A, Landry MC, Escribano-Diaz C, Szilard RK, Young JTF, Munro M, Canny MD, Kolas NK, Zhang W, Harding SM, Ylanko J, Mendez M, Mullin M, Sun T, Habermann B, Datti A, Bristow RG, Gingras AC, Tyers MD, Brown GW, Durocher D. The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination. Mol Cell 2010; 40:619-31. [PMID: 21055983 DOI: 10.1016/j.molcel.2010.10.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/30/2010] [Accepted: 10/19/2010] [Indexed: 01/07/2023]
Abstract
Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.
Collapse
Affiliation(s)
- Lara O'Donnell
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|