1
|
Zondervan RL, Capobianco CA, Jenkins DC, Reicha JD, Fredrick L, Lam C, Schmanski JT, Isenberg JS, Ahn J, Marcucio RS, Hankenson KD. CD47 is required for mesenchymal progenitor proliferation and fracture repair. Bone Res 2025; 13:29. [PMID: 40025005 PMCID: PMC11873311 DOI: 10.1038/s41413-025-00409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025] Open
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone formation as assessed by microcomputed tomography 10 days post-fracture and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus size due to a reduction in bone relative to WT 15 days-post fracture. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell density. Finally, WT mice with ischemic fracture that were administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
Affiliation(s)
- Robert L Zondervan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christina A Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel C Jenkins
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - John D Reicha
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Livia Fredrick
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Charles Lam
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Jeanna T Schmanski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jeffery S Isenberg
- Department of Diabetes Complications and Metabolism and Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jaimo Ahn
- Department of Orthopaedics, Grady Memorial Hospital and Emory School of Medicine, Atlanta, GA, USA
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Hankenson K, Zondervan R, Capobianco C, Jenkins D, Reicha J, Frederick L, Lam C, Isenberg J, Ahn J, Marcucio RS. CD47 is Required for Mesenchymal Progenitor Proliferation and Fracture Repair. RESEARCH SQUARE 2024:rs.3.rs-4022423. [PMID: 38562718 PMCID: PMC10984034 DOI: 10.21203/rs.3.rs-4022423/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our In vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
|
3
|
Zondervan RL, Capobianco CA, Jenkins DC, Reicha JD, Fredrick LM, Lam C, Isenberg JS, Ahn J, Marcucio RS, Hankenson KD. CD47 is Required for Mesenchymal Progenitor Proliferation and Fracture Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583756. [PMID: 38496546 PMCID: PMC10942414 DOI: 10.1101/2024.03.06.583756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
Affiliation(s)
- Robert L. Zondervan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States, 48824
| | - Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor Michigan, United States, 48109
| | - Daniel C. Jenkins
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - John D. Reicha
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Livia M. Fredrick
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Charles Lam
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States, 94142
| | - Jeffery S. Isenberg
- Department of Diabetes Complications and Metabolism and Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States, 91010
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States, 94142
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| |
Collapse
|
4
|
Pauli TM, Julius A, Costa F, Eschrig S, Moosmüller J, Fischer L, Schanzenbach C, Schmidt FC, Ortner M, Langosch D. Interaction of Substrates with γ-Secretase at the Level of Individual Transmembrane Helices-A Methodological Approach. Int J Mol Sci 2023; 24:14396. [PMID: 37762696 PMCID: PMC10531681 DOI: 10.3390/ijms241814396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Intramembrane proteases, such as γ secretase, typically recruit multiple substrates from an excess of single-span membrane proteins. It is currently unclear to which extent substrate recognition depends on specific interactions of their transmembrane domains (TMDs) with TMDs of a protease. Here, we investigated a large number of potential pairwise interactions between TMDs of γ secretase and a diverse set of its substrates using two different configurations of BLaTM, a genetic reporter system. Our results reveal significant interactions between TMD2 of presenilin, the enzymatic subunit of γ secretase, and the TMD of the amyloid precursor protein, as well as of several other substrates. Presenilin TMD2 is a prime candidate for substrate recruitment, as has been shown from previous studies. In addition, the amyloid precursor protein TMD enters interactions with presenilin TMD 4 as well as with the TMD of nicastrin. Interestingly, the Gly-rich interfaces between the amyloid precursor protein TMD and presenilin TMDs 2 and 4 are highly similar to its homodimerization interface. In terms of methodology, the economics of the newly developed library-based method could prove to be a useful feature in related future work for identifying heterotypic TMD-TMD interactions within other biological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Martin Ortner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; (T.M.P.); (A.J.); (F.C.); (S.E.); (J.M.); (L.F.); (C.S.); (F.C.S.)
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; (T.M.P.); (A.J.); (F.C.); (S.E.); (J.M.); (L.F.); (C.S.); (F.C.S.)
| |
Collapse
|
5
|
Schmidt FC, Fitz K, Feilen LP, Okochi M, Steiner H, Langosch D. Different transmembrane domains determine the specificity and efficiency of the cleavage activity of the γ-secretase subunit presenilin. J Biol Chem 2023; 299:104626. [PMID: 36944398 PMCID: PMC10164903 DOI: 10.1016/j.jbc.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023] Open
Abstract
The γ-secretase complex catalyzes the intramembrane cleavage of C99, a carboxy-terminal fragment of the amyloid precursor protein. Two paralogs of its catalytic subunit presenilin (PS1 and PS2) are expressed which are autocatalytically cleaved into an N-terminal and a C-terminal fragment during maturation of γ-secretase. In this study, we compared the efficiency and specificity of C99 cleavage by PS1- and PS2-containing γ-secretases. Mass spectrometric analysis of cleavage products obtained in cell-free and cell-based assays revealed that the previously described lower amyloid-β (Aβ)38 generation by PS2 is accompanied by a reciprocal increase in Aβ37 production. We further found PS1 and PS2 to show different preferences in the choice of the initial cleavage site of C99. However, the differences in Aβ38 and Aβ37 generation appear to mainly result from altered subsequent stepwise cleavage of Aβ peptides. Apart from these differences in cleavage specificity, we confirmed a lower efficiency of initial C99 cleavage by PS2 using a detergent-solubilized γ-secretase system. By investigating chimeric PS1/2 molecules, we show that the membrane-embedded, nonconserved residues of the N-terminal fragment mainly account for the differential cleavage efficiency and specificity of both presenilins. At the level of individual transmembrane domains (TMDs), TMD3 was identified as a major modulator of initial cleavage site specificity. The efficiency of endoproteolysis strongly depends on nonconserved TMD6 residues at the interface to TMD2, i.e., at a putative gate of substrate entry. Taken together, our results highlight the role of individual presenilin TMDs in the cleavage of C99 and the generation of Aβ peptides.
Collapse
Affiliation(s)
- Fabian C Schmidt
- Biopolymer Chemistry, Technical University of Munich, Freising, Germany
| | - Katja Fitz
- Biopolymer Chemistry, Technical University of Munich, Freising, Germany
| | - Lukas P Feilen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Masayasu Okochi
- Neuropsychiatry, Division of Internal Medicine, Department of Integrated Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University, Munich, Germany
| | - Dieter Langosch
- Biopolymer Chemistry, Technical University of Munich, Freising, Germany.
| |
Collapse
|
6
|
Guzmán-Ocampo DC, Aguayo-Ortiz R, Velasco-Bolom JL, Gupta PL, Roitberg AE, Dominguez L. Elucidating the Protonation State of the γ-Secretase Catalytic Dyad. ACS Chem Neurosci 2023; 14:261-269. [PMID: 36562727 DOI: 10.1021/acschemneuro.2c00563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
γ-Secretase (GS) is an intramembrane aspartyl protease that participates in the sequential cleavage of C99 to generate different isoforms of the amyloid-β (Aβ) peptides that are associated with the development of Alzheimer's disease. Due to its importance in the proteolytic processing of C99 by GS, we performed pH replica exchange molecular dynamics (pH-REMD) simulations of GS in its apo and substrate-bound forms to sample the protonation states of the catalytic dyad. We found that the catalytic dyad is deprotonated at physiological pH in our apo form, but the presence of the substrate at the active site displaces its monoprotonated state toward physiological pH. Our results show that Asp257 acts as the general base and Asp385 as the general acid during the cleavage mechanism. We identified different amino acids such as Lys265, Arg269, and the PAL motif interacting with the catalytic dyad and promoting changes in its acid-base behavior. Finally, we also found a significant pKa shift of Glu280 related to the internalization of TM6-CT in the GS-apo form. Our study provides critical mechanistic insight into the GS mechanism and the basis for future research on the genesis of Aβ peptides and the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Dulce C Guzmán-Ocampo
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - José-Luis Velasco-Bolom
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| |
Collapse
|
7
|
Nierzwicki Ł, Olewniczak M, Chodnicki P, Czub J. Role of cholesterol in substrate recognition by [Formula: see text]-secretase. Sci Rep 2021; 11:15213. [PMID: 34312439 PMCID: PMC8313713 DOI: 10.1038/s41598-021-94618-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
[Formula: see text]-Secretase is an enzyme known to cleave multiple substrates within their transmembrane domains, with the amyloid precursor protein of Alzheimer's Disease among the most prominent examples. The activity of [Formula: see text]-secretase strictly depends on the membrane cholesterol content, yet the mechanistic role of cholesterol in the substrate binding and cleavage remains unclear. In this work, we used all-atom molecular dynamics simulations to examine the role of cholesterol in the initial binding of a direct precursor of [Formula: see text]-amyloid polypeptides by [Formula: see text]-secretase. We showed that in cholesterol-rich membranes, both the substrate and the enzyme region proximal to the active site induce a local membrane thinning. With the free energy methods we found that in the presence of cholesterol the substrate binds favorably to the identified exosite, while cholesterol depletion completely abolishes the binding. To explain these findings, we directly examined the role of hydrophobic mismatch in the substrate binding to [Formula: see text]-secretase, showing that increased membrane thickness results in higher propensity of the enzyme to bind substrates. Therefore, we propose that cholesterol promotes substrate binding to [Formula: see text]-secretase by increasing the membrane thickness, which leads to the negative hydrophobic mismatch between the membrane and binding partners.
Collapse
Affiliation(s)
- Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| | - Michał Olewniczak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| | - Paweł Chodnicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| |
Collapse
|
8
|
Evolutionary History of Alzheimer Disease-Causing Protein Family Presenilins with Pathological Implications. J Mol Evol 2020; 88:674-688. [DOI: 10.1007/s00239-020-09966-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
|
9
|
Substrate recruitment by γ-secretase. Semin Cell Dev Biol 2020; 105:54-63. [DOI: 10.1016/j.semcdb.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
|
10
|
Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of Notch- and C83 binding to γ-secretase in a complete membrane model at physiological temperature. RSC Adv 2020; 10:31215-31232. [PMID: 35520661 PMCID: PMC9056423 DOI: 10.1039/d0ra04683c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/15/2020] [Indexed: 12/29/2022] Open
Abstract
γ-Secretase cleaves the C99 fragment of the amyloid precursor protein, leading to formation of aggregated β-amyloid peptide central to Alzheimer's disease, and Notch, essential for cell regulation. Recent cryogenic electron microscopy (cryo-EM) structures indicate major changes upon substrate binding, a β-sheet recognition motif, and a possible helix unwinding to expose peptide bonds towards nucleophilic attack. Here we report side-by-side comparison of the 303 K dynamics of the two proteins in realistic membranes using molecular dynamics simulations. Our ensembles agree with the cryo-EM data (full-protein Cα-RMSD = 1.62–2.19 Å) but reveal distinct presenilin helix conformation states and thermal β-strand to coil transitions of C83 and Notch100. We identify distinct 303 K hydrogen bond dynamics and water accessibility of the catalytic sites. The RKRR motif (1758–1761) contributes significantly to Notch binding and serves as a “membrane anchor” that prevents Notch displacement. Water that transiently hydrogen bonds to G1753 and V1754 probably represents the catalytic nucleophile. At 303 K, Notch and C83 binding induce different conformation states, with Notch mostly present in a closed state with shorter Asp–Asp distance. This may explain the different outcome of Notch and C99 cleavage, as the latter is more imprecise with many products. Our identified conformation states may aid efforts to develop conformation-selective drugs that target C99 and Notch cleavage differently, e.g. Notch-sparing γ-secretase modulators. Distinct membrane dynamics and conformations of C83- and Notch-bound γ-secretase may aid the development of Notch-sparing treatments of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409.,Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Rukmankesh Mehra
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| |
Collapse
|
11
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Zhang S, Cai F, Wu Y, Bozorgmehr T, Wang Z, Zhang S, Huang D, Guo J, Shen L, Rankin C, Tang B, Song W. A presenilin-1 mutation causes Alzheimer disease without affecting Notch signaling. Mol Psychiatry 2020; 25:603-613. [PMID: 29915376 DOI: 10.1038/s41380-018-0101-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/19/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023]
Abstract
Presenilin-1 (PSEN1) is the catalytic subunit of the γ-secretase complex, and pathogenic mutations in the PSEN1 gene account for the majority cases of familial AD (FAD). FAD-associated mutant PSEN1 proteins have been shown to affect APP processing and Aβ generation and inhibit Notch1 cleavage and Notch signaling. In this report, we found that a PSEN1 mutation (S169del) altered APP processing and Aβ generation, and promoted neuritic plaque formation as well as learning and memory deficits in AD model mice. However, this mutation did not affect Notch1 cleavage and Notch signaling in vitro and in vivo. Taken together, we demonstrated that PSEN1S169del has distinct effects on APP processing and Notch1 cleavage, suggesting that Notch signaling may not be critical for AD pathogenesis and serine169 could be a critical site as a potential target for the development of novel γ-secretase modulators without affecting Notch1 cleavage to treat AD.
Collapse
Affiliation(s)
- Shuting Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yili Wu
- Department of Psychiatry, Graduate Program in Psychiatry, Jining Medical University, Jining, China
| | - Tahereh Bozorgmehr
- Department of Psychology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Si Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daochao Huang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Jifeng Guo
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Catharine Rankin
- Department of Psychology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Beisha Tang
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Cai T, Morishima K, Takagi-Niidome S, Tominaga A, Tomita T. Conformational Dynamics of Transmembrane Domain 3 of Presenilin 1 Is Associated with the Trimming Activity of γ-Secretase. J Neurosci 2019; 39:8600-8610. [PMID: 31527118 PMCID: PMC6807281 DOI: 10.1523/jneurosci.0838-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates the toxic species of the amyloid-β peptide (Aβ) that is responsible for the pathology of Alzheimer disease. The catalytic subunit of γ-secretase is presenilin 1 (PS1), which is a polytopic membrane protein with a hydrophilic catalytic pore. The length of the C terminus of Aβ is proteolytically determined by its processive trimming by γ-secretase, although the precise mechanism still remains largely unknown. Here, we identified that transmembrane domain (TMD) 3 of human PS1 is involved in the formation of the intramembranous hydrophilic pore. Notably, the water accessibility of TMD3 was greatly altered by point mutations and compounds, which modify γ-secretase activity. The changes in the water accessibility of TMD3 was also correlated with Aβ42 production. Moreover, crosslinking between TMD3 and TMD7 resulted in a loss of sensitivity to a γ-secretase modulator that reduces Aβ42 production. Therefore, our findings indicate that the conformational dynamics of TMD3 is a prerequisite for regulation of the Aβ trimming activity of γ-secretase.SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce the level of toxic amyloid-β species is thought to be a therapeutic strategy for Alzheimer disease. However, the detailed mechanism of the regulation of amyloid-β production, as well as the structure-and-activity relationship of γ-secretase remains unclear. Here we identified that the water accessibility around transmembrane domain 3 in presenilin 1 was increased along with a reduction in toxic amyloid-β production. Our findings demonstrate how the structure of presenilin 1 dynamically changes during amyloid-β production, and provides insights toward the development of treatments against Alzheimer disease.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Kanan Morishima
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shizuka Takagi-Niidome
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Aya Tominaga
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
14
|
Dehury B, Tang N, Kepp KP. Insights into membrane-bound presenilin 2 from all-atom molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:3196-3210. [PMID: 31405326 DOI: 10.1080/07391102.2019.1655481] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Presenilins 1 and 2 (PS1 or PS2) are main genetic risk factors of familial Alzheimer's disease (AD) that produce the β-amyloid (Aβ) peptides and also have important stand-alone functions related to, e.g. calcium signaling. Most work so far has focused on PS1, but humans carry both PS1 and PS2, and mutations in both cause AD. Here, we develop a computational model of PS2 in the membrane to address the question how pathogenic PS2 mutations affect the membrane-embedded protein. The models are based on cryo-electron microscopy structures of PS1 translated to PS2, augmented with missing residues and a complete all-atom membrane-water system, and equilibrated using three independent 500-ns simulations of molecular dynamics with a structure-balanced force field. We show that the nine-transmembrane channel structure is substantially controlled by major dynamics in the hydrophilic loop bridging TM6 and TM7, which functions as a 'plug' in the PS2 membrane channel. TM2, TM6, TM7 and TM9 flexibility controls the size of this channel. We find that most pathogenic PS2 mutations significantly reduce stability relative to random mutations, using a statistical ANOVA test with all possible mutations in the affected sites as a control. The associated loss of compactness may also impair calcium affinity. Remarkably, similar properties of the open state are known to impair the binding of substrates to γ-secretase, and we thus argue that the two mechanisms could be functionally related.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ning Tang
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Molecular dynamics of C99-bound γ-secretase reveal two binding modes with distinct compactness, stability, and active-site retention: implications for Aβ production. Biochem J 2019; 476:1173-1189. [PMID: 30910800 DOI: 10.1042/bcj20190023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
The membrane protease γ-secretase cleaves the C99 fragment of the amyloid precursor protein, thus producing the Aβ peptides central to Alzheimer's disease. Cryo-electron microscopy has provided the topology but misses the membrane and loop parts that contribute to substrate binding. We report here an essentially complete atomic model of C99 within wild-type γ-secretase that respects all the experimental constraints and additionally describes loop, helix, and C99 substrate dynamics in a realistic all-atom membrane. Our model represents the matured auto-cleaved state required for catalysis. From two independent 500-ns molecular dynamic simulations, we identify two conformation states of C99 in equilibrium, a compact and a loose state. Our simulations provide a basis for C99 processing and Aβ formation and explain the production of longer and shorter Aβ, as the compact state retains C99 for longer and thus probably trims to shorter Aβ peptides. We expect pathogenic presenilin mutations to stabilize the loose over the compact state. The simulations detail the role of the Lys53-Lys54-Lys55 anchor for C99 binding, a loss of helicity of bound C99, and positioning of Thr48 and Leu49 leading to alternative trimming pathways on opposite sides of the C99 helix in three amino acid steps. The C99 binding topology resembles that of C83-bound γ-secretase without membrane but lacks a presenilin 1-C99 β-sheet, which could be induced by C83's stronger binding. The loose state should be selectively disfavored by γ-secretase modulators to increase C99 trimming and reduce the formation of longer Aβ, a strategy that is currently much explored but has lacked a structural basis.
Collapse
|
16
|
Aguayo‐Ortiz R, Guzmán‐Ocampo DC, Dominguez L. Toward the Characterization of DAPT Interactions with γ‐Secretase. ChemMedChem 2019; 14:1005-1010. [DOI: 10.1002/cmdc.201900106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Rodrigo Aguayo‐Ortiz
- Facultad de QuímicaDepartamento de FisicoquímicaUniversidad Nacional Autónoma de México Mexico City 04510 Mexico
| | - Dulce C. Guzmán‐Ocampo
- Facultad de QuímicaDepartamento de FisicoquímicaUniversidad Nacional Autónoma de México Mexico City 04510 Mexico
| | - Laura Dominguez
- Facultad de QuímicaDepartamento de FisicoquímicaUniversidad Nacional Autónoma de México Mexico City 04510 Mexico
| |
Collapse
|
17
|
Hitzenberger M, Zacharias M. Structural Modeling of γ-Secretase Aβ n Complex Formation and Substrate Processing. ACS Chem Neurosci 2019; 10:1826-1840. [PMID: 30638370 DOI: 10.1021/acschemneuro.8b00725] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intramembrane aspartyl protease γ-secretase (GSEC) cleaves single-span transmembrane helices including the C-terminal fragment of the amyloid precursor protein (APP). This substrate is initially cleaved at the ϵ-site followed by successive processing (trimming) events mostly in steps of three amino acids. GSEC is responsible for the formation of N-terminal APP amyloid-β (Aβ) peptides of different length (e.g., Aβ42) that can form aggregates involved in Alzheimer's disease pathogenesis. The molecular mechanism of GSEC-APP substrate recognition is key for understanding how different peptide products are formed and could help in designing APP-selective modulators. Based on the known structure of apo GSEC and the APP-C99 fragment we have generated putative structural models of the initial binding in three different possible modes using extensive molecular dynamics (MD) simulations. The binding mode with the substrate helix located in a cleft between the transmembrane helices 2 and 3 of the presenilin subunit was identified as a most likely binding mode. Based on this arrangement, the processing steps were investigated using restraint MD simulations to pull the scissile bond (for each processing step) into a transition like (cleavable) state. This allowed us to analyze in detail the motions and energetic contributions of participating residues. The structural model agrees qualitatively well with the influence of many mutations in GSEC and C99. It also explains the effects of inhibitors, cross-linking, as well as spectroscopic data on GSEC substrate binding and can serve as working model for the future planning of structural and biochemical studies.
Collapse
Affiliation(s)
- M. Hitzenberger
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - M. Zacharias
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| |
Collapse
|
18
|
Aguayo-Ortiz R, Straub JE, Dominguez L. Influence of membrane lipid composition on the structure and activity of γ-secretase. Phys Chem Chem Phys 2018; 20:27294-27304. [PMID: 30357233 PMCID: PMC11260083 DOI: 10.1039/c8cp04138e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
γ-Secretase (GS) is a multi-subunit membrane-embedded aspartyl protease that cleaves more than 80 integral membrane proteins, including the amyloid precursor protein (APP) to produce the amyloid-β (Aβ) peptide. Oligomerization and aggregation of the 42-amino acid length Aβ isoform in the brain has been associated with the development and progression of Alzheimer's disease (AD). Based on recent experimental structural studies and using multiscale computational modeling approaches, the conformational states and protein-membrane interactions of the GS complex embedded in six homogeneous and six heterogeneous lipid bilayers were characterized. In order to identify potential lipid and cholesterol binding sites, GS regions with high lipid/cholesterol occupancy values were analyzed using atomistic and coarse-grained simulations. Long lipid residence times were observed to be correlated with a large number of hydrogen bonds between the charged headgroups and key GS amino acids. This observation provides a plausible explanation for the inhibition of GS by charged lipids observed in previous experimental studies. Computed lateral pressure profiles suggest that higher transmembrane pressures favor active state conformations of the catalytic subunit. A probable mechanism for the regulation of the local stress response in cholesterol-rich multicomponent lipid bilayers is identified. Finally, it is demonstrated that interactions between the nicastrin extracellular domain and lipid headgroups leads to a compact structural conformation of the GS complex. Overall, this study provides valuable insight into the effect of bilayer lipid composition on the GS structural ensemble and its function.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | | | | |
Collapse
|
19
|
Cai T, Tomita T. Structural Analysis of Target Protein by Substituted Cysteine Accessibility Method. Bio Protoc 2018; 8:e2470. [PMID: 34395783 DOI: 10.21769/bioprotoc.2470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 12/10/2017] [Indexed: 11/02/2022] Open
Abstract
Substituted Cysteine Accessibility Method (SCAM) is a biochemical approach to investigate the water accessibility or the spatial distance of particular cysteine residues substituted in the target protein. Protein topology and structure can be annotated by labeling with methanethiosulfonate reagents that specifically react with the cysteine residues facing the hydrophilic environment, even within the transmembrane domain. Cysteine crosslinking experiments provide us with information about the distance between two cysteine residues. The combination of these methods enables us to obtain information about the structural changes of the target protein. Here, we describe the detailed protocol for structural analysis using SCAM.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Aguayo-Ortiz R, Dominguez L. Simulating the γ-secretase enzyme: Recent advances and future directions. Biochimie 2018; 147:130-135. [DOI: 10.1016/j.biochi.2018.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/27/2018] [Indexed: 11/17/2022]
|
21
|
Allosteric Modulation of Intact γ-Secretase Structural Dynamics. Biophys J 2018; 113:2634-2649. [PMID: 29262358 DOI: 10.1016/j.bpj.2017.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
As a protease complex involved in the cleavage of amyloid precursor proteins that lead to the formation of amyloid β fibrils implicated in Alzheimer's disease, γ-secretase is an important target for developing therapeutics against Alzheimer's disease. γ-secretase is composed of four subunits: nicastrin (NCT) in the extracellular (EC) domain, presenilin-1 (PS1), anterior pharynx defective 1, and presenilin enhancer 2 in the transmembrane (TM) domain. NCT and PS1 play important roles in binding amyloid β precursor proteins and modulating PS1 catalytic activity. Yet, the molecular mechanisms of coupling between substrate/modulator binding and catalytic activity remain to be elucidated. Recent determination of intact human γ-secretase cryo-electron microscopy structure has opened the way for a detailed investigation of the structural dynamics of this complex. Our analysis, based on a membrane-coupled anisotropic network model, reveals two types of NCT motions, bending and twisting, with respect to PS1. These underlie the fluctuations between the "open" and "closed" states of the lid-like NCT with respect to a hydrophilic loop 1 (HL1) on PS1, thus allowing or blocking access of the substrate peptide (EC portion) to HL1 and to the neighboring helix TM2. In addition to this alternating access mechanism, fluctuations in the volume of the PS1 central cavity facilitate the exposure of the catalytic site for substrate cleavage. Druggability simulations show that γ-secretase presents several hot spots for either orthosteric or allosteric inhibition of catalytic activity, consistent with experimental data. In particular, a hinge region at the interface between the EC and TM domains, near the interlobe groove of NCT, emerges as an allo-targeting site that would impact the coupling between HL1/TM2 and the catalytic pocket, opening, to our knowledge, new avenues for structure-based design of novel allosteric modulators of γ-secretase protease activity.
Collapse
|
22
|
Johnson DS, Li YM, Pettersson M, St George-Hyslop PH. Structural and Chemical Biology of Presenilin Complexes. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024067. [PMID: 28320827 PMCID: PMC5710098 DOI: 10.1101/cshperspect.a024067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presenilin proteins are the catalytic subunits of a tetrameric complex containing presenilin 1 or 2, anterior pharynx defective 1 (APH1), nicastrin, and PEN-2. Other components such as TMP21 may exist in a subset of specialized complexes. The presenilin complex is the founding member of a unique class of aspartyl proteases that catalyze the γ, ɛ, ζ site cleavage of the transmembrane domains of Type I membrane proteins including amyloid precursor protein (APP) and Notch. Here, we detail the structural and chemical biology of this unusual enzyme. Taken together, these studies suggest that the complex exists in several conformations, and subtle long-range (allosteric) shifts in the conformation of the complex underpin substrate access to the catalytic site and the mechanism of action for allosteric inhibitors and modulators. Understanding the mechanics of these shifts will facilitate the design of γ-secretase modulator (GSM) compounds that modulate the relative efficiency of γ, ɛ, ζ site cleavage and/or substrate specificity.
Collapse
Affiliation(s)
- Douglas S. Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Peter H. St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom,Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
23
|
Audagnotto M, Kengo Lorkowski A, Dal Peraro M. Recruitment of the amyloid precursor protein by γ-secretase at the synaptic plasma membrane. Biochem Biophys Res Commun 2017; 498:334-341. [PMID: 29097209 DOI: 10.1016/j.bbrc.2017.10.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/04/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
Γ-secretase is a membrane-embedded protease that cleaves single transmembrane helical domains of various integral membrane proteins. The amyloid precursor protein (APP) is an important substrate due to its pathological relevance to Alzheimer's disease. The mechanism of the cleavage of APP by γ-secretase that leads to accumulation of Alzheimer's disease causing amyloid-β (Aβ) is still unknown. Coarse-grained molecular dynamics simulations in this study reveal initial lipids raft formation near the catalytic site of γ-secretase as well as changes in dynamic behavior of γ-secretase once interacting with APP. The results suggest a precursor of the APP binding mode and hint at conformational changes of γ-secretase in the nicastrin (NCT) domain upon APP binding.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatcs (SIB), Lausanne 1015, Switzerland
| | - Alexander Kengo Lorkowski
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatcs (SIB), Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatcs (SIB), Lausanne 1015, Switzerland.
| |
Collapse
|
24
|
Aguayo-Ortiz R, Chávez-García C, Straub JE, Dominguez L. Characterizing the structural ensemble of γ-secretase using a multiscale molecular dynamics approach. Chem Sci 2017; 8:5576-5584. [PMID: 28970936 PMCID: PMC5618787 DOI: 10.1039/c7sc00980a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving aspartyl protease that plays an essential role in the processing of a variety of integral membrane proteins. Its role in the ultimate cleavage step in the processing of amyloid precursor protein to form amyloid-β (Aβ) peptide makes it an important therapeutic target in Alzheimer's disease research. Significant recent advances have been made in structural studies of this critical membrane protein complex. However, details of the mechanism of activation of the enzyme complex remain unclear. Using a multiscale computational modeling approach, combining multiple coarse-grained microsecond dynamic trajectories with all-atom models, the structure and two conformational states of the γ-secretase complex were evaluated. The transition between enzymatic state 1 and state 2 is shown to critically depend on the protonation states of the key catalytic residues Asp257 and Asp385 in the active site domain. The active site formation, related to our γ-secretase state 2, is observed to involve a concerted movement of four transmembrane helices from the catalytic subunit, resulting in the required localization of the catalytic residues. Global analysis of the structural ensemble of the enzyme complex was used to identify collective fluctuations important to the mechanism of substrate recognition and demonstrate that the corresponding fluctuations observed were uncorrelated with structural changes associated with enzyme activation. Overall, this computational study provides essential insight into the role of structure and dynamics in the activation and function of γ-secretase.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| | - Cecilia Chávez-García
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| | - John E Straub
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , USA
| | - Laura Dominguez
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| |
Collapse
|
25
|
Li S, Zhang W, Han W. Initial Substrate Binding of γ-Secretase: The Role of Substrate Flexibility. ACS Chem Neurosci 2017; 8:1279-1290. [PMID: 28165225 DOI: 10.1021/acschemneuro.6b00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
γ-Secretase cleaves transmembrane domains (TMD) of amyloid precursor protein (APP), producing pathologically relevant amyloid-β proteins. Initial substrate binding represents a key step of the γ-secretase cleavage whose mechanism remains elusive. Through long time scale coarse-grained and atomic simulations, we have found that the APP TMD can bind to the catalytic subunit presenilin 1 (PS1) on an extended surface covering PS1's TMD2/6/9 and PAL motif that are all known to be essential for enzymatic activity. This initial substrate binding could lead to reduction in the vertical gap between APP's ε-cleavage sites and γ-secretase's active center, enhanced flexibility and hydration levels around the ε-sites, and the presentation of these sites to the enzyme. There are heterogeneous substrate binding poses in which the substrate is found to bind to either the N- or C-terminal parts of PS1, or both. Moreover, we also find that the stability of the binding poses can be modulated by the flexibility of substrate TMD. Especially, the APP substrate, when deprived of bending fluctuation, does not bind to TMD9 at PS1's C-terminus. Our simulations have revealed further that another substrate of γ-secretase, namely, notch receptors, though bearing a rigid TMD, can still bind to PS1 TMD9, but by a different mechanism, suggesting that the influence of substrate flexibility is context-dependent. Together, these findings shed light on the mechanism of initial substrate docking of γ-secretase and the role of substrate flexibility in this process.
Collapse
Affiliation(s)
- Shu Li
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wan Zhang
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
26
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
27
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|
28
|
Conformational Changes in Transmembrane Domain 4 of Presenilin 1 Are Associated with Altered Amyloid-β 42 Production. J Neurosci 2016; 36:1362-72. [PMID: 26818522 DOI: 10.1523/jneurosci.5090-14.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED γ-Secretase is an intramembrane-cleaving protease that produces amyloid-β peptide 42 (Aβ42), which is the toxic and aggregation-prone species of Aβ that causes Alzheimer's disease. Here, we used the substituted cysteine accessibility method to analyze the structure of transmembrane domains (TMDs) 4 and 5 of human presenilin 1 (PS1), a catalytic subunit of γ-secretase. We revealed that TMD4 and TMD5 face the intramembranous hydrophilic milieu together with TMD1, TMD6, TMD7, and TMD9 of PS1 to form the catalytic pore structure. Notably, we found a correlation in the distance between the cytosolic sides of TMD4/TMD7 and Aβ42 production levels, suggesting that allosteric conformational changes of the cytosolic side of TMD4 affect Aβ42-generating γ-secretase activity. Our results provide new insights into the relationship between the structure and activity of human PS1. SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce toxic amyloid-β peptide species is one plausible therapeutic approaches for Alzheimer's disease. However, precise mechanistic information of γ-secretase still remains unclear. Here we identified the conformational changes in transmembrane domains of presenilin 1 that affect the proteolytic activity of the γ-secretase. Our results highlight the importance of understanding the structural dynamics of presenilin 1 in drug development against Alzheimer's disease.
Collapse
|
29
|
Fukumori A, Steiner H. Substrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping. EMBO J 2016; 35:1628-43. [PMID: 27220847 DOI: 10.15252/embj.201694151] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022] Open
Abstract
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease-associated γ-secretase. Systematically scanning amyloid precursor protein substrates containing a genetically inserted photocrosslinkable amino acid for binding to γ-secretase allowed us to identify residues contacting the protease. These were primarily found in the transmembrane cleavage domain of the substrate and were also present in the extramembranous domains. The N-terminal fragment of the catalytic subunit presenilin was determined as principal substrate-binding site. Clinical presenilin mutations altered substrate binding in the active site region, implying a pathogenic mechanism for familial Alzheimer's disease. Remarkably, PEN-2 was identified besides nicastrin as additional substrate-binding subunit. Probing proteolysis of crosslinked substrates revealed a mechanistic model of how these subunits interact to mediate a stepwise transfer of bound substrate to the catalytic site. We propose that sequential binding steps might be common for intramembrane proteases to sample and select cognate substrates for catalysis.
Collapse
Affiliation(s)
- Akio Fukumori
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
30
|
Bai XC, Rajendra E, Yang G, Shi Y, Scheres SHW. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 2015; 4. [PMID: 26623517 PMCID: PMC4718806 DOI: 10.7554/elife.11182] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
Human γ-secretase is an intra-membrane protease that cleaves many different substrates. Aberrant cleavage of Notch is implicated in cancer, while abnormalities in cutting amyloid precursor protein lead to Alzheimer's disease. Our previous cryo-EM structure of γ-secretase revealed considerable disorder in its catalytic subunit presenilin. Here, we describe an image classification procedure that characterizes molecular plasticity at the secondary structure level, and apply this method to identify three distinct conformations in our previous sample. In one of these conformations, an additional transmembrane helix is visible that cannot be attributed to the known components of γ-secretase. In addition, we present a γ-secretase structure in complex with the dipeptidic inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Our results reveal how conformational mobility in the second and sixth transmembrane helices of presenilin is greatly reduced upon binding of DAPT or the additional helix, and form the basis for a new model of how substrate enters the transmembrane domain. DOI:http://dx.doi.org/10.7554/eLife.11182.001 An enzyme called gamma-secretase cuts other proteins in cells into smaller pieces. Like most enzymes, gamma-secretase is expected to move through several different three-dimensional shapes to perform its role, and identifying these structures could help us to understand how the enzyme works. One of the proteins that is targeted by gamma-secretase is called amyloid precursor protein, and cutting this protein results in the formation of so-called amyloid-beta peptides. When gamma-secretase doesn't work properly, these amyloid-beta peptides can accumulate in the brain and large accumulations of these peptides have been observed in the brains of patients with Alzheimer's disease. Earlier in 2015, a group of researchers used a technique called cryo-electron microscopy (cryo-EM) to produce a three-dimensional model of gamma-secretase. This revealed that the active site of the enzyme, that is, the region that is used to cut the other proteins, is particularly flexible. Now, Bai et al. – including many of the researchers from the earlier work – studied this flexibility in more detail. For the experiments, gamma-secretase was exposed to an inhibitor molecule that stopped it from cutting other proteins. This meant that the structure of gamma-secretase became more rigid than normal, which made it possible to collect more detailed structural information using cryo-EM. Bai et al. also developed new methods for processing images to separate the images of individual enzyme molecules based on the different shapes they had adopted at the time. These methods make it possible to view a mixture of very similar enzyme structures that differ only in a small region of the protein (in this case the active site). In the future, it would be useful to repeat these imaging experiments using a range of different molecules that alter the activity of gamma-secretase. Furthermore, the new image processing methods developed by Bai et al. could be used to study flexibility in the shapes of other proteins. DOI:http://dx.doi.org/10.7554/eLife.11182.002
Collapse
Affiliation(s)
- Xiao-chen Bai
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Eeson Rajendra
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Guanghui Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | |
Collapse
|
31
|
Akiyama K, Mizuno S, Hizukuri Y, Mori H, Nogi T, Akiyama Y. Roles of the membrane-reentrant β-hairpin-like loop of RseP protease in selective substrate cleavage. eLife 2015; 4. [PMID: 26447507 PMCID: PMC4597795 DOI: 10.7554/elife.08928] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/10/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular mechanisms underlying substrate recognition and cleavage by Escherichia coli RseP, which belongs to S2P family of intramembrane-cleaving proteases, remain unclear. We examined the function of a conserved region looped into the membrane domain of RseP to form a β-hairpin-like structure near its active site in substrate recognition and cleavage. We observed that mutations disturbing the possible β-strand conformation of the loop impaired RseP proteolytic activity and that some of these mutations resulted in the differential cleavage of different substrates. Co-immunoprecipitation and crosslinking experiments suggest that the loop directly interacts with the transmembrane segments of substrates. Helix-destabilising mutations in the transmembrane segments of substrates suppressed the effect of loop mutations in an allele-specific manner. These results suggest that the loop promotes substrate cleavage by selectively recognising the transmembrane segments of substrates in an extended conformation and by presenting them to the proteolytic active site, which contributes to substrate discrimination.
Collapse
Affiliation(s)
| | - Shinya Mizuno
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yohei Hizukuri
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | | |
Collapse
|
32
|
Wolfe MS. Cutting in on a secretase pas de deux. Cell Res 2015; 25:1091-2. [PMID: 26358186 PMCID: PMC4650623 DOI: 10.1038/cr.2015.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two proteolytic enzymes, β- and γ-secretases, work together to produce the amyloid β-peptide of Alzheimer's disease. New evidence suggests that these proteases directly interact and compounds that disrupt this interaction reduce amyloid β-peptide levels without directly blocking either enzyme's solo activity.
Collapse
Affiliation(s)
- Michael S Wolfe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Cui J, Wang X, Li X, Wang X, Zhang C, Li W, Zhang Y, Gu H, Xie X, Nan F, Zhao J, Pei G. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer's disease-related pathogenesis. Cell Discov 2015; 1:15021. [PMID: 27462420 PMCID: PMC4860824 DOI: 10.1038/celldisc.2015.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Despite decades of intense global effort, no disease-modifying drugs for Alzheimer’s disease have emerged. Molecules targeting catalytic activities of γ-secretase or β-site APP-cleaving enzyme 1 (BACE1) have been beset by undesired side effects. We hypothesized that blocking the interaction between BACE1 and γ-secretase subunit presenilin-1 (PS1) might offer an alternative strategy to selectively suppress Aβ generation. Through high-throughput screening, we discovered that 3-α-akebonoic acid (3AA) interferes with PS1/BACE1 interaction and reduces Aβ production. Structural analogs of 3AA were systematically synthesized and the functional analog XYT472B was identified. Photo-activated crosslinking and biochemical competition assays showed that 3AA and XYT472B bind to PS1, interfere with PS1/BACE1 interaction, and reduce Aβ production, whereas sparing secretase activities. Furthermore, treatment of APP/PS1 mice with XYT472B alleviated cognitive dysfunction and Aβ-related pathology. Together, our results indicate that chemical interference of PS1/BACE1 interaction is a promising strategy for Alzheimer’s disease therapeutics.
Collapse
Affiliation(s)
- Jin Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xiaoyin Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Xiaohang Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xin Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Wei Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yangming Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Haifeng Gu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Xin Xie
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Jian Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Molecular dynamics simulation study reveals potential substrate entry path into γ-secretase/presenilin-1. J Struct Biol 2015; 191:120-9. [DOI: 10.1016/j.jsb.2015.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022]
|
35
|
Oestereich F, Bittner HJ, Weise C, Grohmann L, Janke LK, Hildebrand PW, Multhaup G, Munter LM. Impact of amyloid precursor protein hydrophilic transmembrane residues on amyloid-beta generation. Biochemistry 2015; 54:2777-84. [PMID: 25875527 DOI: 10.1021/acs.biochem.5b00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amyloid-β (Aβ) peptides are likely the molecular cause of neurodegeneration observed in Alzheimer's disease. In the brain, Aβ42 and Aβ40 are toxic and the most important proteolytic fragments generated through sequential processing of the amyloid precursor protein (APP) by β- and γ-secretases. Impeding the generation of Aβ42 and Aβ40 is thus considered as a promising strategy to prevent Alzheimer's disease. We therefore wanted to determine key parameters of the APP transmembrane sequence enabling production of these Aβ species. Here we show that the hydrophilicity of amino acid residues G33, T43, and T48 critically determines the generation of Aβ42 and Aβ40 peptides (amino acid numbering according to Aβ nomenclature starting with aspartic acid 1). First, we performed a comprehensive mutational analysis of glycine residue G33 positioned within the N-terminal half of the APP transmembrane sequence by exchanging it against the 19 other amino acids. We found that hydrophilicity of the residue at position 33 positively correlated with Aβ42 and Aβ40 generation. Second, we analyzed two threonine residues at positions T43 and T48 in the C-terminal half of the APP-transmembrane sequence. Replacement of single threonine residues by hydrophobic valines inversely affected Aβ42 and Aβ40 generation. We observed that threonine mutants affected the initial γ-secretase cut, which is associated with levels of Aβ42 or Aβ40. Overall, hydrophilic residues of the APP transmembrane sequence decide on the exact initial γ-cut and the amounts of Aβ42 and Aβ40.
Collapse
Affiliation(s)
- Felix Oestereich
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.,∥Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | - Heiko J Bittner
- §Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Weise
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa Grohmann
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa-Kristin Janke
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Peter W Hildebrand
- §Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerhard Multhaup
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa-Marie Munter
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
36
|
Cooperative roles of hydrophilic loop 1 and the C-terminus of presenilin 1 in the substrate-gating mechanism of γ-secretase. J Neurosci 2015; 35:2646-56. [PMID: 25673856 DOI: 10.1523/jneurosci.3164-14.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
γ-Secretase is a multisubunit protease complex that is responsible for generating amyloid-β peptides, which are associated with Alzheimer disease. The catalytic subunit of γ-secretase is presenilin 1 (PS1), which contains an initial substrate-binding site that is distinct from the catalytic site. Processive cleavage is suggested in the intramembrane-cleaving mechanism of γ-secretase. However, it largely remains unknown as to how γ-secretase recognizes its substrate during proteolysis. Here, we identified that the α-helical structural region of hydrophilic loop 1 (HL1) and the C-terminal region of human PS1 are distinct substrate-binding sites. Mutational analyses revealed that substrate binding to the HL1 region is critical for both ε- and γ-cleavage, whereas binding to the C-terminal region hampers γ-cleavage. Moreover, we propose that substrate binding triggers conformational changes in PS1, rendering it suitable for catalysis. Our data provide new insights into the complicated catalytic mechanism of PS1.
Collapse
|
37
|
Marinangeli C, Tasiaux B, Opsomer R, Hage S, Sodero AO, Dewachter I, Octave JN, Smith SO, Constantinescu SN, Kienlen-Campard P. Presenilin transmembrane domain 8 conserved AXXXAXXXG motifs are required for the activity of the γ-secretase complex. J Biol Chem 2015; 290:7169-84. [PMID: 25614624 DOI: 10.1074/jbc.m114.601286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the molecular mechanisms controlling the physiological and pathological activity of γ-secretase represents a challenging task in Alzheimer disease research. The assembly and proteolytic activity of this enzyme require the correct interaction of the 19 transmembrane domains (TMDs) present in its four subunits, including presenilin (PS1 or PS2), the γ-secretase catalytic core. GXXXG and GXXXG-like motifs are critical for TMDs interactions as well as for protein folding and assembly. The GXXXG motifs on γ-secretase subunits (e.g. APH-1) or on γ-secretase substrates (e.g. APP) are known to be involved in γ-secretase assembly and in Aβ peptide production, respectively. We identified on PS1 and PS2 TMD8 two highly conserved AXXXAXXXG motifs. The presence of a mutation causing an inherited form of Alzheimer disease (familial Alzheimer disease) in the PS1 motif suggested their involvement in the physiopathological configuration of the γ-secretase complex. In this study, we targeted the role of these motifs on TMD8 of PSs, focusing on their role in PS assembly and catalytic activity. Each motif was mutated, and the impact on complex assembly, activity, and substrate docking was monitored. Different amino acid substitutions on the same motif resulted in opposite effects on γ-secretase activity, without affecting the assembly or significantly impairing the maturation of the complex. Our data suggest that AXXXAXXXG motifs in PS TMD8 are key determinants for the conformation of the mature γ-secretase complex, participating in the switch between the physiological and pathological functional conformations of the γ-secretase.
Collapse
Affiliation(s)
| | | | | | - Salim Hage
- the Louvain Drug Research Institute, and
| | | | | | | | - Steven O Smith
- the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Stefan N Constantinescu
- the de Duve Institute and Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels 1200, Belgium and
| | | |
Collapse
|
38
|
De Strooper B, Chávez Gutiérrez L. Learning by Failing: Ideas and Concepts to Tackle γ-Secretases in Alzheimer's Disease and Beyond. Annu Rev Pharmacol Toxicol 2015; 55:419-37. [DOI: 10.1146/annurev-pharmtox-010814-124309] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bart De Strooper
- VIB Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, BE-3000 Leuven, Belgium
- Center for Human Genetics, Laboratory for the Research of Neurodegenerative Diseases, KU Leuven, BE-3000 Leuven, Belgium; ,
| | - Lucía Chávez Gutiérrez
- VIB Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, BE-3000 Leuven, Belgium
- Center for Human Genetics, Laboratory for the Research of Neurodegenerative Diseases, KU Leuven, BE-3000 Leuven, Belgium; ,
| |
Collapse
|
39
|
Li Y, Bohm C, Dodd R, Chen F, Qamar S, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Structural biology of presenilin 1 complexes. Mol Neurodegener 2014; 9:59. [PMID: 25523933 PMCID: PMC4326451 DOI: 10.1186/1750-1326-9-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022] Open
Abstract
The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter H St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
40
|
Abstract
Presenilin is a membrane-embedded intramembrane-cleaving protease with a conserved catalytic G×GD motif. It is the catalytic subunit of γ-secretase, which plays critical roles in developmental biology and the molecular etiology of Alzheimer disease, together with three membrane protein cofactors, nicastrin, Aph-1 and Pen-2. Biochemical and enzymatic analyses have revealed that γ-secretase executes two types of proteolytic activities on a single substrate; an endopeptidase-like cleavage followed by carboxypeptidase-like processive cleavage. Utilizing small molecule inhibitors/modulators together with the substituted cysteine accessibility method, we identified certain residues and regions of presenilin that contribute to the formation of a catalytic pore structure within the lipid bilayer required for its intramembrane-cleaving activity. Recently, determination of the crystal structure of the archaeal presenilin homologue has confirmed the intramembranous location of the two conserved and essential aspartates. In this review, I will introduce the recent progresses in the understanding of the molecular mechanisms of action of this atypical protease.
Collapse
Affiliation(s)
- Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Allosteric regulation of γ-secretase activity by a phenylimidazole-type γ-secretase modulator. Proc Natl Acad Sci U S A 2014; 111:10544-9. [PMID: 25009180 DOI: 10.1073/pnas.1402171111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease responsible for the generation of amyloid-β (Aβ) peptides. Recently, a series of compounds called γ-secretase modulators (GSMs) has been shown to decrease the levels of long toxic Aβ species (i.e., Aβ42), with a concomitant elevation of the production of shorter Aβ species. In this study, we show that a phenylimidazole-type GSM allosterically induces conformational changes in the catalytic site of γ-secretase to augment the proteolytic activity. Analyses using the photoaffinity labeling technique and systematic mutational studies revealed that the phenylimidazole-type GSM targets a previously unidentified extracellular binding pocket within the N-terminal fragment of presenilin (PS). Collectively, we provide a model for the mechanism of action of the phenylimidazole-type GSM in which binding at the luminal side of PS induces a conformational change in the catalytic center of γ-secretase to modulate Aβ production.
Collapse
|
42
|
The FAM3 superfamily member ILEI ameliorates Alzheimer's disease-like pathology by destabilizing the penultimate amyloid-β precursor. Nat Commun 2014; 5:3917. [PMID: 24894631 DOI: 10.1038/ncomms4917] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/16/2014] [Indexed: 01/12/2023] Open
Abstract
Accumulation of amyloid-β peptide (Aβ) in the brain underlies the pathogenesis of Alzheimer's disease (AD). Aβ is produced by β- and γ-secretase-mediated sequential proteolysis of amyloid-β precursor protein (APP). Here we identify a secretory protein named interleukin-like epithelial-mesenchymal transition inducer (ILEI, also known as FAM3 superfamily member C) as a negative regulator of Aβ production. ILEI destabilizes the β-secretase-cleaved APP carboxy-terminal fragment, the penultimate precursor of Aβ, by binding to the γ-secretase complex and interfering with its chaperone properties. Notch signalling and γ-secretase activity are not affected by ILEI. We also show neuronal expression of ILEI and its induction by transforming growth factor-β signalling. The level of secreted ILEI is markedly decreased in the brains of AD patients. Transgenic (Tg) overexpression of ILEI significantly reduces the brain Aβ burden and ameliorates the memory deficit in AD model mice. ILEI may be a plausible target for the development of disease-modifying therapies.
Collapse
|
43
|
Funamoto S, Sasaki T, Ishihara S, Nobuhara M, Nakano M, Watanabe-Takahashi M, Saito T, Kakuda N, Miyasaka T, Nishikawa K, Saido TC, Ihara Y. Substrate ectodomain is critical for substrate preference and inhibition of γ-secretase. Nat Commun 2014; 4:2529. [PMID: 24108142 PMCID: PMC3826621 DOI: 10.1038/ncomms3529] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023] Open
Abstract
Understanding the substrate recognition mechanism of γ-secretase is a key step for establishing substrate-specific inhibition of amyloid β-protein (Aβ) production. However, it is widely believed that γ-secretase is a promiscuous protease and that its substrate-specific inhibition is elusive. Here we show that γ-secretase distinguishes the ectodomain length of substrates and preferentially captures and cleaves substrates containing a short ectodomain. We also show that a subset of peptides containing the CDCYCxxxxCxCxSC motif binds to the amino terminus of C99 and inhibits Aβ production in a substrate-specific manner. Interestingly, these peptides suppress β-secretase-dependent cleavage of APP, but not that of sialyltransferase 1. Most importantly, intraperitoneal administration of peptides into mice results in a significant reduction in cerebral Aβ levels. This report provides direct evidence of the substrate preference of γ-secretase and its mechanism. Our results demonstrate that the ectodomain of C99 is a potent target for substrate-specific anti-Aβ therapeutics to combat Alzheimer’s disease. γ-Secretase inhibitors are studied for their potential to treat Alzheimer’s disease, but their use is limited by side effects. Funamoto et al. show that γ-secretase preferentially cleaves substrates with short ectodomains and that inhibitors based on these ectodomains reduce disease-like pathology in mice.
Collapse
Affiliation(s)
- Satoru Funamoto
- 1] Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ohki Y, Shimada N, Tominaga A, Osawa S, Higo T, Yokoshima S, Fukuyama T, Tomita T, Iwatsubo T. Binding of longer Aβ to transmembrane domain 1 of presenilin 1 impacts on Aβ42 generation. Mol Neurodegener 2014; 9:7. [PMID: 24410857 PMCID: PMC3896738 DOI: 10.1186/1750-1326-9-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022] Open
Abstract
Background Amyloid-β peptide ending at 42nd residue (Aβ42) is believed as a pathogenic peptide for Alzheimer disease. Although γ-secretase is a responsible protease to generate Aβ through a processive cleavage, the proteolytic mechanism of γ-secretase at molecular level is poorly understood. Results We found that the transmembrane domain (TMD) 1 of presenilin (PS) 1, a catalytic subunit for the γ-secretase, as a key modulatory domain for Aβ42 production. Aβ42-lowering and -raising γ-secretase modulators (GSMs) directly targeted TMD1 of PS1 and affected its structure. A point mutation in TMD1 caused an aberrant secretion of longer Aβ species including Aβ45 that are the precursor of Aβ42. We further found that the helical surface of TMD1 is involved in the binding of Aβ45/48 and that the binding was altered by GSMs as well as TMD1 mutation. Conclusions Binding between PS1 TMD1 and longer Aβ is critical for Aβ42 production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
45
|
Li Y, Lu SHJ, Tsai CJ, Bohm C, Qamar S, Dodd RB, Meadows W, Jeon A, McLeod A, Chen F, Arimon M, Berezovska O, Hyman BT, Tomita T, Iwatsubo T, Johnson CM, Farrer LA, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Structural interactions between inhibitor and substrate docking sites give insight into mechanisms of human PS1 complexes. Structure 2013; 22:125-35. [PMID: 24210759 PMCID: PMC3887256 DOI: 10.1016/j.str.2013.09.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/28/2013] [Accepted: 09/21/2013] [Indexed: 11/18/2022]
Abstract
Presenilin-mediated endoproteolysis of transmembrane proteins plays a key role in physiological signaling and in the pathogenesis of Alzheimer disease and some cancers. Numerous inhibitors have been found via library screens, but their structural mechanisms remain unknown. We used several biophysical techniques to investigate the structure of human presenilin complexes and the effects of peptidomimetic γ-secretase inhibitors. The complexes are bilobed. The head contains nicastrin ectodomain. The membrane-embedded base has a central channel and a lateral cleft, which may represent the initial substrate docking site. Inhibitor binding induces widespread structural changes, including rotation of the head and closure of the lateral cleft. These changes block substrate access to the catalytic pocket and inhibit the enzyme. Intriguingly, peptide substrate docking has reciprocal effects on the inhibitor binding site. Similar reciprocal shifts may underlie the mechanisms of other inhibitors and of the “lateral gate” through which substrates access to the catalytic site. The head contains nicastrin ectodomain and overhangs a solute-accessible cavity in base The base has a central channel and a lateral cleft (putative substrate docking site) Inhibitors close the cleft and channel and rotate the head, blocking substrate access
Collapse
Affiliation(s)
- Yi Li
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Stephen Hsueh-Jeng Lu
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ching-Ju Tsai
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christopher Bohm
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Roger B Dodd
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - William Meadows
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Amy Jeon
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Adam McLeod
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Fusheng Chen
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Muriel Arimon
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Genetics and Genomics, Biostatistics, and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Peter H St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada.
| |
Collapse
|
46
|
Song Y, Hustedt EJ, Brandon S, Sanders CR. Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. Biochemistry 2013; 52:5051-64. [PMID: 23865807 DOI: 10.1021/bi400735x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 99-residue transmembrane C-terminal domain (C99, also known as β-CTF) of the amyloid precursor protein (APP) is the product of the β-secretase cleavage of the full-length APP and is the substrate for γ-secretase cleavage. The latter cleavage releases the amyloid-β polypeptides that are closely associated with Alzheimer's disease. C99 is thought to form homodimers; however, the free energy in favor of dimerization has not previously been quantitated. It was also recently documented that cholesterol forms a 1:1 complex with monomeric C99 in bicelles. Here, the affinities for both homodimerization and cholesterol binding to C99 were measured in bilayered lipid vesicles using both electron paramagnetic resonance (EPR) and Förster resonance energy transfer (FRET) methods. Homodimerization and cholesterol binding were seen to be competitive processes that center on the transmembrane G₇₀₀XXXG₇₀₄XXXG₇₀₈ glycine-zipper motif and adjacent Gly709. On one hand, the observed Kd for cholesterol binding (Kd = 2.7 ± 0.3 mol %) is on the low end of the physiological cholesterol concentration range in mammalian cell membranes. On the other hand, the observed K(d) for homodimerization (K(d) = 0.47 ± 0.15 mol %) likely exceeds the physiological concentration range for C99. These results suggest that the 1:1 cholesterol/C99 complex will be more highly populated than C99 homodimers under most physiological conditions. These observations are of relevance for understanding the γ-secretase cleavage of C99.
Collapse
Affiliation(s)
- Yuanli Song
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | | | | | | |
Collapse
|
47
|
Zhang S, Zhang M, Cai F, Song W. Biological function of Presenilin and its role in AD pathogenesis. Transl Neurodegener 2013; 2:15. [PMID: 23866842 PMCID: PMC3718700 DOI: 10.1186/2047-9158-2-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/14/2013] [Indexed: 01/06/2023] Open
Abstract
Presenilins (PSs) are the catalytic core of γ-secretase complex. However, the mechanism of FAD-associated PS mutations in AD pathogenesis still remains elusive. Here we review the general biology and mechanism of γ-secretase and focus on the catalytic components – presenilins and their biological functions and contributions to the AD pathogenesis. The functions of presenilins are divided into γ-secretase dependent and γ-secretase independent ones. The γ-secretase dependent functions of presenilins are exemplified by the sequential cleavages in the processing of APP and Notch; the γ-secretase independent functions of presenilins include stabilizing β-catenin in Wnt signaling pathway, regulating calcium homeostasis and their interaction with synaptic transmission.
Collapse
Affiliation(s)
- Shuting Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
48
|
Tomita T, Iwatsubo T. Structural biology of presenilins and signal peptide peptidases. J Biol Chem 2013; 288:14673-80. [PMID: 23585568 DOI: 10.1074/jbc.r113.463281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Presenilin and signal peptide peptidase are multispanning intramembrane-cleaving proteases with a conserved catalytic GxGD motif. Presenilin comprises the catalytic subunit of γ-secretase, a protease responsible for the generation of amyloid-β peptides causative of Alzheimer disease. Signal peptide peptidase proteins are implicated in the regulation of the immune system. Both protease family proteins have been recognized as druggable targets for several human diseases, but their detailed structure still remains unknown. Recently, the x-ray structures of some archaeal GxGD proteases have been determined. We review the recent progress in biochemical and biophysical probing of the structure of these atypical proteases.
Collapse
Affiliation(s)
- Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
49
|
Imamura Y, Umezawa N, Osawa S, Shimada N, Higo T, Yokoshima S, Fukuyama T, Iwatsubo T, Kato N, Tomita T, Higuchi T. Effect of Helical Conformation and Side Chain Structure on γ-Secretase Inhibition by β-Peptide Foldamers: Insight into Substrate Recognition. J Med Chem 2013; 56:1443-54. [DOI: 10.1021/jm301306c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Imamura
- Department of Bioorganic-Inorganic
Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku,
Nagoya, Aichi, Japan
| | - Naoki Umezawa
- Department of Bioorganic-Inorganic
Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku,
Nagoya, Aichi, Japan
| | - Satoko Osawa
- Department
of Neuropathology
and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo,
Japan
| | - Naoaki Shimada
- Department of Synthetic
Natural
Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo,
Japan
| | - Takuya Higo
- Department of Synthetic
Natural
Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo,
Japan
| | - Satoshi Yokoshima
- Department of Synthetic
Natural
Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo,
Japan
| | - Tohru Fukuyama
- Department of Synthetic
Natural
Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo,
Japan
| | - Takeshi Iwatsubo
- Department
of Neuropathology
and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuropathology,
Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Nobuki Kato
- Department of Bioorganic-Inorganic
Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku,
Nagoya, Aichi, Japan
| | - Taisuke Tomita
- Department
of Neuropathology
and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Tsunehiko Higuchi
- Department of Bioorganic-Inorganic
Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku,
Nagoya, Aichi, Japan
| |
Collapse
|
50
|
Kretner B, Fukumori A, Kuhn PH, Pérez-Revuelta BI, Lichtenthaler SF, Haass C, Steiner H. Important functional role of residue x of the presenilin GxGD protease active site motif for APP substrate cleavage specificity and substrate selectivity of γ-secretase. J Neurochem 2013; 125:144-56. [PMID: 23237322 DOI: 10.1111/jnc.12124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 11/30/2022]
Abstract
γ-Secretase plays a central role in the generation of the Alzheimer disease-causing amyloid β-peptide (Aβ) from the β-amyloid precursor protein (APP) and is thus a major Alzheimer's disease drug target. As several other γ-secretase substrates including Notch1 and CD44 have crucial signaling functions, an understanding of the mechanism of substrate recognition and cleavage is key for the development of APP selective γ-secretase-targeting drugs. The γ-secretase active site domain in its catalytic subunit presenilin (PS) 1 has been implicated in substrate recognition/docking and cleavage. Highly critical in this process is its GxGD active site motif, whose invariant glycine residues cannot be replaced without causing severe functional losses in substrate selection and/or cleavage efficiency. Here, we have investigated the contribution of the less well characterized residue x of the motif (L383 in PS1) to this function. Extensive mutational analysis showed that processing of APP was overall well-tolerated over a wide range of hydrophobic and hydrophilic mutations. Interestingly, however, most L383 mutants gave rise to reduced levels of Aβ37-39 species, and several increased the pathogenic Aβ42/43 species. Several of the Aβ42/43 -increasing mutants severely impaired the cleavages of Notch1 and CD44 substrates, which were not affected by any other L383 mutation. Our data thus establish an important, but compared with the glycine residues of the motif, overall less critical functional role for L383. We suggest that L383 and the flanking glycine residues form a spatial arrangement in PS1 that is critical for docking and/or cleavage of different γ-secretase substrates.
Collapse
Affiliation(s)
- Benedikt Kretner
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|