1
|
Dickerhof N, Ashby LV, Ford D, Dilly JJ, Anderson RF, Payne RJ, Kettle AJ. Dioxygenation of tryptophan residues by superoxide and myeloperoxidase. J Biol Chem 2025; 301:108402. [PMID: 40081572 DOI: 10.1016/j.jbc.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
When neutrophils ingest pathogens into phagosomes, they generate large amounts of the superoxide radical through the reduction of molecular oxygen. Superoxide is essential for effective antimicrobial defense, but the precise role it plays in bacterial killing is unknown. Within phagosomes, superoxide reacts with the heme enzyme myeloperoxidase (MPO) and is converted to hydrogen peroxide, then subsequently to the bactericidal oxidant hypochlorous acid. But other reactions of superoxide with MPO may also contribute to host defense. Here, we demonstrate that MPO uses superoxide to dioxygenate tryptophan residues within model peptides via two hypochlorous acid-independent pathways. Using mass spectrometry, we show that formation of N-formylkynurenine is the favored reaction. This reaction is consistent with a direct transfer of dioxygen from an intermediate of MPO, where superoxide is bound to the active site heme iron (compound III). In addition, hydroperoxides are formed when superoxide adds to tryptophan radicals, which are produced during the peroxidase cycle of MPO. Proteomic analysis revealed that tryptophan dioxygenation occurs on the abundant neutrophil protein calprotectin and lactoferrin during phagocytosis of Staphylococcus aureus, indicating that this is a physiologically relevant modification. Our study enhances the understanding of superoxide chemistry in the phagosome. It also suggests that tryptophan dioxygenation by MPO and superoxide may occur during infection and inflammation.
Collapse
Affiliation(s)
- Nina Dickerhof
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Louisa V Ashby
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Daniel Ford
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua J Dilly
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert F Anderson
- School of Chemical Sciences & Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony J Kettle
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Zhang J, Liu Z, Zhou Z, Huang Z, Yang Y, Wu J, Liu Y. HNP-1: From Structure to Application Thanks to Multifaceted Functions. Microorganisms 2025; 13:458. [PMID: 40005828 PMCID: PMC11858525 DOI: 10.3390/microorganisms13020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical components of innate immunity in animals and plants, exhibiting thrilling prospectives as alternatives to traditional antibiotics due to their ability to combat pathogens without leading to resistance. Among these, Human Neutrophil Peptide-1 (HNP-1), primarily produced by human neutrophils, exhibits broad-spectrum antimicrobial activity against bacteria and viruses. However, the clinical application of HNP-1 has been hampered by challenges associated with mass production and inconsistent understanding of its bactericidal mechanisms. This review explores the structure and function of HNP-1, discussing its gene expression, distribution, immune functions and the regulatory elements controlling its production, alongside insights into its antimicrobial mechanisms and potential clinical applications as an antimicrobial agent. Furthermore, the review highlights the biosynthesis of HNP-1 using microbial systems as a cost-effective alternative to human extraction and recent studies revealing HNP-1's endogenous bactericidal mechanism. A comprehensive understanding of HNP-1's working mechanisms and production methods will pave the way for its effective clinical utilization in combating antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zhaoke Liu
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zhihao Zhou
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zile Huang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Junzhu Wu
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Yanhong Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Infect Immun 2023; 91:e0036122. [PMID: 36472443 PMCID: PMC9872612 DOI: 10.1128/iai.00361-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse α-defensins, better known as cryptdins, are host protective antimicrobial peptides produced in the intestinal crypt by Paneth cells. To date, more than 20 cryptdin mRNAs have been identified from mouse small intestine, of which the first six cryptdins (Crp1 to Crp6) have been isolated and characterized at the peptide level. We quantified bactericidal activities against Escherichia coli and Staphylococcus aureus of the 17 cryptdin isoforms identified by Ouellette and colleagues from a single jejunal crypt (A. J. Ouellette et al., Infect Immun 62:5040-5047, 1994), along with linearized analogs of Crp1, Crp4, and Crp14. In addition, we analyzed the most potent and weakest cryptdins in the panel with respect to their ability to self-associate in solution. Finally, we solved, for the first time, the high-resolution crystal structure of a cryptdin, Crp14, and performed molecular dynamics simulation on Crp14 and a hypothetical mutant, T14K-Crp14. Our results indicate that mutational effects are highly dependent on cryptdin sequence, residue position, and bacterial strain. Crp14 adopts a disulfide-stabilized, three-stranded β-sheet core structure and forms a noncanonical dimer stabilized by asymmetrical interactions between the two β1 strands in parallel. The killing of E. coli by cryptdins is generally independent of their tertiary and quaternary structures that are important for the killing of S. aureus, which is indicative of two distinct mechanisms of action. Importantly, sequence variations impact the bactericidal activity of cryptdins by influencing their ability to self-associate in solution. This study expands our current understanding of how cryptdins function at the molecular level.
Collapse
|
4
|
Abstract
We report the development of peptidomimetic antibiotics derived from a natural antimicrobial peptide, human α-defensin 5. By engaging multiple bacterial targets, the lead compound is efficacious in vitro and in vivo against bacteria with highly inducible antibiotic resistance, promising a useful therapeutic agent for the treatment of infections caused by antibiotic-resistant bacteria. Antibiotics with multiple mechanisms of action and broad-spectrum are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. Combining computational and medicinal chemistry tools, we used the structure of human α-defensin 5 (HD5) to design a class of peptidomimetic antibiotics with improved activity against both gram-negative and gram-positive bacteria. The most promising lead, compound 10, showed potent killing of multiple drug-resistant gram-negative bacteria isolated from patients. Compound 10 exhibited a multiplex mechanism of action through targeting membrane components—outer membrane protein A and lipopolysaccharide, as well as a potential intracellular target—70S ribosome, thus causing membrane perturbation and inhibition of protein synthesis. In vivo efficacy, stability, and safety of compound 10 were also validated. This human defensin-inspired synthetic peptidomimetic could help solve the serious problem of drug resistance to conventional antibiotics.
Collapse
|
5
|
Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021; 179:114008. [PMID: 34673132 DOI: 10.1016/j.addr.2021.114008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Defensins are a family of cationic antimicrobial peptides active against a broad range of infectious microbes including bacteria, viruses and fungi, playing important roles as innate effectors and immune modulators in immunological control of microbial infection. Their antibacterial properties and unique mechanisms of action have garnered considerable interest in developing defensins into a novel class of natural antibiotic peptides to fend off pathogenic infection by bacteria, particularly those resistant to conventional antibiotics. However, serious pharmacological and technical obstacles, some of which are unique to defensins and others are common to peptide drugs in general, have hindered the development and clinical translation of defensins as anti-infective therapeutics. To overcome them, several technologies have been developed, aiming for improved functionality, prolonged circulation time, enhanced proteolytic stability and bioavailability, and efficient and controlled delivery and release of defensins to the site of infection. Additional challenges include the alleviation of potential toxicity of defensins and their cost-effective manufacturing. In this review, we briefly introduce defensin biology, focus on various transforming strategies and practical techniques developed for defensins and their derivatives as antibacterial therapeutics, and conclude with a summation of future challenges and possible solutions.
Collapse
|
6
|
Brice DC, Diamond G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem 2020; 27:1420-1443. [PMID: 31385762 PMCID: PMC9008596 DOI: 10.2174/0929867326666190805151654] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.
Collapse
Affiliation(s)
- David C. Brice
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Liao C, Fang K, Xiao J, Zhang W, Zhang B, Yuan W, Lu W, Xu D. Critical determinants of human neutrophil peptide 1 for enhancing host epithelial adhesion of Shigella flexneri. Cell Microbiol 2019; 21:e13069. [PMID: 31218775 DOI: 10.1111/cmi.13069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 11/27/2022]
Abstract
Human neutrophil peptides (HNPs), also known as human myeloid α-defensins degranulated by infiltrating neutrophils at bacterial infection loci, exhibit broad antomicrobial activities against bacteria, fungi, and viruses. We have made a surprising recent finding that Shigella, a highly contagious, yet poorly adhesive enteric pathogen, exploits human α-defensins including HNP1 to enhance its adhesion to and invasion of host epithelial cells. However, the critical molecular determinants responsible for HNP1-enhanced Shigella adhesion and invasion have yet to be investigated. Using cultured epithelial cells and polarised Caco2 cells as an in vitro infection model, we demonstrated that HNP1 promoted Shigella infection in a structure- and sequence-dependent manner, with two bulky hydrophobic residues, Trp26 and Phe28 important for HNP1 self-assembly, being most critical. The functional importance of hydrophobicity for HNP1-enhanced Shigella infection was further verified by substitutions for Trp26 of a series of unnatural amino acids with straight aliphatic side chains of different lengths. Dissection of the Shigella infection process revealed that bacteria-rather than host cells-bound HNP1 contributed most to the enhancement. Further, mutagenesis analysis of bacterial surface components, while precluding the involvement of lipopolysaccharides (LPS) in the interaction with HNP1, identified outer membrane proteins and the Type 3 secretion apparatus as putative binding targets of HNP1 involved in enhanced Shigella adhesion and invasion. Our findings provide molecular and mechanistic insights into the mode of action of HNP1 in promoting Shigella infection, thus showcasing another example of how innate immune factors may serve as a double-edged sword in health and disease.
Collapse
Affiliation(s)
- Chongbing Liao
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kun Fang
- Department of Internal Medicine, Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiu Xiao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wei Zhang
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bing Zhang
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dan Xu
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Boutin JA, Tartar AL, van Dorsselaer A, Vaudry H. General lack of structural characterization of chemically synthesized long peptides. Protein Sci 2019; 28:857-867. [PMID: 30851143 PMCID: PMC6459998 DOI: 10.1002/pro.3601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023]
Abstract
Many peptide chemistry scientists have been reporting extremely interesting work on the basis of chemical peptides for which the only characterization was their purity, mass, and biological activity. It seems slightly overenthusiastic, as many of these structures should be thoroughly characterized first to demonstrate the uniqueness of the structure, as opposed to the uniqueness of the sequence. Among the peptides of identical sequences in the final chemical preparation, what amount of well-folded peptide supports the measured activity? The activity of a peptide preparation cannot prove the purity of the desired peptide. Therefore, greater care should be taken in characterizing peptides, particularly those coming from chemical synthesis. At a time when the pharmaceutical industry is changing its paradigm by moving substantially from small molecules to biologics to better serve patients' needs, it is important to understand the limitations of the descriptions of these products and to start to apply the same "good laboratory practices" to our peptide research. Here, we attempt to delineate how synthetic peptides are described and characterized and what will be needed to describe them in regards to how they are well-folded and homogeneous in their tertiary structure. Older studies were done when the tools were not yet discovered, but more recent publications are still lacking proper descriptions of these peptides. Modern tools of analysis are capable of segregating folded and unfolded peptides, even if the preparation is biologically active.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales Servier50 rue Carnot, 92284, Suresnes‐CedexFrance
| | - André L. Tartar
- Faculté de Pharmacie 3rue du Professeur Laguesse, BP83 ‐ 59006, Lille‐CedexFrance
| | - Alain van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio‐Organique, Département des Sciences AnalytiquesInstitut Pluridisciplinaire Hubert CurienUMR 7178 (CNRS‐UdS), ECPM, 25 rue Becquerel, F67087, Strasbourg‐Cedex 2France
| | - Hubert Vaudry
- Plate‐Forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN)Institut de Recherche et d'Innovation Biomédicales (IRIB), Université de Rouen76821, Mont‐Saint‐Aignan CedexFrance
| |
Collapse
|
9
|
Hu H, Di B, Tolbert WD, Gohain N, Yuan W, Gao P, Ma B, He Q, Pazgier M, Zhao L, Lu W. Systematic mutational analysis of human neutrophil α-defensin HNP4. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:835-844. [PMID: 30658057 DOI: 10.1016/j.bbamem.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Defensins are a family of cationic antimicrobial peptides of innate immunity with immunomodulatory properties. The prototypic human α-defensins, also known as human neutrophil peptides 1-3 or HNP1-3, are extensively studied for their structure, function and mechanisms of action, yet little is known about HNP4 - the much less abundant "distant cousin" of HNP1-3. Here we report a systematic mutational analysis of HNP4 with respect to its antibacterial activity against E. coli and S. aureus, inhibitory activity against anthrax lethal factor (LF), and binding activity for LF and HIV-1 gp120. Except for nine conserved and structurally important residues (6xCys, 1xArg, 1xGlu and 1xGly), the remaining 24 residues of HNP4 were each individually mutated to Ala. The crystal structures of G23A-HNP4 and T27A-HNP4 were determined, both exhibiting a disulfide-stabilized canonical α-defensin dimer identical to wild-type HNP4. Unlike HNP1-3, HNP4 preferentially killed the Gram-negative bacterium, a property largely attributable to three clustered cationic residues Arg10, Arg11 and Arg15. The cationic cluster was also important for HNP4 killing of S. aureus, inhibition of LF and binding to LF and gp120. However, F26A, while functionally inconsequential for E. coli killing, was far more deleterious than any other mutations. Similarly, N-methylation of Leu20 to destabilize the HNP4 dimer had little effect on E. coli killing, but significantly reduced the ability of HNP4 to kill S. aureus, inhibit LF, and bind to LF and gp120. Our findings unveil the molecular determinants of HNP4 function, completing the atlas of structure and function relationships for all human neutrophil α-defensins.
Collapse
Affiliation(s)
- Han Hu
- Key Laboratory of Fermentation Engineering, Ministry of Education, College of Bioengineering, Hubei University of Technology, Wuhan, China; Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Bin Di
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - William D Tolbert
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Neelakshi Gohain
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Weirong Yuan
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Pan Gao
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Bohan Ma
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Marzena Pazgier
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA.
| | - Le Zhao
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wuyuan Lu
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
10
|
Zou G, de Leeuw E. Neutralization of Pseudomonas auruginosa Exotoxin A by human neutrophil peptide 1. Biochem Biophys Res Commun 2018; 501:454-457. [PMID: 29738776 DOI: 10.1016/j.bbrc.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa produces a large number of virulence factors, including the extracellular protein, Exotoxin A (ETA). Human Neutrophil Peptide 1 (HNP1) neutralizes the Exotoxin A. HNP1 belongs to the family of α-defensins, small effector peptides of the innate immune system that combat against microbial infections. Neutralization of bacterial toxins such as ETA by HNP1 is a novel biological function in addition to direct killing of bacteria. In this study, we report on the interaction between HNP-1 and Exotoxin A at the molecular level to allow for the design and development of potent antibacterial peptides as alternatives to classical antibiotics.
Collapse
Affiliation(s)
- Guozhang Zou
- U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Erik de Leeuw
- Institute of Human Virology of the University of Maryland Baltimore School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Xu D, Liao C, Zhang B, Tolbert WD, He W, Dai Z, Zhang W, Yuan W, Pazgier M, Liu J, Yu J, Sansonetti PJ, Bevins CL, Shao Y, Lu W. Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity 2018; 48:1233-1244.e6. [PMID: 29858013 PMCID: PMC6051418 DOI: 10.1016/j.immuni.2018.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/18/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023]
Abstract
Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella co-opts human α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University,Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chongbing Liao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University
| | - Bing Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - W. David Tolbert
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wangxiao He
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University,Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhijun Dai
- The Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine
| | - Wei Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marzena Pazgier
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiankang Liu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jun Yu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | - Charles L. Bevins
- Department of Microbiology and Immunology, University of California, School of Medicine, Davis, California, USA
| | - Yongping Shao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University,Correspondence to: (lead contact) or
| | - Wuyuan Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University,Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA,Correspondence to: (lead contact) or
| |
Collapse
|
12
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
13
|
Kudryashova E, Seveau SM, Kudryashov DS. Targeting and inactivation of bacterial toxins by human defensins. Biol Chem 2017; 398:1069-1085. [PMID: 28593905 DOI: 10.1515/hsz-2017-0106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022]
Abstract
Defensins, as a prominent family of antimicrobial peptides (AMP), are major effectors of the innate immunity with a broad range of immune modulatory and antimicrobial activities. In particular, defensins are the only recognized fast-response molecules that can neutralize a broad range of bacterial toxins, many of which are among the deadliest compounds on the planet. For a decade, the mystery of how a small and structurally conserved group of peptides can neutralize a heterogeneous group of toxins with little to no sequential and structural similarity remained unresolved. Recently, it was found that defensins recognize and target structural plasticity/thermodynamic instability, fundamental physicochemical properties that unite many bacterial toxins and distinguish them from the majority of host proteins. Binding of human defensins promotes local unfolding of the affected toxins, destabilizes their secondary and tertiary structures, increases susceptibility to proteolysis, and leads to their precipitation. While the details of toxin destabilization by defensins remain obscure, here we briefly review properties and activities of bacterial toxins known to be affected by or resilient to defensins, and discuss how recognized features of defensins correlate with the observed inactivation.
Collapse
|
14
|
Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins. Sci Rep 2016; 6:32499. [PMID: 27581352 PMCID: PMC5007486 DOI: 10.1038/srep32499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural “anti-chaperones”, i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not β-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins – the intrinsically low thermodynamic protein stability.
Collapse
|
15
|
Abstract
Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area.
Collapse
Affiliation(s)
- P Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - N R Roan
- Department of Urology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - U Römling
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institutet, Stockholm, Sweden
| | - C L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - J Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany.,Ulm Peptide Pharmaceuticals, Ulm University, Ulm, Germany
| |
Collapse
|
16
|
Brook M, Tomlinson GH, Miles K, Smith RWP, Rossi AG, Hiemstra PS, van 't Wout EFA, Dean JLE, Gray NK, Lu W, Gray M. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc Natl Acad Sci U S A 2016; 113:4350-5. [PMID: 27044108 PMCID: PMC4843457 DOI: 10.1073/pnas.1601831113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are the first and most numerous cells to arrive at the site of an inflammatory insult and are among the first to die. We previously reported that alpha defensins, released from apoptotic human neutrophils, augmented the antimicrobial capacity of macrophages while also inhibiting the biosynthesis of proinflammatory cytokines. In vivo, alpha defensin administration protected mice from inflammation, induced by thioglychollate-induced peritonitis or following infection withSalmonella entericaserovar Typhimurium. We have now dissected the antiinflammatory mechanism of action of the most abundant neutrophil alpha defensin, Human Neutrophil Peptide 1 (HNP1). Herein we show that HNP1 enters macrophages and inhibits protein translation without inducing the unfolded-protein response or affecting mRNA stability. In a cell-free in vitro translation system, HNP1 powerfully inhibited both cap-dependent and cap-independent mRNA translation while maintaining mRNA polysomal association. This is, to our knowledge, the first demonstration of a peptide released from one cell type (neutrophils) directly regulating mRNA translation in another (macrophages). By preventing protein translation, HNP1 functions as a "molecular brake" on macrophage-driven inflammation, ensuring both pathogen clearance and the resolution of inflammation with minimal bystander tissue damage.
Collapse
Affiliation(s)
- Matthew Brook
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland
| | - Gareth H Tomlinson
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland
| | - Katherine Miles
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland
| | - Richard W P Smith
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Emily F A van 't Wout
- Department of Pulmonology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Jonathan L E Dean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Nicola K Gray
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Mohini Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland;
| |
Collapse
|
17
|
De Leon Rodriguez LM, Kaur H, Brimble MA. Synthesis and bioactivity of antitubercular peptides and peptidomimetics: an update. Org Biomol Chem 2016; 14:1177-87. [DOI: 10.1039/c5ob02298c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This mini-review provides an update on the synthesis and bioactivity of peptides and peptidomimetics that exhibit very potent antitubercular activity.
Collapse
Affiliation(s)
| | - Harveen Kaur
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
18
|
López-Peña I, Leigh BS, Schlamadinger DE, Kim JE. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy. Biochemistry 2015. [PMID: 26219819 DOI: 10.1021/acs.biochem.5b00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy is a form of vibrational spectroscopy based on inelastic scattering of light. In resonance Raman spectroscopy, the wavelength of the incident light falls within an absorption band of a chromophore, and this overlap of excitation and absorption energy greatly enhances the Raman scattering efficiency of the absorbing species. The ability to probe vibrational spectra of select chromophores within a complex mixture of molecules makes resonance Raman spectroscopy an excellent tool for studies of biomolecules. In this Current Topic, we discuss the type of molecular insights obtained from steady-state and time-resolved resonance Raman studies of a prototypical photoactive protein, rhodopsin. We also review recent efforts in ultraviolet resonance Raman investigations of soluble and membrane-associated biomolecules, including integral membrane proteins and antimicrobial peptides. These examples illustrate that resonance Raman is a sensitive, selective, and practical method for studying the structures of biological molecules, and the molecular bonding, geometry, and environments of protein cofactors, the backbone, and side chains.
Collapse
Affiliation(s)
- Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Brian S Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Diana E Schlamadinger
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Wang C, Shen M, Gohain N, Tolbert WD, Chen F, Zhang N, Yang K, Wang A, Su Y, Cheng T, Zhao J, Pazgier M, Wang J. Design of a potent antibiotic peptide based on the active region of human defensin 5. J Med Chem 2015; 58:3083-93. [PMID: 25782105 DOI: 10.1021/jm501824a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human defensin 5 (HD5) is a broad-spectrum antibacterial peptide with a C-terminal active region. To promote the development of this peptide into an antibiotic, we initially substituted Glu21 with Arg because it is an electronegative residue located around the active region. Although detrimental to dimer formation, the E21R substitution markedly enhanced the antibacterial activity of HD5 and increased its ability to penetrate cell membranes, demonstrating that increasing the electropositive charge compensated for the effect of dimer disruption. Subsequently, a partial Arg scanning mutagenesis was performed, and Thr7 was selected for replacement with Arg to further strengthen the antibacterial activity. The newly designed peptide, T7E21R-HD5, exhibited potent antibacterial activity, even in saline and serum solutions. In contrast to monomeric E21R-HD5, T7E21R-HD5 assembled into an atypical dimer with parallel β strands, thus expanding the role of increasing electropositive charge in bactericidal activity and providing a useful guide for further defensin-derived antibiotic design.
Collapse
Affiliation(s)
- Cheng Wang
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Neelakshi Gohain
- ‡Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - William D Tolbert
- ‡Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Fang Chen
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naixin Zhang
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Ke Yang
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.,§Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Aiping Wang
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yongping Su
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Tianmin Cheng
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jinghong Zhao
- §Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Marzena Pazgier
- ‡Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Junping Wang
- †State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
20
|
Ericksen B. Quantification of polysaccharides fixed to Gram stained slides using lactophenol cotton blue and digital image processing. F1000Res 2015; 4:1. [PMID: 29333228 PMCID: PMC5754746 DOI: 10.12688/f1000research.5779.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
Dark blue rings and circles emerged when the non-specific polysaccharide stain lactophenol cotton blue was added to Gram stained slides. The dark blue staining is attributable to the presence of capsular polysaccharides and bacterial slime associated with clumps of Gram-negative bacteria. Since all bacterial cells are glycosylated and concentrate polysaccharides from the media, the majority of cells stain light blue. The contrast between dark and light staining is sufficient to enable a digital image processing thresholding technique to be quantitative with little background noise. Prior to the addition of lactophenol cotton blue, the Gram-stained slides appeared unremarkable, lacking ubiquitous clumps or stained polysaccharides. Adding lactophenol cotton blue to Gram stained slides is a quick and inexpensive way to screen cell cultures for bacterial slime, clumps and biofilms that are invisible using the Gram stain alone.
Collapse
Affiliation(s)
- Bryan Ericksen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
21
|
Ericksen B. Quantification of polysaccharides fixed to Gram stained slides using lactophenol cotton blue and digital image processing. F1000Res 2015; 4:1. [PMID: 29333228 PMCID: PMC5754746 DOI: 10.12688/f1000research.5779.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 01/27/2025] Open
Abstract
Dark blue rings and circles emerged when the non-specific polysaccharide stain lactophenol cotton blue was added to Gram stained slides. The dark blue staining is attributable to the presence of capsular polysaccharides and bacterial slime associated with clumps of Gram-negative bacteria. Since all bacterial cells are glycosylated and concentrate polysaccharides from the media, the majority of cells stain light blue. The contrast between dark and light staining is sufficient to enable a digital image processing thresholding technique to be quantitative with little background noise. Prior to the addition of lactophenol cotton blue, the Gram-stained slides appeared unremarkable, lacking ubiquitous clumps or stained polysaccharides. Adding lactophenol cotton blue to Gram stained slides is a quick and inexpensive way to screen cell cultures for bacterial slime, clumps and biofilms that are invisible using the Gram stain alone.
Collapse
Affiliation(s)
- Bryan Ericksen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
22
|
Stevens LA, Barbieri JT, Piszczek G, Otuonye AN, Levine RL, Zheng G, Moss J. Nonenzymatic conversion of ADP-ribosylated arginines to ornithine alters the biological activities of human neutrophil peptide-1. THE JOURNAL OF IMMUNOLOGY 2014; 193:6144-51. [PMID: 25392530 DOI: 10.4049/jimmunol.1303068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated neutrophils, recruited to the airway of diseased lung, release human neutrophil peptides (HNP1-4) that are cytotoxic to airway cells as well as microbes. Airway epithelial cells express arginine-specific ADP ribosyltransferase (ART)-1, a GPI-anchored ART that transfers ADP-ribose from NAD to arginines 14 and 24 of HNP-1. We previously reported that ADP-ribosyl-arginine is converted nonenzymatically to ornithine and that ADP-ribosylated HNP-1 and ADP-ribosyl-HNP-(ornithine) were isolated from bronchoalveolar lavage fluid of a patient with idiopathic pulmonary fibrosis, indicating that these reactions occur in vivo. To determine effects of HNP-ornithine on the airway, three analogs of HNP-1, HNP-(R14orn), HNP-(R24orn), and HNP-(R14,24orn), were tested for their activity against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus; their cytotoxic effects on A549, NCI-H441, small airway epithelial-like cells, and normal human lung fibroblasts; and their ability to stimulate IL-8 and TGF-β1 release from A549 cells, and to serve as ART1 substrates. HNP and the three analogs had similar effects on IL-8 and TGF-β1 release from A549 cells and were all cytotoxic for small airway epithelial cells, NCI-H441, and normal human lung fibroblasts. HNP-(R14,24orn), when compared with HNP-1 and HNP-1 with a single ornithine substitution for arginine 14 or 24, exhibited reduced cytotoxicity, but it enhanced proliferation of A549 cells and had antibacterial activity. Thus, arginines 14 and 24, which can be ADP ribosylated by ART1, are critical to the regulation of the cytotoxic and antibacterial effects of HNP-1. The HNP analog, HNP-(R14,24orn), lacks the epithelial cell cytotoxicity of HNP-1, but partially retains its antibacterial activity and thus may have clinical applications in airway disease.
Collapse
Affiliation(s)
- Linda A Stevens
- Cardiovascular and Pulmonary Branch, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joseph T Barbieri
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Grzegorz Piszczek
- Biophysics Core Facility, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amy N Otuonye
- Cardiovascular and Pulmonary Branch, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodney L Levine
- Laboratory of Biochemistry, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Gang Zheng
- Office of Biostatistics Research, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
23
|
Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins. Immunity 2014; 41:709-21. [PMID: 25517613 DOI: 10.1016/j.immuni.2014.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/17/2014] [Indexed: 02/08/2023]
Abstract
Defensins are short cationic, amphiphilic, cysteine-rich peptides that constitute the front-line immune defense against various pathogens. In addition to exerting direct antibacterial activities, defensins inactivate several classes of unrelated bacterial exotoxins. To date, no coherent mechanism has been proposed to explain defensins' enigmatic efficiency toward various toxins. In this study, we showed that binding of neutrophil ?-defensin HNP1 to affected bacterial toxins caused their local unfolding, potentiated their thermal melting and precipitation, exposed new regions for proteolysis, and increased susceptibility to collisional quenchers without causing similar effects on tested mammalian structural and enzymatic proteins. Enteric ?-defensin HD5 and ?-defensin hBD2 shared similar toxin-unfolding effects with HNP1, albeit to different degrees. We propose that protein susceptibility to inactivation by defensins is contingent to their thermolability and conformational plasticity and that defensin-induced unfolding is a key element in the general mechanism of toxin inactivation by human defensins.
Collapse
|
24
|
Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition. PLoS Pathog 2014; 10:e1004360. [PMID: 25188351 PMCID: PMC4154873 DOI: 10.1371/journal.ppat.1004360] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022] Open
Abstract
Human α-defensins are potent anti-microbial peptides with the ability to neutralize bacterial and viral targets. Single alanine mutagenesis has been used to identify determinants of anti-bacterial activity and binding to bacterial proteins such as anthrax lethal factor. Similar analyses of α-defensin interactions with non-enveloped viruses are limited. We used a comprehensive set of human α-defensin 5 (HD5) and human neutrophil peptide 1 (HNP1) alanine scan mutants in a combination of binding and neutralization assays with human adenovirus (AdV) and human papillomavirus (HPV). We have identified a core of critical hydrophobic residues that are common determinants for all of the virus-defensin interactions that were analyzed, while specificity in viral recognition is conferred by specific surface-exposed charged residues. The hydrophobic residues serve multiple roles in maintaining the tertiary and quaternary structure of the defensins as well as forming an interface for virus binding. Many of the important solvent-exposed residues of HD5 group together to form a critical surface. However, a single discrete binding face was not identified for HNP1. In lieu of whole AdV, we used a recombinant capsid subunit comprised of penton base and fiber in quantitative binding studies and determined that the anti-viral potency of HD5 was a function of stoichiometry rather than affinity. Our studies support a mechanism in which α-defensins depend on hydrophobic and charge-charge interactions to bind at high copy number to these non-enveloped viruses to neutralize infection and provide insight into properties that guide α-defensin anti-viral activity. Human α-defensins are an important component of the innate immune response and provide an initial block against a broad number of infectious agents, including viruses and bacteria. Characteristics of α-defensins that are necessary for their anti-bacterial activity have been identified, but our understanding of determinants required for activity against non-enveloped viruses is limited. In this work, we utilized alanine scan mutagenesis to systematically and comprehensively investigate the role of hydrophobic and charged residues of two α-defensins in binding to and/or neutralization of human adenovirus and human papillomavirus. Our results implicate common core hydrophobic residues as critical for inhibition of these non-enveloped viruses by the two α-defensins, with specificity provided by charged residues unique to each interaction. We also found that the number of α-defensin molecules bound to the virus was a stronger correlate of the anti-viral potency of the α-defensin mutants than their absolute affinity for the viral capsid. Understanding common characteristics of α-defensins important for non-enveloped virus binding will inform rules that govern the function of these abundant and multifaceted peptides in host defense.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Defensins are a major family of antimicrobial peptides expressed predominantly in neutrophils and epithelial cells, and play important roles in innate immune defense against infectious pathogens. Their biological functions in and beyond innate immunity, structure and activity relationships, mechanisms of action, and therapeutic potential continue to be interesting research topics. This review examines recent progress in our understanding of alpha and theta-defensins - the two structural classes composed of members of myeloid origin. RECENT FINDINGS A novel mode of antibacterial action is described for human enteric alpha-defensin 6, which forms structured nanonets to entrap bacterial pathogens and protect against bacterial invasion of the intestinal epithelium. The functional multiplicity and mechanistic complexity of defensins under different experimental conditions contribute to a debate over the role of enteric alpha-defensins in mucosal immunity against HIV-1 infection. Contrary to common belief, hydrophobicity rather than cationicity plays a dominant functional role in the action of human alpha-defensins; hydrophobicity-mediated high-order assembly endows human alpha-defensins with an extraordinary ability to acquire structural diversity and functional versatility. Growing evidence suggests that theta-defensins offer the best opportunity for therapeutic development as a novel class of broadly active anti-infective and anti-inflammatory agents. SUMMARY Defensins are the 'Swiss army knife' in innate immunity against microbial pathogens. Their modes of action are often reminiscent of the story of 'The Blind Men and the Elephant'. The functional diversity and mechanistic complexity, as well as therapeutic potential of defensins, will continue to attract attention to this important family of antimicrobial peptides.
Collapse
|
26
|
Poon IKH, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JAE, Phan TK, Ryan GF, White JA, Veneer PK, van der Weerden NL, Anderson MA, Kvansakul M, Hulett MD. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. eLife 2014; 3:e01808. [PMID: 24692446 PMCID: PMC3968744 DOI: 10.7554/elife.01808] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/22/2014] [Indexed: 12/28/2022] Open
Abstract
Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique 'cationic grip' configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001.
Collapse
Affiliation(s)
- Ivan KH Poon
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Amy A Baxter
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Fung T Lay
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Grant D Mills
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Christopher G Adda
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jennifer AE Payne
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Thanh Kha Phan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Gemma F Ryan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Julie A White
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Prem K Veneer
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Marilyn A Anderson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Marc Kvansakul
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mark D Hulett
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
27
|
Abstract
Mammalian α-defensins are approximately 4- to 5-kDa broad-spectrum antimicrobial peptides and abundant granule constituents of neutrophils and small intestinal Paneth cells. The bactericidal activities of amphipathic α-defensins depend in part on electropositive charge and on hydrophobic amino acids that enable membrane disruption by interactions with phospholipid acyl chains. Alignment of α-defensin primary structures identified conserved hydrophobic residues in the loop formed by the Cys(III)-Cys(V) disulfide bond, and we have studied their role by testing the effects of mutagenesis on bactericidal activities. Mouse α-defensin 4 (Crp-4) and rhesus myeloid α-defensin 4 (RMAD-4) were selected for these studies, because they are highly bactericidal in vitro and have the same overall electropositive charge. Elimination of hydrophobicity by site-directed mutagenesis at those positions in Crp-4 attenuated bactericidal activity markedly. In contrast to native Crp-4, the (I23/F25/L26/G)-Crp-4 variant lacked bactericidal activity against Salmonella enterica serovar Typhimurium and did not permeabilize Escherichia coli ML35 cells as a result of removing aliphatic side chains by Gly substitutions. Ala replacements in (I23/F25/L26/A)-Crp-4 restored activity, evidence that hydrophobicity contributed by Ala methyl R-groups was sufficient for activity. In macaques, neutrophil α-defensin RMAD-6 is identical to RMAD-4, except for a F28S difference, and (F28S)-RMAD-4 mutagenesis attenuated RMAD-4 bactericidal activity and E. coli permeabilization. Interestingly, (R31/32D)-Crp-4 lacks activity in these assays despite the presence of the Ile23, Phe25, and Leu26 hydrophobic patch. We infer that electrostatic interactions between cationic α-defensin residues and negative charge on bacteria precede interactions between critical hydrophobic residue positions that mediate membrane disruption and bacterial cell killing.
Collapse
|
28
|
Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013; 425:4965-80. [PMID: 24095897 PMCID: PMC3842434 DOI: 10.1016/j.jmb.2013.09.038] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
Defensins are an effector component of the innate immune system with broad antimicrobial activity. Humans express two types of defensins, α- and β-defensins, which have antiviral activity against both enveloped and non-enveloped viruses. The diversity of defensin-sensitive viral species reflects a multitude of antiviral mechanisms. These include direct defensin targeting of viral envelopes, glycoproteins, and capsids in addition to inhibition of viral fusion and post-entry neutralization. Binding and modulation of host cell surface receptors and disruption of intracellular signaling by defensins can also inhibit viral replication. In addition, defensins can function as chemokines to augment and alter adaptive immune responses, revealing an indirect antiviral mechanism. Nonetheless, many questions regarding the antiviral activities of defensins remain. Although significant mechanistic data are known for α-defensins, molecular details for β-defensin inhibition are mostly lacking. Importantly, the role of defensin antiviral activity in vivo has not been addressed due to the lack of a complete defensin knockout model. Overall, the antiviral activity of defensins is well established as are the variety of mechanisms by which defensins achieve this inhibition; however, additional research is needed to fully understand the role of defensins in viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jason G. Smith
- University of Washington School of Medicine, Box 357735, 1705 North East Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Zhao L, Tolbert WD, Ericksen B, Zhan C, Wu X, Yuan W, Li X, Pazgier M, Lu W. Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. PLoS One 2013; 8:e78937. [PMID: 24236072 PMCID: PMC3827289 DOI: 10.1371/journal.pone.0078937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/25/2013] [Indexed: 12/03/2022] Open
Abstract
HNP1 is a human alpha defensin that forms dimers and multimers governed by hydrophobic residues, including Tyr16, Ile20, Leu25, and Phe28. Previously, alanine scanning mutagenesis identified each of these residues and other hydrophobic residues as important for function. Here we report further structural and functional studies of residues shown to interact with one another across oligomeric interfaces: I20A-HNP1 and L25A-HNP1, plus the double alanine mutants I20A/L25A-HNP1 and Y16A/F28A-HNP1, and the quadruple alanine mutant Y16A/I20A/L25A/F28A-HNP1. We tested binding to HIV-1 gp120 and HNP1 by surface plasmon resonance, binding to HIV-1 gp41 and HNP1 by fluorescence polarization, inhibition of anthrax lethal factor, and antibacterial activity using the virtual colony count assay. Similar to the previously described single mutant W26A-HNP1, the quadruple mutant displayed the least activity in all functional assays, followed by the double mutant Y16A/F28A-HNP1. The effects of the L25A and I20A single mutations were milder than the double mutant I20A/L25A-HNP1. Crystallographic studies confirmed the correct folding and disulfide pairing, and depicted an array of dimeric and tetrameric structures. These results indicate that side chain hydrophobicity is the critical factor that determines activity at these positions.
Collapse
Affiliation(s)
- Le Zhao
- Translational Medicine Center, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China ; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Varney KM, Bonvin AMJJ, Pazgier M, Malin J, Yu W, Ateh E, Oashi T, Lu W, Huang J, Diepeveen-de Buin M, Bryant J, Breukink E, MacKerell AD, de Leeuw EPH. Turning defense into offense: defensin mimetics as novel antibiotics targeting lipid II. PLoS Pathog 2013; 9:e1003732. [PMID: 24244161 PMCID: PMC3820767 DOI: 10.1371/journal.ppat.1003732] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 09/12/2013] [Indexed: 01/09/2023] Open
Abstract
We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections. Every year, an increasing number of people are at risk for bacterial infections that cannot be effectively treated. This is because many bacteria are becoming more resistant to antibiotics. Of particular concern is the rise in hospital-acquired infections. Infection caused by the methicillin-resistant Staphylococcus aureus bacterium or MRSA is the cause of many fatalities and puts a burden on health care systems in many countries. The antibiotic of choice for treatment of S. aureus infections is vancomycin, an antimicrobial peptide that kills bacteria by binding to the bacterial cell wall component Lipid II. Here, we have identified for the first time, small synthetic compounds that also bind Lipid II with the aim to develop new antibiotic drugs to fight against bacterial infections.
Collapse
Affiliation(s)
- Kristen M. Varney
- NMR Facility, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Alexandre M. J. J. Bonvin
- Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands
| | - Marzena Pazgier
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Jakob Malin
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wenbo Yu
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Eugene Ateh
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Taiji Oashi
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Wuyuan Lu
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Jing Huang
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Marlies Diepeveen-de Buin
- Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands
| | - Joseph Bryant
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Eefjan Breukink
- Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Erik P. H. de Leeuw
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zhao Y, Zhang X, Xue X, Li Z, Chen F, Li S, Kumar A, Zou G, Liang XJ. High throughput detection of human neutrophil peptides from serum, saliva, and tear by anthrax lethal factor-modified nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8267-8272. [PMID: 23965149 DOI: 10.1021/am4021523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human α defensins human neutrophil peptide 1-3 (HNP 1-3) are potential prognostic cancer biomarkers. Metalloprotein anthrax lethal factor (ALF) binds to HNP 1-3 in a Zn2+-dependent manner. We conjugated ALF to the surface of magnetic nanoparticles (MNP) to magnetically isolate the HNPs, and used Zn2+ to control the capture and release HNPs.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen Q, Jin Y, Zhang K, Li H, Chen W, Meng G, Fang X. Alarmin HNP-1 promotes pyroptosis and IL-1β release through different roles of NLRP3 inflammasome via P2X7 in LPS-primed macrophages. Innate Immun 2013; 20:290-300. [PMID: 23792296 DOI: 10.1177/1753425913490575] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Defensins are the first endogenous mediators to be characterized as alarmins and play multifunctional roles in immune response. Previous studies reported that human neutrophil peptide (HNP)-1, a member of the α-defensin subfamily, could regulate the IL-1β post-translational process; however, the underlying mechanism remained unknown. Using an LPS-primed THP-1 macrophage model, we found that inhibition of P2X purinoceptor 7 (P2X7) suppressed HNP-1-initiated mature IL-1β release. Confocal microscopy and glutathione S-transferase (GST) pull-down assay demonstrated that HNP-1 bound to P2X7 directly. HNP-1 treatment increased the activated level of caspase-1, and inhibition of caspase-1 abolished IL-1β release. Incubation of LPS-primed macrophages with potassium chloride also prevented HNP-1-induced export of mature IL-1β. Likewise, an ethidium bromide uptake test showed that the P2X7-K(+) efflux-caspase-1 signaling pathway triggered by HNP-1 contributed to pyroptotic pore formation. Furthermore, knock down of inflammasome adaptor Nod-like receptor family pyrin domain containing 3 (NLRP3) decreased activated caspase-1 level and reduced pore formation in macrophages, whereas IL-1β release was not significantly impaired. These findings not only illustrated the mechanism for alarmin HNP-1 in enhancing inflammatory response, but also provided therapeutic targets for certain inflammatory diseases in which defensins play important roles.
Collapse
Affiliation(s)
- Qixing Chen
- 1Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu X, Liu C, Zhang W, Xie C, Wei G, Lu W. Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin. Int J Pharm 2013; 448:159-67. [DOI: 10.1016/j.ijpharm.2013.03.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/11/2013] [Accepted: 03/17/2013] [Indexed: 12/19/2022]
|
34
|
Bonucci A, Balducci E, Pistolesi S, Pogni R. The defensin–lipid interaction: Insights on the binding states of the human antimicrobial peptide HNP-1 to model bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:758-64. [DOI: 10.1016/j.bbamem.2012.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/08/2012] [Accepted: 11/08/2012] [Indexed: 01/13/2023]
|
35
|
Gonçalves S, Abade J, Teixeira A, Santos NC. Lipid composition is a determinant for human defensin HNP1 selectivity. Biopolymers 2013. [PMID: 23193595 DOI: 10.1002/bip.22088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human neutrophilpeptide 1 (HNP1) is a human defensin with antimicrobial activity against different bacteria (both Gram-positive and negative), fungi, and viruses. HNP1 is stored in the cytoplasmic azurophilic granules of neutrophils. To elucidate the mode of action of this antimicrobial peptide, studies based on its lipid selectivity were carried out. Large unilamellar vesicles with different lipid compositions were used as biomembranes model systems (mammal, fungal, and bacterial models). Changes on the intrinsic fluorescence of HNP1 upon membrane binding/insertion show that HNP1 has quite distinct preferences for mammalian and fungal membrane model systems. HNP1 showed low interaction with glucosylceramide rich membranes, but high sterol selectivity: it has a higher partition for ergosterol-containing membranes (as fungal membranes) and lower interaction with cholesterol-containing membranes (as in mammalian cells). These results reveal that lipid selectivity is a determinant step for HNP1 action. Fluorescence quenching data obtained using acrylamide indicate that HNP1 interacts with membranes without a full insertion in the lipid bilayer. Generalized polarization of laurdan indicates a change in membrane fluidity in the presence of HNP1 for POPC membranes but not for ergosterol-enriched membranes.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | |
Collapse
|
36
|
Wommack AJ, Robson SA, Wanniarachchi YA, Wan A, Turner CJ, Wagner G, Nolan EM. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Biochemistry 2012; 51:9624-37. [PMID: 23163963 DOI: 10.1021/bi301255u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human defensin 5 (HD5) is a 32-residue host-defense peptide expressed in the gastrointestinal, reproductive, and urinary tracts that has antimicrobial activity. It exhibits six cysteine residues that are regiospecifically oxidized to form three disulfide bonds (Cys(3)-Cys(31), Cys(5)-Cys(20), and Cys(10)-Cys(30)) in the oxidized form (HD5(ox)). To probe the solution structure and oligomerization properties of HD5(ox), and select mutant peptides lacking one or more disulfide bonds, NMR solution studies and analytical ultracentrifugation experiments are reported in addition to in vitro peptide stability assays. The NMR solution structure of HD5(ox), solved at pH 4.0 in 90:10 H(2)O/D(2)O, is presented (PDB: 2LXZ ). Relaxation T(1)/T(2) measurements and the rotational correlation time (τ(c)) estimated from a (15)N-TRACT experiment demonstrate that HD5(ox) is dimeric under these experimental conditions. Exchange broadening of the Hα signals in the NMR spectra suggests that residues 19-21 (Val(19)-Cys(20)-Glu(21)) contribute to the dimer interface in solution. Exchange broadening is also observed for residues 7-14 comprising the loop. Sedimentation velocity and equilibrium studies conducted in buffered aqueous solution reveal that the oligomerization state of HD5(ox) is pH-dependent. Sedimentation coefficients of ca. 1.8 S and a molecular weight of 14 363 Da were determined for HD5(ox) at pH 7.0, supporting a tetrameric form ([HD5(ox)] ≥ 30 μM). At pH 2.0, a sedimentation coefficient of ca. 1.0 S and a molecular weight of 7079 Da, corresponding to a HD5(ox) dimer, were obtained. Millimolar concentrations of NaCl, CaCl(2), and MgCl(2) have a negligible effect on the HD5(ox) sedimentation coefficients in buffered aqueous solution at neutral pH. Removal of a single disulfide bond results in a loss of peptide fold and quaternary structure. These biophysical investigations highlight the dynamic and environmentally sensitive behavior of HD5(ox) in solution, and provide important insights into HD5(ox) structure/activity relationships and the requirements for antimicrobial action.
Collapse
Affiliation(s)
- Andrew J Wommack
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Demirkhanyan LH, Marin M, Padilla-Parra S, Zhan C, Miyauchi K, Jean-Baptiste M, Novitskiy G, Lu W, Melikyan GB. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J Biol Chem 2012; 287:28821-38. [PMID: 22733823 DOI: 10.1074/jbc.m112.375949] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human neutrophil peptide 1 (HNP-1) is known to block the human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism of inhibition is poorly understood. We examined the effect of HNP-1 on HIV-1 entry and fusion and found that, surprisingly, this α-defensin inhibited multiple steps of virus entry, including: (i) Env binding to CD4 and coreceptors; (ii) refolding of Env into the final 6-helix bundle structure; and (iii) productive HIV-1 uptake but not internalization of endocytic markers. Despite its lectin-like properties, HNP-1 could bind to Env, CD4, and other host proteins in a glycan- and serum-independent manner, whereas the fusion inhibitory activity was greatly attenuated in the presence of human or bovine serum. This demonstrates that binding of α-defensin to molecules involved in HIV-1 fusion is necessary but not sufficient for blocking the virus entry. We therefore propose that oligomeric forms of defensin, which may be disrupted by serum, contribute to the anti-HIV-1 activity perhaps through cross-linking virus and/or host glycoproteins. This notion is supported by the ability of HNP-1 to reduce the mobile fraction of CD4 and coreceptors in the plasma membrane and to precipitate a core subdomain of Env in solution. The ability of HNP-1 to block HIV-1 uptake without interfering with constitutive endocytosis suggests a novel mechanism for broad activity against this and other viruses that enter cells through endocytic pathways.
Collapse
Affiliation(s)
- Lusine H Demirkhanyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, de Jong MF, Winter MG, Winter SE, Wehkamp J, Shen B, Salzman NH, Underwood MA, Tsolis RM, Young GM, Lu W, Lehrer RI, Bäumler AJ, Bevins CL. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 2012; 337:477-81. [PMID: 22722251 DOI: 10.1126/science.1218831] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.
Collapse
Affiliation(s)
- Hiutung Chu
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lay FT, Mills GD, Poon IKH, Cowieson NP, Kirby N, Baxter AA, van der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD. Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 2012; 287:19961-72. [PMID: 22511788 PMCID: PMC3370180 DOI: 10.1074/jbc.m111.331009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/16/2012] [Indexed: 11/06/2022] Open
Abstract
The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys(4) as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys(4) that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys(4) mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens.
Collapse
Affiliation(s)
- Fung T. Lay
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Grant D. Mills
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Ivan K. H. Poon
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Nathan P. Cowieson
- the Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nigel Kirby
- the Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Amy A. Baxter
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Nicole L. van der Weerden
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Con Dogovski
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Matthew A. Perugini
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Marilyn A. Anderson
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Marc Kvansakul
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Mark D. Hulett
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| |
Collapse
|
40
|
Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J Biol Chem 2012; 287:24554-62. [PMID: 22637473 DOI: 10.1074/jbc.m112.354068] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human α-defensins, such as human α-defensin 5 (HD5), block infection of non-enveloped viruses, including human adenoviruses (AdV), papillomaviruses (HPV), and polyomaviruses. Through mutational analysis of HD5, we have identified arginine residues that contribute to antiviral activity against AdV and HPV. Of two arginine residues paired on one face of HD5, Arg-28 is critical for both viruses, while Arg-9 is only important for AdV. Two arginine residues on the opposite face of the molecule (Arg-13 and Arg-32) and unpaired Arg-25 are less important for both. In addition, hydrophobicity at residue 29 is a major determinant of anti-adenoviral activity, and a chemical modification that prevents HD5 self-association was strongly attenuating. Although HD5 binds to the capsid of AdV, the molecular basis for this interaction is undefined. Capsid binding by HD5 is not purely charge-dependent, as substitution of lysine for Arg-9 and Arg-28 was deleterious. Analysis of HD5 analogs that retained varying levels of potency demonstrated that anti-adenoviral activity is directly correlated with HD5 binding to the virus, confirming that the viral capsid rather than the cell is the relevant target. Also, AdV aggregation induced by HD5 binding is not sufficient for neutralization. Rather, these studies confirm that the major mechanism of HD5-mediated neutralization of AdV depends upon specific binding to the viral capsid through interactions mediated in part by critical arginine residues, hydrophobicity at residue 29, and multimerization of HD5, which increases initial binding of virus to the cell but prevents subsequent viral uncoating and genome delivery to the nucleus.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
41
|
Rajabi M, Ericksen B, Wu X, de Leeuw E, Zhao L, Pazgier M, Lu W. Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at dimer interface. J Biol Chem 2012; 287:21615-27. [PMID: 22573326 DOI: 10.1074/jbc.m112.367995] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomers. They bind protein toxins, such as anthrax lethal factor (LF), and kill bacteria, including Escherichia coli and Staphylococcus aureus, among other functions. There are six members of the human α-defensin family: four human neutrophil peptides, including HNP1, and two enteric human defensins, including HD5. We subjected HD5 to comprehensive alanine scanning mutagenesis. We then assayed LF binding by surface plasmon resonance, LF activity by enzyme kinetic inhibition, and antibacterial activity by the virtual colony count assay. Most mutations could be tolerated, resulting in activity comparable with that of wild type HD5. However, the L29A mutation decimated LF binding and bactericidal activity against Escherichia coli and Staphylococcus aureus. A series of unnatural aliphatic and aromatic substitutions at position 29, including aminobutyric acid (Abu) and norleucine (Nle) correlated hydrophobicity with HD5 function. The crystal structure of L29Abu-HD5 depicted decreased hydrophobic contacts at the dimer interface, whereas the Nle-29-HD5 crystal structure depicted a novel mode of dimerization with parallel β strands. The effect of mutating Leu(29) is similar to that of a C-terminal hydrophobic residue of HNP1, Trp(26). In addition, in order to further clarify the role of dimerization in HD5 function, an obligate monomer was generated by N-methylation of the Glu(21) residue, decreasing LF binding and antibacterial activity against S. aureus. These results further characterize the dimer interface of the α-defensins, revealing a crucial role of hydrophobicity-mediated dimerization.
Collapse
Affiliation(s)
- Mohsen Rajabi
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
43
|
Zhao L, Ericksen B, Wu X, Zhan C, Yuan W, Li X, Pazgier M, Lu W. Invariant gly residue is important for α-defensin folding, dimerization, and function: a case study of the human neutrophil α-defensin HNP1. J Biol Chem 2012; 287:18900-12. [PMID: 22496447 DOI: 10.1074/jbc.m112.355255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human α-defensins (HNP) are synthesized in vivo as inactive prodefensins, and contain a conserved glycine, Gly(17), which is part of a β-bulge structure. It had previously been shown that the glycine main chain torsion angles are in a D-configuration, and that d-amino acids but not L-alanine could be substituted at that position to yield correctly folded peptides without the help of a prodomain. In this study, the glycine to L-alanine mutant defensin was synthesized in the form of a prodefensin using native chemical ligation. The ligation product folded correctly and yielded an active peptide upon CNBr cleavage. The L-Ala(17)-HNP1 crystal structure depicted a β-bulge identical to wild-type HNP1. However, dimerization was perturbed, causing one monomer to tilt with respect to the other in a dimerization model. Inhibitory activity against the anthrax lethal factor showed a 2-fold reduction relative to wild-type HNP1 as measured by the inhibitory concentration IC(50). Self-association was slightly reduced, as detected by surface plasmon resonance measurements. According to the results of the virtual colony count assay, the antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus cereus exhibited a less than 2-fold reduction in virtual lethal dose values. Prodefensins with two other L-amino acid substitutions, Arg and Phe, at the same position did not fold, indicating that only small side chains are tolerable. These results further elucidate the factors governing the region of the β-bulge structure that includes Gly(17), illuminating why glycine is conserved in all mammalian α-defensins.
Collapse
Affiliation(s)
- Le Zhao
- The 1st Affiliated Hospital, Xi'an Jiaotong University School of Medicine, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Teng L, Gao B, Zhang S. The first chordate big defensin: identification, expression and bioactivity. FISH & SHELLFISH IMMUNOLOGY 2012; 32:572-577. [PMID: 22281606 DOI: 10.1016/j.fsi.2012.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
Defensins are broadly present in plants, invertebrates and vertebrates, but little information is available about it in amphioxus, a protochordate holding a key phylogenetic position. In this study, a big defensin cDNA was identified from the amphioxus Branchiostoma japonicum (termed Bjbd). The cDNA contained an open reading frame (ORF) of 354 bp encoding a 117 amino acid protein, which had an N-terminal signal sequence followed by a propeptide and the mature big defensin. The mature peptide had the hydrophobic region GAAAVT(A)AA at N-terminus and the consensus pattern C-X6-C-X3-C-X13(14)-C-X4-C-C at C-terminus as well as four α-helices, four β-sheets, and three disulfide bridges (C1-C5, C2-C4 and C3-C6) in the predicted tertiary structure. This is the first big defensin gene ever identified in the phylum Chordata. Quantitative real-time PCR analysis revealed that Bjbd was constitutively expressed in most of the tissues examined, and its expression was remarkably up-regulated following the challenge with LPS, LTA, Aeromonas hydrophila and Staphylococcus aureus. Moreover, the recombinant BjBD was shown to be able to inhibit the growth of S. aureus, Escherichia coli and A. hydrophila. Taken together, these suggest that BjBD is a molecule involved in the removal of invading pathogens.
Collapse
Affiliation(s)
- Lei Teng
- Department of Biology, Medical College of Qingdao University, Qingdao 266071, China
| | | | | |
Collapse
|
45
|
Zoega M, Ravnsborg T, Højrup P, Houen G, Schou C. Proteinase 3 carries small unusual carbohydrates and associates with αlpha-defensins. J Proteomics 2012; 75:1472-85. [DOI: 10.1016/j.jprot.2011.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/02/2011] [Accepted: 11/15/2011] [Indexed: 12/15/2022]
|
46
|
Pazgier M, Wei G, Ericksen B, Jung G, Wu Z, de Leeuw E, Yuan W, Szmacinski H, Lu WY, Lubkowski J, Lehrer RI, Lu W. Sometimes it takes two to tango: contributions of dimerization to functions of human α-defensin HNP1 peptide. J Biol Chem 2012; 287:8944-53. [PMID: 22270360 DOI: 10.1074/jbc.m111.332205] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human myeloid α-defensins called HNPs play multiple roles in innate host defense. The Trp-26 residue of HNP1 was previously shown to contribute importantly to its ability to kill S. aureus, inhibit anthrax lethal factor (LF), bind gp120 of HIV-1, dimerize, and undergo further self-association. To gain additional insights into the functional significance of dimerization, we compared wild type HNP1 to dimerization-impaired, N-methylated HNP1 monomers and to disulfide-tethered obligate HNP1 dimers. The structural effects of these modifications were confirmed by x-ray crystallographic analyses. Like the previously studied W26A mutation, N-methylation of Ile-20 dramatically reduced the ability of HNP1 to kill Staphylococcus aureus, inhibit LF, and bind gp120. Importantly, this modification had minimal effect on the ability of HNP1 to kill Escherichia coli. The W26A and MeIle-20 mutations impaired defensin activity synergistically. N-terminal covalent tethering rescued the ability of W26A-HNP1 to inhibit LF but failed to restore its defective killing of S. aureus. Surface plasmon resonance studies revealed that Trp-26 mediated the association of monomers and canonical dimers of HNP1 to immobilized HNP1, LF, and gp120, and also indicated a possible mode of tetramerization of HNP1 mediated by Ile-20 and Leu-25. This study demonstrates that dimerization contributes to some but not all of the many and varied activities of HNP1.
Collapse
Affiliation(s)
- Marzena Pazgier
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pozharski E. Apparent instability of crystallographic refinement in the presence of disordered model fragments and upon insufficiently restrained model geometry. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:966-72. [DOI: 10.1107/s090744491103914x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/23/2011] [Indexed: 05/26/2023]
Affiliation(s)
- Edwin Pozharski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
48
|
Rapista A, Ding J, Benito B, Lo YT, Neiditch MB, Lu W, Chang TL. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology 2011; 8:45. [PMID: 21672195 PMCID: PMC3146398 DOI: 10.1186/1742-4690-8-45] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/14/2011] [Indexed: 11/29/2022] Open
Abstract
Background Concurrent sexually transmitted infections (STIs) increase the likelihood of HIV transmission. The levels of defensins are frequently elevated in genital fluids from individuals with STIs. We have previously shown that human defensins 5 and 6 (HD5 and HD6) promote HIV entry and contribute to Neisseria gonorrhoeae-mediated enhancement of HIV infectivity in vitro. In this study, we dissect the molecular mechanism of the HIV enhancing effect of defensins. Results HD5 and HD6 primarily acted on the virion to promote HIV infection. Both HD5 and HD6 antagonized the anti-HIV activities of inhibitors of HIV entry (TAK 779) and fusion (T-20) when the inhibitors were present only during viral attachment; however, when these inhibitors were added back during viral infection they overrode the HIV enhancing effect of defensins. HD5 and HD6 enhanced HIV infectivity by promoting HIV attachment to target cells. Studies using fluorescent HIV containing Vpr-GFP indicated that these defensins enhanced HIV attachment by concentrating virus particles on the target cells. HD5 and HD6 blocked anti-HIV activities of soluble glycosaminoglycans including heparin, chondroitin sulfate, and dextran sulfate. However, heparin, at a high concentration, diminished the HIV enhancing effect of HD5, but not HD6. Additionally, the degree of the HIV enhancing effect of HD5, but not HD6, was increased in heparinase-treated cells. These results suggest that HD5 and haparin/heparan sulfate compete for binding to HIV. Conclusions HD5 and HD6 increased HIV infectivity by concentrating virus on the target cells. These defensins may have a negative effect on the efficacy of microbicides, especially in the setting of STIs.
Collapse
Affiliation(s)
- Aprille Rapista
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|