1
|
Chen T, Zhang B, Xie H, Huang C, Wu Q. GRHL2 regulates keratinocyte EMT-MET dynamics and scar formation during cutaneous wound healing. Cell Death Dis 2024; 15:748. [PMID: 39402063 PMCID: PMC11473813 DOI: 10.1038/s41419-024-07121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024]
Abstract
After cutaneous wounds successfully heal, keratinocytes that underwent the epithelial-mesenchymal transition (EMT) regain their epithelial characteristics, while in scar tissue, epidermal cells persist in a mesenchymal state. However, the regulatory mechanisms governing this reversion are poorly understood, and the impact of persistent mesenchymal-like epidermal cells in scar tissue remains unclear. In the present study, we found that during wound healing, the regulatory factor GRHL2 is highly expressed in normal epidermal cells, downregulated in EMT epidermal cells, and upregulated again during the process of mesenchymal-epithelial transition (MET). We further demonstrated that interfering with GRHL2 expression in epidermal cells can effectively induce the EMT. Conversely, the overexpression of GRHL2 in EMT epidermal cells resulted in partial reversion of the EMT to an epithelial state. To investigate the effects of failed MET in epidermal cells on skin wound healing, we interfered with GRHL2 expression in epidermal cells surrounding the cutaneous wound. The results demonstrated that the persistence of epidermal cells in the mesenchymal state promoted fibrosis in scar tissue, manifested by increased thickness of scar tissue, deposition of collagen and fibronectin, as well as the activation of myofibroblasts. Furthermore, the miR-200s/Zeb1 axis was perturbed in GRHL2 knockdown keratinocytes, and transfection with miR-200s analogs promoted the reversion of EMT in epidermal cells, which indicates that they mediate the EMT process in keratinocytes. These results suggest that restoration of the epithelial state in epidermal cells following the EMT is essential to wound healing, providing potential therapeutic targets for preventing scar formation.
Collapse
Affiliation(s)
- Tianying Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanqi Xie
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Tummala H, Walne AJ, Badat M, Patel M, Walne AM, Alnajar J, Chow CC, Albursan I, Frost JM, Ballard D, Killick S, Szitányi P, Kelly AM, Raghavan M, Powell C, Raymakers R, Todd T, Mantadakis E, Polychronopoulou S, Pontikos N, Liao T, Madapura P, Hossain U, Vulliamy T, Dokal I. The evolving genetic landscape of telomere biology disorder dyskeratosis congenita. EMBO Mol Med 2024; 16:2560-2582. [PMID: 39198715 PMCID: PMC11473520 DOI: 10.1038/s44321-024-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome, caused by genetic mutations that principally affect telomere biology. Approximately 35% of cases remain uncharacterised at the genetic level. To explore the genetic landscape, we conducted genetic studies on a large collection of clinically diagnosed cases of DC as well as cases exhibiting features resembling DC, referred to as 'DC-like' (DCL). This led us to identify several novel pathogenic variants within known genetic loci and in the novel X-linked gene, POLA1. In addition, we have also identified several novel variants in POT1 and ZCCHC8 in multiple cases from different families expanding the allelic series of DC and DCL phenotypes. Functional characterisation of novel POLA1 and POT1 variants, revealed pathogenic effects on protein-protein interactions with primase, CTC1-STN1-TEN1 (CST) and shelterin subunit complexes, that are critical for telomere maintenance. ZCCHC8 variants demonstrated ZCCHC8 deficiency and signs of pervasive transcription, triggering inflammation in patients' blood. In conclusion, our studies expand the current genetic architecture and broaden our understanding of disease mechanisms underlying DC and DCL disorders.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK.
- Barts Health NHS Trust, London, UK.
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Mohsin Badat
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Manthan Patel
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Abigail M Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Chi Ching Chow
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Ibtehal Albursan
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jennifer M Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - David Ballard
- Department of Analytical, Environmental & Forensic Sciences, Kings College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK
| | - Sally Killick
- Department of Haematology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Peter Szitányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Prague, Czech Republic
| | - Anne M Kelly
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Manoj Raghavan
- Clinical Haematology, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | - Corrina Powell
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Reinier Raymakers
- University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Tony Todd
- Department of Haematology, Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - Elpis Mantadakis
- Department of Pediatrics' University General Hospital of Alexandroupolis, Democritus University of Thrace Faculty of Medicine, 6th Kilometer Alexandroupolis-Makris, 68 100 Alexandroupolis, Thrace, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tianyi Liao
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Pradeep Madapura
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Upal Hossain
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
3
|
MacFawn I, Farris J, Pifer P, Margaryan NV, Akhter H, Wang L, Dziadowicz S, Denvir J, Hu G, Frisch SM. Grainyhead-like-2, an epithelial master programmer, promotes interferon induction and suppresses breast cancer recurrence. Mol Immunol 2024; 170:156-169. [PMID: 38692097 PMCID: PMC11106721 DOI: 10.1016/j.molimm.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.
Collapse
Affiliation(s)
- Ian MacFawn
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Joshua Farris
- Wake Forest University, Department of Radiation Oncology, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Phillip Pifer
- Department of Radiation Oncology, WVU Cancer Institute, 1 Medical Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- WVU Cancer Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - James Denvir
- Byrd Biotechnology Center, Marshall University, One John Marshall Drive, Huntington, WV 25701, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA.
| | - Steven M Frisch
- Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, Box 9142, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
4
|
Forrester-Gauntlett B, Peters L, Oback B. Grainyhead-like 2 is required for morphological integrity of mouse embryonic stem cells and orderly formation of inner ear-like organoids. Front Cell Dev Biol 2023; 11:1112069. [PMID: 37745294 PMCID: PMC10513505 DOI: 10.3389/fcell.2023.1112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Mutations in the transcription factor gene grainyhead-like 2 (GRHL2) are associated with progressive non-syndromic sensorineural deafness autosomal dominant type 28 (DFNA28) in humans. Since complete loss of Grhl2 is lethal in mouse embryos, we studied its role during inner ear pathology and hearing loss in vitro. To this end, we generated different homozygous deletions to knockout Grhl2 in mouse embryonic stem cells (Grhl2-KO ESCs), including some mimicking naturally occurring truncations in the dimerisation domain related to human DFNA28. Under naïve culture conditions, Grhl2-KO cells in suspension were more heterogenous in size and larger than wild-type controls. Adherent Grhl2-KO cells were also larger, with a less uniform shape, flattened, less circular morphology, forming loose monolayer colonies with poorly defined edges. These changes correlated with lower expression of epithelial cadherin Cdh1 but no changes in tight junction markers (Ocln, Tjp2) or other Grhl isoforms (Grhl1, Grhl3). Clonogenicity from single cells, proliferation rates of cell populations and proliferation markers were reduced in Grhl2-KO ESCs. We next induced stepwise directed differentiation of Grhl2-KO ESCs along an otic pathway, giving rise to three-dimensional inner ear-like organoids (IELOs). Quantitative morphometry revealed that Grhl2-KO cells initially formed larger IELOs with a less compacted structure, more eccentric shape and increased surface area. These morphological changes persisted for up to one week. They were partially rescued by forced cell aggregation and fully restored by stably overexpressing exogenous Grhl2 in Grhl2-KO ESCs, indicating that Grhl2 alters cell-cell interactions. On day 8, aggregates were transferred into minimal maturation medium to allow self-guided organogenesis for another two weeks. During this period, Grhl2-KO cells and wild-type controls developed similarly, expressing neural, neuronal and sensory hair cell markers, while maintaining their initial differences in size and shape. In summary, Grhl2 is required for morphological maintenance of ESCs and orderly formation of IELOs, consistent with an essential role in organising epithelial integrity during inner ear development. Our findings validate quantitative morphometry as a useful, non-invasive screening method for molecular phenotyping of candidate mutations during organoid development.
Collapse
Affiliation(s)
- Blaise Forrester-Gauntlett
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Linda Peters
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Björn Oback
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Fan Y, Hackland J, Baggiolini A, Hung LY, Zhao H, Zumbo P, Oberst P, Minotti AP, Hergenreder E, Najjar S, Huang Z, Cruz NM, Zhong A, Sidharta M, Zhou T, de Stanchina E, Betel D, White RM, Gershon M, Margolis KG, Studer L. hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung's disease. Cell Stem Cell 2023; 30:264-282.e9. [PMID: 36868194 PMCID: PMC10034921 DOI: 10.1016/j.stem.2023.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.
Collapse
Affiliation(s)
- Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - James Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Y Hung
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Polina Oberst
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah Najjar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Zixing Huang
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nelly M Cruz
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Zhong
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mega Sidharta
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10010, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
GRHL2 Regulation of Growth/Motility Balance in Luminal versus Basal Breast Cancer. Int J Mol Sci 2023; 24:ijms24032512. [PMID: 36768838 PMCID: PMC9916895 DOI: 10.3390/ijms24032512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
The transcription factor Grainyhead-like 2 (GRHL2) is a critical transcription factor for epithelial tissues that has been reported to promote cancer growth in some and suppress aspects of cancer progression in other studies. We investigated its role in different breast cancer subtypes. In breast cancer patients, GRHL2 expression was increased in all subtypes and inversely correlated with overall survival in basal-like breast cancer patients. In a large cell line panel, GRHL2 was expressed in luminal and basal A cells, but low or absent in basal B cells. The intersection of ChIP-Seq analysis in 3 luminal and 3 basal A cell lines identified conserved GRHL2 binding sites for both subtypes. A pathway analysis of ChIP-seq data revealed cell-cell junction regulation and epithelial migration as well as epithelial proliferation, as candidate GRHL2-regulated processes and further analysis of hub genes in these pathways showed similar regulatory networks in both subtypes. However, GRHL2 deletion in a luminal cell line caused cell cycle arrest while this was less prominent in a basal A cell line. Conversely, GRHL2 loss triggered enhanced migration in the basal A cells but failed to do so in the luminal cell line. ChIP-Seq and ChIP-qPCR demonstrated GRHL2 binding to CLDN4 and OVOL2 in both subtypes but not to other GRHL2 targets controlling cell-cell adhesion that were previously identified in other cell types, including CDH1 and ZEB1. Nevertheless, E-cadherin protein expression was decreased upon GRHL2 deletion especially in the luminal line and, in agreement with its selectively enhanced migration, only the basal A cell line showed concomitant induction of vimentin and N-cadherin. To address how the balance between growth reduction and aspects of EMT upon loss of GRHL2 affected in vivo behavior, we used a mouse basal A orthotopic transplantation model in which the GRHL2 gene was silenced. This resulted in reduced primary tumor growth and a reduction in number and size of lung colonies, indicating that growth suppression was the predominant consequence of GRHL2 loss. Altogether, these findings point to largely common but also distinct roles for GRHL2 in luminal and basal breast cancers with respect to growth and motility and indicate that, in agreement with its negative association with patient survival, growth suppression is the dominant response to GRHL2 loss.
Collapse
|
7
|
Wang Z, Coban B, Wu H, Chouaref J, Daxinger L, Paulsen MT, Ljungman M, Smid M, Martens JWM, Danen EHJ. GRHL2-controlled gene expression networks in luminal breast cancer. Cell Commun Signal 2023; 21:15. [PMID: 36691073 PMCID: PMC9869538 DOI: 10.1186/s12964-022-01029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
Grainyhead like 2 (GRHL2) is an essential transcription factor for development and function of epithelial tissues. It has dual roles in cancer by supporting tumor growth while suppressing epithelial to mesenchymal transitions (EMT). GRHL2 cooperates with androgen and estrogen receptors (ER) to regulate gene expression. We explore genome wide GRHL2 binding sites conserved in three ER⍺/GRHL2 positive luminal breast cancer cell lines by ChIP-Seq. Interaction with the ER⍺/FOXA1/GATA3 complex is observed, however, only for a minor fraction of conserved GRHL2 peaks. We determine genome wide transcriptional dynamics in response to loss of GRHL2 by nascent RNA Bru-seq using an MCF7 conditional knockout model. Integration of ChIP- and Bru-seq pinpoints candidate direct GRHL2 target genes in luminal breast cancer. Multiple connections between GRHL2 and proliferation are uncovered, including transcriptional activation of ETS and E2F transcription factors. Among EMT-related genes, direct regulation of CLDN4 is corroborated but several targets identified in other cells (including CDH1 and ZEB1) are ruled out by both ChIP- and Bru-seq as being directly controlled by GRHL2 in luminal breast cancer cells. Gene clusters correlating positively (including known GRHL2 targets such as ErbB3, CLDN4/7) or negatively (including TGFB1 and TGFBR2) with GRHL2 in the MCF7 knockout model, display similar correlation with GRHL2 in ER positive as well as ER negative breast cancer patients. Altogether, this study uncovers gene sets regulated directly or indirectly by GRHL2 in luminal breast cancer, identifies novel GRHL2-regulated genes, and points to distinct GRHL2 regulation of EMT in luminal breast cancer cells. Video Abstract.
Collapse
Affiliation(s)
- Zi Wang
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
FKBP52 and FKBP51 differentially regulate the stability of estrogen receptor in breast cancer. Proc Natl Acad Sci U S A 2022; 119:e2110256119. [PMID: 35394865 PMCID: PMC9169630 DOI: 10.1073/pnas.2110256119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SignificanceEstrogen receptor α (ERα) is a transcription factor that induces cell proliferation and exhibits increased expression in a large subset of breast cancers. We comprehensively searched for indicators of poor prognosis in ERα-positive breast cancer through the multiple databases, including interactome, transcriptome, and survival analysis, and identified FKBP52. We found that two immunophilins, FKBP52 and FKBP51, have opposing effects on ERα stability and propose that therapeutic targeting of FKBP52 could be useful for the prevention and treatment of ERα-positive breast cancers, including endocrine therapy-resistant breast cancers.
Collapse
|
9
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Jang M, An J, Oh SW, Lim JY, Kim J, Choi JK, Cheong JH, Kim P. Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer. Nat Biomed Eng 2021; 5:114-123. [PMID: 33288878 DOI: 10.1038/s41551-020-00657-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/04/2020] [Indexed: 01/30/2023]
Abstract
In many cancers, tumour progression is associated with increased tissue stiffness. Yet, the mechanisms associating tissue stiffness with tumorigenesis and malignant transformation are unclear. Here we show that in gastric cancer cells, the stiffness of the extracellular matrix reversibly regulates the DNA methylation of the promoter region of the mechanosensitive Yes-associated protein (YAP). Reciprocal interactions between YAP and the DNA methylation inhibitors GRHL2, TET2 and KMT2A can cause hypomethylation of the YAP promoter and stiffness-induced oncogenic activation of YAP. Direct alteration of extracellular cues via in situ matrix softening reversed YAP activity and the epigenetic program. Our findings suggest that epigenetic reprogramming of the mechanophysical properties of the extracellular microenvironment of solid tumours may represent a therapeutic strategy for the inhibition of cancer progression.
Collapse
Affiliation(s)
- Minjeong Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jinhyeon An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seung Won Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joo Yeon Lim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Jae-Ho Cheong
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea. .,Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Sundararajan V, Pang QY, Choolani M, Huang RYJ. Spotlight on the Granules (Grainyhead-Like Proteins) - From an Evolutionary Conserved Controller of Epithelial Trait to Pioneering the Chromatin Landscape. Front Mol Biosci 2020; 7:213. [PMID: 32974388 PMCID: PMC7471608 DOI: 10.3389/fmolb.2020.00213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
He J, Feng C, Zhu H, Wu S, Jin P, Xu T. Grainyhead-like 2 as a double-edged sword in development and cancer. Am J Transl Res 2020; 12:310-331. [PMID: 32194886 PMCID: PMC7061838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Grainyhead-like 2 (GRHL2), one of the three homologs of Drosophila grainyhead, contributes to epithelial morphogenesis and differentiation. Dysregulation of GRHL2 has been shown to be involved in hearing loss and neural tube defects during embryogenesis. Moreover, it is well-recognized that GRHL2 suppresses epithelial-to-mesenchymal transition (EMT) that is required for migration and invasion of carcinoma, implicating, GRHL2 in carcinogenesis. Diverse mechanisms, as well as the varied roles of GRHL2 in different tumor tissues, have been elucidated. However, the functions of GRHL2 appear to be more complicated than initially thought. GRHL2, acting as either a tumor enhancer or a tumor inhibitor, depends on the type of cancer. In this review, we summarize research progress about normal physiological functions of GRHL2 including epithelial morphogenesis, neural tube closure, and hearing loss. Moreover, the mechanisms of GRHL2 in tumorigenesis, containing EMT suppression, forming a negative feedback loop with ZEB1 and miR200 family, interactions with estrogen receptor (ER)-dependent signaling pathway, regulation of telomerase reverse transcriptase and relationships with TGF-beta signaling pathway are discussed in this review in an effort to better understand the roles of GRHL2 in a variety of cancers toward the goal of GRHL2-targeted treatment in the near future.
Collapse
Affiliation(s)
- Jiaxing He
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Chunyang Feng
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - He Zhu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Shuying Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
13
|
Chung VY, Tan TZ, Ye J, Huang RL, Lai HC, Kappei D, Wollmann H, Guccione E, Huang RYJ. The role of GRHL2 and epigenetic remodeling in epithelial-mesenchymal plasticity in ovarian cancer cells. Commun Biol 2019; 2:272. [PMID: 31372511 PMCID: PMC6656769 DOI: 10.1038/s42003-019-0506-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells exhibit phenotypic plasticity during epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2.
Collapse
Affiliation(s)
- Vin Yee Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 11031 Taipei, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 11031 Taipei, Taiwan
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673 Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673 Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- School of Medicine, College of Medicine, National Taiwan University, 10051 Taipei, Taiwan
| |
Collapse
|
14
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
15
|
Chen W, Shin KH, Kim S, Shon WJ, Kim RH, Park NH, Kang MK. hTERT peptide fragment GV1001 demonstrates radioprotective and antifibrotic effects through suppression of TGF‑β signaling. Int J Mol Med 2018; 41:3211-3220. [PMID: 29568955 PMCID: PMC5881842 DOI: 10.3892/ijmm.2018.3566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
GV1001 is a 16‑amino acid peptide derived from the human telomerase reverse transcriptase (hTERT) protein (616‑626; EARPALLTSRLRFIPK), which lies within the reverse transcriptase domain. Originally developed as an anticancer vaccine, GV1001 demonstrates diverse cellular effects, including anti‑inflammatory, tumor suppressive and antiviral effects. In the present study, the radioprotective and antifibrotic effects of GV1001 were demonstrated through suppressing transforming growth factor‑β (TGF‑β) signaling. Proliferating human keratinocytes underwent premature senescence upon exposure to ionizing radiation (IR), however, treatment of cells with GV1001 allowed the cells to proliferate and showed a reduction in senescent phenotype. GV1001 treatment notably increased the levels of Grainyhead‑like 2 and phosphorylated (p‑)Akt (Ser473), and reduced the activation of p53 and the level of p21/WAF1 in irradiated keratinocytes. It also markedly suppressed the level of TGF‑β signaling molecules, including p‑small mothers against decapentaplegic (Smad)2/3 and Smad4, and TGF‑β target genes, including zinc finger E‑box binding homeobox 1, fibronectin, N‑cadharin and Snail, in irradiated keratinocytes. Furthermore, GV1001 suppressed TGF‑β signaling in primary human fibroblasts and inhibited myofibroblast differentiation. Chromatin immunoprecipitation revealed that GV1001 suppressed the binding of Smad2 on the promoter regions of collagen type III α1 chain (Col3a1) and Col1a1. In a dermal fibrosis model in vivo, GV1001 treatment notably reduced the thickness of fibrotic lesions and the synthesis of Col3a1. These data indicated that GV1001 ameliorated the IR‑induced senescence phenotype and tissue fibrosis by inhibiting TGF‑β signaling and may have therapeutic effects on radiation‑induced tissue damage.
Collapse
Affiliation(s)
- Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | - Won-Jun Shon
- School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Chen W, Shimane T, Kawano S, Alshaikh A, Kim SY, Chung SH, Kim RH, Shin KH, Walentin K, Park NH, Schmidt-Ott KM, Kang MK. Human Papillomavirus 16 E6 Induces FoxM1B in Oral Keratinocytes through GRHL2. J Dent Res 2018; 97:795-802. [PMID: 29443638 DOI: 10.1177/0022034518756071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-risk human papillomavirus (HPV) is a major risk factor for oral and pharyngeal cancers (OPCs), yet the detailed mechanisms by which HPV promotes OPCs are not understood. Forkhead box M1B (FoxM1B) is an oncogene essential for cell cycle progression and tumorigenesis, and it is aberrantly overexpressed in many tumors. We previously showed that FoxM1B was the putative target of an epithelial-specific transcription factor, Grainyhead-like 2 (GRHL2). In the current study, we demonstrate that HPV type 16 (HPV-16) E6 induces FoxM1B in human oral keratinocytes (HOKs) and tonsillar epithelial cells (TECs) in part through GRHL2. FoxM1B was barely detectable in cultured normal human oral keratinocytes (NHOKs) and progressively increased in immortalized HOKs harboring HPV-16 genome (HOK-16B) and tumorigenic HOK-16B/BaP-T cells. Retroviral expression of HPV-16 E6 and/or E7 in NHOKs, TECs, and hypopharyngeal carcinoma cells (FaDu) revealed induction of FoxM1B and GRHL2 by the E6 protein but not E7. Both GRHL2 and FoxM1B were strongly induced in the epidermis of HPV-16 E6 transgenic mice and HPV+ oral squamous cell carcinomas. Ectopic expression of FoxM1B led to acquisition of transformed phenotype in HOK-16B cells. Loss of FoxM1B by lentiviral short hairpin RNA vector or chemical inhibitor led to elimination of tumorigenic characteristics of HOK-16B/BaP-T cells. Luciferase reporter assay revealed that GRHL2 directly bound and regulated the FoxM1B gene promoter activity. Using epithelial-specific Grhl2 conditional knockout mice, we exposed wild-type (WT) and Grhl2 KO mice to 4-nitroquinolin 1-oxide (4-NQO), which led to induction of FoxM1B in the tongue tissues and rampant oral tumor development in the WT mice. However, 4-NQO exposure failed to induce tongue tumors or induction of FoxM1B expression in Grhl2 KO mice. Collectively, these results indicate that HPV-16 induces FoxM1B in part through GRHL2 transcriptional activity and that elevated FoxM1B level is required for oropharyngeal cancer development.
Collapse
Affiliation(s)
- W Chen
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - T Shimane
- 2 Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - S Kawano
- 3 Asahi University School of Dentistry, Gifu, Japan
| | - A Alshaikh
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S Y Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S H Chung
- 4 Deptartment of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - R H Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K H Shin
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K Walentin
- 6 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - N H Park
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K M Schmidt-Ott
- 6 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - M K Kang
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
17
|
Daniel SG, Russ AD, Guthridge KM, Raina AI, Estes PS, Parsons LM, Richardson HE, Schroeder JA, Zarnescu DC. miR-9a mediates the role of Lethal giant larvae as an epithelial growth inhibitor in Drosophila. Biol Open 2018; 7:bio.027391. [PMID: 29361610 PMCID: PMC5829493 DOI: 10.1242/bio.027391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila lethal giant larvae (lgl) encodes a conserved tumor suppressor with established roles in cell polarity, asymmetric division, and proliferation control. Lgl's human orthologs, HUGL1 and HUGL2, are altered in human cancers, however, its mechanistic role as a tumor suppressor remains poorly understood. Based on a previously established connection between Lgl and Fragile X protein (FMRP), a miRNA-associated translational regulator, we hypothesized that Lgl may exert its role as a tumor suppressor by interacting with the miRNA pathway. Consistent with this model, we found that lgl is a dominant modifier of Argonaute1 overexpression in the eye neuroepithelium. Using microarray profiling we identified a core set of ten miRNAs that are altered throughout tumorigenesis in Drosophila lgl mutants. Among these are several miRNAs previously linked to human cancers including miR-9a, which we found to be downregulated in lgl neuroepithelial tissues. To determine whether miR-9a can act as an effector of Lgl in vivo, we overexpressed it in the context of lgl knock-down by RNAi and found it able to reduce the overgrowth phenotype caused by Lgl loss in epithelia. Furthermore, cross-comparisons between miRNA and mRNA profiling in lgl mutant tissues and human breast cancer cells identified thrombospondin (tsp) as a common factor altered in both fly and human breast cancer tumorigenesis models. Our work provides the first evidence of a functional connection between Lgl and the miRNA pathway, demonstrates that miR-9a mediates Lgl's role in restricting epithelial proliferation, and provides novel insights into pathways controlled by Lgl during tumor progression. Summary: Mir-9a overexpression can suppress the overgrowth phenotype caused by Lgl knock-down in epithelia. Gene profiling identifies pathways dysregulated in lgl mutants and shared features between flies and human cancer cells.
Collapse
Affiliation(s)
- Scott G Daniel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Atlantis D Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Kathryn M Guthridge
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia
| | - Ammad I Raina
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Patricia S Estes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Biochemistry & Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Joyce A Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA .,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
18
|
Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2017. [DOI: 10.1002/dvdy.24541] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Chris Ward
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Mathew Suji Eapen
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| | - Stephen Myers
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
| | - Oskar Hallgren
- Department of Experimental Medical Sciences; Department of Respiratory Medicine and Allergology, Lund University; Sweden
| | - Herbert Levine
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Sukhwinder Singh Sohal
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
19
|
Frisch SM, Farris JC, Pifer PM. Roles of Grainyhead-like transcription factors in cancer. Oncogene 2017; 36:6067-6073. [PMID: 28714958 DOI: 10.1038/onc.2017.178] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The mammalian homologs of the D. melanogaster Grainyhead gene, Grainyhead-like 1-3 (GRHL1, GRHL2 and GRHL3), are transcription factors implicated in wound healing, tubulogenesis and cancer. Their induced target genes encode diverse epithelial cell adhesion molecules, while mesenchymal genes involved in cell migration and invasion are repressed. Moreover, GRHL2 suppresses the oncogenic epithelial-mesencyhmal transition, thereby acting as a tumor suppressor. Mechanisms, some involving established cancer-related signaling/transcription factor pathways (for example, Wnt, TGF-β, mir200, ZEB1, OVOL2, p63 and p300) and translational implications of the Grainyhead proteins in cancer are discussed in this review article.
Collapse
Affiliation(s)
- S M Frisch
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - J C Farris
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - P M Pifer
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
20
|
Abstract
Grainyhead-like 2 is a human homolog of Drosophila grainyhead. It inhibits epithelial-to-mesenchymal transition that is necessary for cell migration, and it is involved in neural tube closure, epithelial morphogenesis, and barrier formation during embryogenesis by regulation of the expression of cell junction proteins such as E-cadherin and vimentin. Cancer shares many common characters with development such as epithelial-to-mesenchymal transition. In addition to its important role in development, grainyhead-like 2 is implicated in carcinogenesis as well. However, the reports on grainyhead-like 2 in various cancers are controversial. Grainyhead-like 2 can act as either a tumor suppressor or an oncogene with the mechanisms not well elucidated. In this review, we summarized recent progress on grainyhead-like 2 in development and cancer in order to get an insight into the regulation network of grainyhead-like 2 and understand the roles of grainyhead-like 2 in various cancers.
Collapse
Affiliation(s)
- Lijun Ma
- 1 Department of Oncology, Tongren Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hongli Yan
- 3 Department of Laboratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, P.R. China
| | - Hui Zhao
- 4 School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong
| | - Jianmin Sun
- 2 Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R. China.,5 Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,6 Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Kumar A, Nilednu P, Kumar A, Sharma NK. Epigenetic perturbation driving asleep telomerase reverse transcriptase: Possible therapeutic avenues in carcinoma. Tumour Biol 2017; 39:1010428317695951. [PMID: 28347254 DOI: 10.1177/1010428317695951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
Abstract
In the last decade, implications of human telomerase reverse transcriptase (hTERT), a component of ribonucleoprotein telomerase in aging, senescence, and stem cell are highly evident. Besides, the activation of hTERT is also being documented several cancer types including carcinoma. The awakening of telomerase during carcinoma initiation and development is being seen with different perspectives including genetic and epigenetic tools and events. In view of several tumor progenitors genes (also referred as epigenetic mediators), telomerase is placed as key enzyme to achieve the carcinoma phenotype and sustain during the progression. It is true that swaying of telomerase in carcinoma could be facilitated with dedicated set of epigenetic modulators and modifiers players. These epigenetic alterations are heritable, potentially reversible, and seen as the epigenetic signature of carcinoma. Several papers converge to suggest that DNA methylation, histone modification, and small non-coding RNAs are the widely appreciated epigenetic changes towards hTERT modulation. In this review, we summarize the contribution of epigenetic factors in the telomerase activation and discuss potential avenues to achieve therapeutic intervention in carcinoma.
Collapse
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Pritish Nilednu
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Azad Kumar
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| |
Collapse
|
22
|
Dworkin S, Auden A, Partridge DD, Daglas M, Medcalf RL, Mantamadiotis T, Georgy SR, Darido C, Jane SM, Ting SB. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice. Dev Neurobiol 2017; 77:775-788. [PMID: 27907249 DOI: 10.1002/dneu.22469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/17/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023]
Abstract
The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3-/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia
| | - Darren D Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia
| | - Maria Daglas
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia
| | - Theo Mantamadiotis
- Department of Pathology, University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Smitha R Georgy
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, The Victorian Comprehensive Cancer Centre, Parkville, Victoria, 3050, Australia
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia.,Department of Hematology, Alfred Hospital, Prahran, Victoria, 3181, Australia
| | - Stephen B Ting
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3181, Australia.,Department of Hematology, Alfred Hospital, Prahran, Victoria, 3181, Australia
| |
Collapse
|
23
|
Grhl2 reduces invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer. Oncogenesis 2017; 6:e284. [PMID: 28067907 PMCID: PMC5294246 DOI: 10.1038/oncsis.2016.83] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Metastasis is one of the typical features of malignancy that significantly increases cancer-related mortality. Recent studies have shown that epithelial-mesenchymal transition (EMT) is closely related to the invasion and migration of cancer cells. Grainyhead-like 2 (Grhl2), a transcription factor, has been reported to be associated with several tumor processes including EMT. In the previous study, we have reported that Grhl2 functioned as a tumor suppressor in proliferation and apoptosis of gastric cancer. Here we aim to explore the effects of Grhl2 on invasion and migration of gastric cancer and further clarify its possible underlying mechanisms. As a result, in both SGC7901 and MKN45 cells, Grhl2 overexpression significantly inhibited the ability of invasion and migration. In addition, preliminary experiments showed that Grhl2 reduces the protein expression of matrix metalloproteinase-2, -7 and -9 (MMP-2, MMP-7 and MMP-9). Most importantly, Grhl2 antagonizes transforming growth factor-β (TGFβ)-induced EMT, and inhibition of TGFβ signaling pathways can restore Grhl2 expression. Finally, the results of subcutaneous xenograft model indicated that Grhl2 suppresses the growth of gastric cancer and reverses EMT process in vivo. Meanwhile, the metastatic tumor model further confirmed the inhibition of Grhl2 on metastasis of gastric cancer. Taken together, our findings proved that Grhl2, functioned as a tumor suppressor, reduces the invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer.
Collapse
|
24
|
MicroRNA-194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead-like 2 in psoriasis. Pathol Res Pract 2016; 213:89-97. [PMID: 28040329 DOI: 10.1016/j.prp.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are currently emerged as important regulators in psoriasis. Psoriasis is characterized by hyperproliferation and impaired differentiation of keratinocytes in skin lesions. miR-194 is a well-known regulator of cell proliferation and differentiation. However, the role of miR-194 in psoriasis pathogenesis remains unclear. In this study we aimed to investigate the role of miR-194 in keratinocyte hyperproliferation and differentiation. We found that miR-194 was significantly downregulated in psoriasis lesional skin. Overexpression of miR-194 inhibited the proliferation and promoted the differentiation of primary human keratinocytes, whereas miR-194 suppression promoted the proliferation and inhibited their differentiation. Bioinformatic analysis predicted that the Grainyhead-like 2 (GRHL2) was a target gene of miR-194, which we further validated with a dual-luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot analysis. The effect of miR-194 on cell proliferation and differentiation was significantly reversed by overexpression of GRHL2. Moreover, the expression of miR-194 and GRHL2 was inversely correlated in psoriasis lesional skin. Taken together, our results suggest that miR-194 inhibits the proliferation and promotes the differentiation of keratinocytes through targeting GRHL2. The downregulation of miR-194 expression may contribute to the pathogenesis of psoriasis and targeting miR-194 may represent a novel and potential therapeutic strategy for psoriasis.
Collapse
|
25
|
Edwards W, Nantie LB, Raetzman LT. Identification of a novel progenitor cell marker, grainyhead-like 2 in the developing pituitary. Dev Dyn 2016; 245:1097-1106. [PMID: 27564454 DOI: 10.1002/dvdy.24439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pituitary stem/progenitor cells give rise to all of the endocrine cell types within the pituitary gland and are necessary for both development and gland homeostasis. Recent studies have identified several key factors that characterize the progenitor cell population. However, little is known about the factors that regulate progenitor cell differentiation and maintenance. Therefore, it is crucial to identify novel factors that help elucidate mechanisms of progenitor cell function in the developing pituitary. Our studies are the first to characterize the expression of Grainyhead-like 2 (GRHL2), a transcription factor known to regulate progenitor cell plasticity, in the developing pituitary. RESULTS Our studies show GRHL2 expression is highest in the embryonic and early postnatal pituitary and is localized in pituitary progenitor cells. We demonstrate GRHL2 expression is changed in Notch2 cKO and Prop1df/df mice, mouse models that display progenitor cell number defects. In addition, our studies indicate a potential relationship between Notch signaling and GRHL2 expression in the developing pituitary. CONCLUSIONS Taken together, our results indicate GRHL2 as a novel progenitor cell maker in the developing pituitary that may contribute to progenitor cell function and maintenance. Developmental Dynamics 245:1097-1106, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Leah B Nantie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
26
|
Walne AJ, Collopy L, Cardoso S, Ellison A, Plagnol V, Albayrak C, Albayrak D, Kilic SS, Patıroglu T, Akar H, Godfrey K, Carter T, Marafie M, Vora A, Sundin M, Vulliamy T, Tummala H, Dokal I. Marked overlap of four genetic syndromes with dyskeratosis congenita confounds clinical diagnosis. Haematologica 2016; 101:1180-1189. [PMID: 27612988 DOI: 10.3324/haematol.2016.147769] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022] Open
Abstract
Dyskeratosis congenita is a highly pleotropic genetic disorder. This heterogeneity can lead to difficulties in making an accurate diagnosis and delays in appropriate management. The aim of this study was to determine the underlying genetic basis in patients presenting with features of dyskeratosis congenita and who were negative for mutations in the classical dyskeratosis congenita genes. By whole exome and targeted sequencing, we identified biallelic variants in genes that are not associated with dyskeratosis congenita in 17 individuals from 12 families. Specifically, these were homozygous variants in USB1 (8 families), homozygous missense variants in GRHL2 (2 families) and identical compound heterozygous variants in LIG4 (2 families). All patients had multiple somatic features of dyskeratosis congenita but not the characteristic short telomeres. Our case series shows that biallelic variants in USB1, LIG4 and GRHL2, the genes mutated in poikiloderma with neutropenia, LIG4/Dubowitz syndrome and the recently recognized ectodermal dysplasia/short stature syndrome, respectively, cause features that overlap with dyskeratosis congenita. Strikingly, these genes also overlap in their biological function with the known dyskeratosis congenita genes that are implicated in telomere maintenance and DNA repair pathways. Collectively, these observations demonstrate the marked overlap of dyskeratosis congenita with four other genetic syndromes, confounding accurate diagnosis and subsequent management. This has important implications for establishing a genetic diagnosis when a new patient presents in the clinic. Patients with clinical features of dyskeratosis congenita need to have genetic analysis of USB1, LIG4 and GRHL2 in addition to the classical dyskeratosis congenita genes and telomere length measurements.
Collapse
Affiliation(s)
- Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Laura Collopy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Shirleny Cardoso
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Alicia Ellison
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | | | - Canan Albayrak
- Department of Pediatric Hematology, Ondokuz Mayis University, Samsun, Turkey
| | - Davut Albayrak
- Department of Pediatric Hematology, Ondokuz Mayis University, Samsun, Turkey
| | | | - Turkan Patıroglu
- Department of Pediatric Immunology Erciyes University Medical Facility, Kayseri, Turkey
| | - Haluk Akar
- Department of Pediatric Immunology Erciyes University Medical Facility, Kayseri, Turkey
| | - Keith Godfrey
- Department of Pediatric Dermatology and NIHR Southampton Biomedical Research Center, University Hospital, Southampton and University of Southampton, UK
| | - Tina Carter
- Department of Oncology and Haematology, Princess Margaret Hospital, Perth, WA, Australia
| | - Makia Marafie
- Clinical Cancer and Community Genetics, Kuwait Medical Genetics Center, Al-Sabah Medical area, Kuwait
| | - Ajay Vora
- Department of Haematology, Sheffield Children's NHS foundation Trust, Sheffield, UK
| | - Mikael Sundin
- Section of Pediatric Hematology/Immunology/SCT, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden Division of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| |
Collapse
|
27
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
28
|
Selman M, López-Otín C, Pardo A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2016; 48:538-52. [DOI: 10.1183/13993003.00398-2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism. Here, we review the major developmental pathways that get twisted in IPF, and discuss the connection with ageing and potential therapeutic approaches.
Collapse
|
29
|
Zurek M, Altschmied J, Kohlgrüber S, Ale-Agha N, Haendeler J. Role of Telomerase in the Cardiovascular System. Genes (Basel) 2016; 7:genes7060029. [PMID: 27322328 PMCID: PMC4929428 DOI: 10.3390/genes7060029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/22/2022] Open
Abstract
Aging is one major risk factor for the incidence of cardiovascular diseases and the development of atherosclerosis. One important enzyme known to be involved in aging processes is Telomerase Reverse Transcriptase (TERT). After the discovery of the enzyme in humans, TERT had initially only been attributed to germ line cells, stem cells and cancer cells. However, over the last few years it has become clear that TERT is also active in cells of the cardiovascular system including cardiac myocytes, endothelial cells, smooth muscle cells and fibroblasts. Interference with the activity of this enzyme greatly contributes to cardiovascular diseases. This review will summarize the findings on the role of TERT in cardiovascular cells. Moreover, recent findings concerning TERT in different mouse models with respect to cardiovascular diseases will be described. Finally, the extranuclear functions of TERT will be covered within this review.
Collapse
Affiliation(s)
- Mark Zurek
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Joachim Altschmied
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Stefanie Kohlgrüber
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Niloofar Ale-Agha
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Judith Haendeler
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
30
|
Chen W, Yi JK, Shimane T, Mehrazarin S, Lin YL, Shin KH, Kim RH, Park NH, Kang MK. Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis 2016; 37:500-10. [PMID: 26933170 PMCID: PMC6118232 DOI: 10.1093/carcin/bgw027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 01/06/2016] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
Grainyhead-like 2 (GRHL2) is one of the three mammalian homologues of Drosophila Grainyhead involved in epithelial morphogenesis. We recently showed that GRHL2 also controls normal epithelial cell proliferation and differentiation. In this study, we investigated the role of GRHL2 in oral carcinogenesis and the underlying mechanism. GRHL2 expression was elevated in cells and tissues of oral squamous cell carcinomas (OSCCs) compared with normal counterparts. Knockdown of GRHL2 resulted in the loss of in vivo tumorigenicity, cancer stemness and epithelial phenotype of oral cancer cells. GRHL2 loss also inhibited oral cancer cell proliferation and colony formation. GRHL2 regulated the expression of miR-200 family and Octamer-binding transcription factor 4 (Oct-4) genes through direct promoter DNA binding. Overexpression of miR-200 genes in the oral cancer cells depleted of GRHL2 partially restored the epithelial phenotype, proliferative rate and cancer stemness, indicating that miR-200 genes in part mediate the functional effects of GRHL2. Taken together, this study demonstrates a novel connection between GRHL2 and miR-200, and supports protumorigenic effect of GRHL2 on OSCCs.
Collapse
Affiliation(s)
- Wei Chen
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Kyu Yi
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, School of Dentistry, Kyung Hee University, Seoul 130-872, Korea
| | - Tetsu Shimane
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shebli Mehrazarin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yi-Ling Lin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - Reuben H Kim
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - No-Hee Park
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mo K Kang
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| |
Collapse
|
31
|
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 2016; 6:19943. [PMID: 26887977 PMCID: PMC4757891 DOI: 10.1038/srep19943] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a biological process by which polarized epithelial cells convert into a mesenchymal phenotype, has been implicated to contribute to the molecular heterogeneity of epithelial ovarian cancer (EOC). Here we report that a transcription factor—Grainyhead-like 2 (GRHL2) maintains the epithelial phenotype. EOC tumours with lower GRHL2 levels are associated with the Mes/Mesenchymal molecular subtype and a poorer overall survival. shRNA-mediated knockdown of GRHL2 in EOC cells with an epithelial phenotype results in EMT changes, with increased cell migration, invasion and motility. By ChIP-sequencing and gene expression microarray, microRNA-200b/a is identified as the direct transcriptional target of GRHL2 and regulates the epithelial status of EOC through ZEB1 and E-cadherin. Our study demonstrates that loss of GRHL2 increases the levels of histone mark H3K27me3 on promoters and GRHL2-binding sites at miR-200b/a and E-cadherin genes. These findings support GRHL2 as a pivotal gatekeeper of EMT in EOC via miR-200-ZEB1.
Collapse
|
32
|
Riethdorf S, Frey S, Santjer S, Stoupiec M, Otto B, Riethdorf L, Koop C, Wilczak W, Simon R, Sauter G, Pantel K, Assmann V. Diverse expression patterns of the EMT suppressor grainyhead-like 2 (GRHL2) in normal and tumour tissues. Int J Cancer 2015; 138:949-63. [PMID: 26355710 DOI: 10.1002/ijc.29841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in various developmental processes. Although GRHL2 recently has attracted considerable interest in that it could be identified as a novel suppressor of the epithelial-to-mesenchymal transition, evidence is emerging that GRHL2 also exhibits tumour-promoting activities. Aim of the present study therefore was to help defining the relevance of GRHL2 for human cancers by performing a comprehensive immunohistochemical analysis of GRHL2 expression in normal (n = 608) and (n = 3,143) tumour tissues using tissue microarrays. Consistent with its accepted role in epithelial morphogenesis, GRHL2 expression preferentially but not exclusively was observed in epithelial cells. Regenerative and proliferating epithelial cells with stem cell features showed a strong GRHL2 expression. Highly complex GRHL2 expression patterns indicative of both reduced and elevated GRHL2 expression in tumours, possibly reflecting potential tumour-suppressing as well as oncogenic functions of GRHL2 in distinct human tumours, were observed. A dysregulation of GRHL2 expression for the first time was found in tumours of non-epithelial origin (e.g., astrocytomas, melanomas). We also report GRHL2 copy number gains which, however, did not necessarily translate into increased GRHL2 expression levels in cancer cells. Results obtained by meta-analysis of gene expression microarray data in conjunction with functional assays demonstrating a direct regulation of HER3 expression further point to a potential therapeutic relevance of GRHL2 in ovarian cancer. Hopefully, the results presented in this study may pave the way for a better understanding of the yet largely unknown function of GRHL2 in the initiation, progression and also therapy of cancers.
Collapse
Affiliation(s)
- Sabine Riethdorf
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Frey
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Santjer
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malgorzata Stoupiec
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christina Koop
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Assmann
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Mehrazarin S, Chen W, Oh JE, Liu ZX, Kang KL, Yi JK, Kim RH, Shin KH, Park NH, Kang MK. The p63 Gene Is Regulated by Grainyhead-like 2 (GRHL2) through Reciprocal Feedback and Determines the Epithelial Phenotype in Human Keratinocytes. J Biol Chem 2015; 290:19999-20008. [PMID: 26085095 DOI: 10.1074/jbc.m115.659144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the effects of p63 modulation in epithelial plasticity in human keratinocytes. The p63 isoforms ΔNp63α, ΔNp63β, and ΔNp63γ were ectopically expressed in normal human epidermal keratinocytes (NHEKs). The epithelial or mesenchymal state was determined by morphological changes and altered expression of various markers, e.g. fibronectin, E-Cadherin, and keratin 14. Overexpression of ΔNp63α and ΔNp63β but not ΔNp63γ isoforms led to morphological changes consistent with epithelial-mesenchymal transition (EMT). However, only ΔNp63α overexpression was able to maintain the morphological changes and molecular phenotype consistent with EMT. Interestingly, knockdown of all p63 isoforms by transfection of p63 siRNA also led to the EMT phenotype, further confirming the role of p63 in regulating the epithelial phenotype in NHEKs. EMT in NHKs accompanied loss of Grainyhead-Like 2 (GHRL2) and miR-200 family gene expression, both of which play crucial roles in determining the epithelial phenotype. Modulation of GRHL2 in NHKs also led to congruent changes in p63 expression. ChIP revealed direct GRHL2 binding to the p63 promoter. GRHL2 knockdown in NHK led to impaired binding of GRHL2 and changes in the histone marks consistent with p63 gene silencing. These data indicate the presence of a reciprocal feedback regulation between p63 and GRHL2 in NHEKs to regulate epithelial plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Kyung L Kang
- From the School of Dentistry, the Kyung Hee University, School of Dentistry, Seoul, 130-701, Korea
| | - Jin K Yi
- From the School of Dentistry, the Kyung Hee University, School of Dentistry, Seoul, 130-701, Korea
| | - Reuben H Kim
- From the School of Dentistry, Jonsson Comprehensive Cancer Center, and
| | - Ki-Hyuk Shin
- From the School of Dentistry, Jonsson Comprehensive Cancer Center, and
| | - No-Hee Park
- From the School of Dentistry, the Kyung Hee University, School of Dentistry, Seoul, 130-701, Korea Jonsson Comprehensive Cancer Center, and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095 and
| | - Mo K Kang
- From the School of Dentistry, Jonsson Comprehensive Cancer Center, and
| |
Collapse
|
34
|
Ti D, Li M, Fu X, Han W. Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen 2015; 22:305-12. [PMID: 24844330 DOI: 10.1111/wrr.12160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Wound healing is a complex and systematic tissue level response to mechanical and chemical injuries that may cause the release of growth factors, cytokines, and chemokines by damaged tissues. For the complex features of these restorative processes, it is a crucial challenge to identify the relevant cell types and biochemical pathways that are involved in wound healing. Epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding regulatory RNA editing, play important roles in many biological processes, including cell proliferation, migration and differentiation, signal pathway activation or inhibition, and cell senescence. Epigenetic regulations can coordinately control a considerable subset of known repair genes and thus serve as master regulators of wound healing. An abundance of evidence has also shown that epigenetic modifications participate in the short- and long-term control of crucial gene expression and cell signal transduction that are involved in the healing process. These data provide a foundation for probable epigenetic-based therapeutic strategies that are aimed at stimulating tissue regeneration. This review describes the epigenetic alterations in different cellular types at injury sites, induced signals, and resulting tissue repair. With the increased interest in the epigenetics of wound and repair processes, this field will soon begin to flourish.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
35
|
Osteo-/Odontogenic Differentiation of Induced Mesenchymal Stem Cells Generated through Epithelial–Mesenchyme Transition of Cultured Human Keratinocytes. J Endod 2014; 40:1796-801. [DOI: 10.1016/j.joen.2014.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/06/2014] [Accepted: 07/11/2014] [Indexed: 01/11/2023]
|
36
|
Torres-Reyes LA, Alvarado-Ruiz L, Piña-Sánchez P, Martínez-Silva MG, Ramos-Solano M, Olimón-Andalón V, Ortiz-Lazareno PC, Hernández-Flores G, Bravo-Cuellar A, Aguilar-Lemarroy A, Jave-Suarez LF. Expression of transcription factor grainyhead-like 2 is diminished in cervical cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7409-7418. [PMID: 25550776 PMCID: PMC4270610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) is evolutionarily conserved in many different species, and is involved in morphogenesis, epithelial differentiation, and the control of the epithelial-mesenchymal transition. It has also recently been implicated in carcinogenesis, but its role in this remains controversial. Expression of GRHL2 has not previously been reported in cervical cancer, so the present study aimed to characterize GRHL2 expression in cervical cancer-derived cell lines (CCCLs) and cervical tissues with different grades of lesions. Microarray analysis found that the expression of 58 genes was down-regulated in CCCLs compared to HaCaT cells (non-tumorigenic human epithelial cell line). The expression of eight of these genes was validated by quantitative real-time PCR (qPCR), and GRHL2 was found to be the most down-regulated. Western blot assays corroborated that GRHL2 protein levels were strongly down-regulated in CCCLs. Cervical cells from women without cervical lesions were shown to express GRHL2, while immunohistochemistry found that positivity to GRHL2 decreased in cervical cancer tissues. In conclusion, a loss or strong reduction in GRHL2 expression appears to be a characteristic of cervical cancer, suggesting that GRHL2 down-regulation is a necessary step during cervical carcinogenesis. However, further studies are needed to delineate the role of GRHL2 in cervical cancer and during malignant progression.
Collapse
Affiliation(s)
- Luis A Torres-Reyes
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS)-Universidad de GuadalajaraGuadalajara, Jalisco, Mexico
| | - Liliana Alvarado-Ruiz
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS)-Universidad de GuadalajaraGuadalajara, Jalisco, Mexico
| | - Patricia Piña-Sánchez
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI-IMSSMexico
| | - María G Martínez-Silva
- Servicio de Patología, Centro Médico Nacional de Occidente-IMSSGuadalajara, Jalisco, Mexico
| | - Moisés Ramos-Solano
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS)-Universidad de GuadalajaraGuadalajara, Jalisco, Mexico
| | | | - Pablo C Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
| | - Georgina Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
| | - Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
| | - Luis F Jave-Suarez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)Guadalajara, Jalisco, Mexico
| |
Collapse
|
37
|
Petrof G, Nanda A, Howden J, Takeichi T, McMillan J, Aristodemou S, Ozoemena L, Liu L, South A, Pourreyron C, Dafou D, Proudfoot L, Al-Ajmi H, Akiyama M, McLean W, Simpson M, Parsons M, McGrath J. Mutations in GRHL2 result in an autosomal-recessive ectodermal Dysplasia syndrome. Am J Hum Genet 2014; 95:308-14. [PMID: 25152456 PMCID: PMC4157147 DOI: 10.1016/j.ajhg.2014.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/01/2014] [Indexed: 01/05/2023] Open
Abstract
Grainyhead-like 2, encoded by GRHL2, is a member of a highly conserved family of transcription factors that play essential roles during epithelial development. Haploinsufficiency for GRHL2 has been implicated in autosomal-dominant deafness, but mutations have not yet been associated with any skin pathology. We investigated two unrelated Kuwaiti families in which a total of six individuals have had lifelong ectodermal defects. The clinical features comprised nail dystrophy or nail loss, marginal palmoplantar keratoderma, hypodontia, enamel hypoplasia, oral hyperpigmentation, and dysphagia. In addition, three individuals had sensorineural deafness, and three had bronchial asthma. Taken together, the features were consistent with an unusual autosomal-recessive ectodermal dysplasia syndrome. Because of consanguinity in both families, we used whole-exome sequencing to search for novel homozygous DNA variants and found GRHL2 mutations common to both families: affected subjects in one family were homozygous for c.1192T>C (p.Tyr398His) in exon 9, and subjects in the other family were homozygous for c.1445T>A (p.Ile482Lys) in exon 11. Immortalized keratinocytes (p.Ile482Lys) showed altered cell morphology, impaired tight junctions, adhesion defects, and cytoplasmic translocation of GRHL2. Whole-skin transcriptomic analysis (p.Ile482Lys) disclosed changes in genes implicated in networks of cell-cell and cell-matrix adhesion. Our clinical findings of an autosomal-recessive ectodermal dysplasia syndrome provide insight into the role of GRHL2 in skin development, homeostasis, and human disease.
Collapse
|
38
|
Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS One 2014; 9:e99269. [PMID: 24940735 PMCID: PMC4062414 DOI: 10.1371/journal.pone.0099269] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/01/2014] [Indexed: 12/12/2022] Open
Abstract
Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.
Collapse
Affiliation(s)
- Kurt W. Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Barry M. Zeeberg
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - William C. Reinhold
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Varma S, Mahavadi P, Sasikumar S, Cushing L, Hyland T, Rosser AE, Riccardi D, Lu J, Kalin TV, Kalinichenko VV, Guenther A, Ramirez MI, Pardo A, Selman M, Warburton D. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 306:L405-19. [PMID: 24375798 DOI: 10.1152/ajplung.00143.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity.
Collapse
Affiliation(s)
- Saaket Varma
- Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd., MS35, Los Angeles, CA 90027.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xiang J, Fu X, Ran W, Chen X, Hang Z, Mao H, Wang Z. Expression and role of grainyhead-like 2 in gastric cancer. Med Oncol 2013; 30:714. [DOI: 10.1007/s12032-013-0714-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
|
41
|
Werner S, Frey S, Riethdorf S, Schulze C, Alawi M, Kling L, Vafaizadeh V, Sauter G, Terracciano L, Schumacher U, Pantel K, Assmann V. Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 2013; 288:22993-3008. [PMID: 23814079 DOI: 10.1074/jbc.m113.456293] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Using a retrovirus-mediated cDNA expression cloning approach, we identified the grainyhead-like 2 (GRHL2) transcription factor as novel protooncogene. Overexpression of GRHL2 in NIH3T3 cells induced striking morphological changes, an increase in cell proliferation, anchorage-independent growth, and tumor growth in vivo. By combining a microarray analysis and a phylogenetic footprinting analysis with various biochemical assays, we identified the epidermal growth factor receptor family member Erbb3 as a novel GRHL2 target gene. In breast cancer cell lines, shRNA-mediated knockdown of GRHL2 expression or functional inactivation of GRHL2 using dominant negative GRHL2 proteins induces down-regulation of ERBB3 gene expression, a striking reduction in cell proliferation, and morphological and phenotypical alterations characteristic of an epithelial-to-mesenchymal transition (EMT), thus implying contradictory roles of GRHL2 in breast carcinogenesis. Interestingly, we could further demonstrate that expression of GRHL2 is directly suppressed by the transcription factor zinc finger enhancer-binding protein 1 (ZEB1), which in turn is a direct target for repression by GRHL2, suggesting that the EMT transcription factors GRHL2 and ZEB1 form a double negative regulatory feedback loop in breast cancer cells. Finally, a comprehensive immunohistochemical analysis of GRHL2 expression in primary breast cancers showed loss of GRHL2 expression at the invasive front of primary tumors. A pathophysiological relevance of GRHL2 in breast cancer metastasis is further demonstrated by our finding of a statistically significant association between loss of GRHL2 expression in primary breast cancers and lymph node metastasis. We thus demonstrate a crucial role of GRHL2 in breast carcinogenesis.
Collapse
Affiliation(s)
- Stefan Werner
- Department of Tumor Biology, Leibniz-Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen W, Xiao Liu Z, Oh JE, Shin KH, Kim RH, Jiang M, Park NH, Kang MK. Grainyhead-like 2 (GRHL2) inhibits keratinocyte differentiation through epigenetic mechanism. Cell Death Dis 2012; 3:e450. [PMID: 23254293 PMCID: PMC3542624 DOI: 10.1038/cddis.2012.190] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently identified Grainyhead-like 2 (GRHL2), a mammalian homolog of Grainyhead in Drosophila, to be a novel transcription factor that regulates hTERT gene expression and enhances proliferation of normal human epidermal keratinocytes (NHEK). In the current study, we show that GRHL2 impairs keratinocyte differentiation through transcriptional inhibition of the genes clustered at the epidermal differentiation complex (EDC), located at chromosome 1q21. Gene expression profiling and subsequent in vitro assays revealed consistent downregulation of EDC genes, for example, IVL, KRT1, FLG, LCEs, and SPRRs, in NHEK expressing exogenous GRHL2. In vivo binding assay by chromatin immunoprecipitation revealed GRHL2 association at the promoter regions of its target genes, many of which belong to EDC. Exogenous GRHL2 expression also inhibited recruitment of histone demethylase Jmjd3 to the EDC gene promoters and enhanced the level of histone 3 Lys 27 trimethylation enrichment at these promoters. Survey of GRHL2 expression in human skin tissues demonstrated enhanced protein and mRNA levels in chronic skin lesions with impaired keratinocyte differentiation, for example, atopic dermatitis and psoriasis, compared with normal epidermis. These data indicate that GRHL2 impairs epidermal differentiation by inhibiting EDC gene expression through epigenetic mechanisms and support its role in the hyperproliferative skin diseases.
Collapse
Affiliation(s)
- W Chen
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Weiss C, Uziel O, Wolach O, Nordenberg J, Beery E, Bulvick S, Kanfer G, Cohen O, Ram R, Bakhanashvili M, Magen-Nativ H, Shilo N, Lahav M. Differential downregulation of telomerase activity by bortezomib in multiple myeloma cells-multiple regulatory pathways in vitro and ex vivo. Br J Cancer 2012; 107:1844-52. [PMID: 23169337 PMCID: PMC3504947 DOI: 10.1038/bjc.2012.460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The importance of telomerase in multiple myeloma (MM) is well established; however, its response to bortezomib has not been addressed. METHODS The effect of bortezomib on telomerase activity and cell proliferation was evaluated in four MM cell lines and in myeloma cells obtained from eight patients. The mechanism of telomerase regulation on epigenetic, transcriptional, and post-translational levels was further assessed in two selected cell lines: ARP-1 and CAG. Clinical data were correlated with the laboratory findings. RESULTS Bortezomib downregulated telomerase activity and decreased proliferation in all cell lines and cells obtained from patients, albeit in two different patterns of kinetics. ARP-1 cells demonstrated higher and earlier sensitivity than CAG cells due to differential phosphorylation of hTERT by PKCα. Methylation of hTERT promoter was not affected. Transcription of hTERT was similarly inhibited in both lines by decreased binding of SP-1 and not of C-Myc and NFκB. The ex vivo results confirmed the in vitro findings and suggested existence of clinical relevance. CONCLUSION Bortezomib downregulates telomerase activity in MM cells both transcriptionally and post-translationally. MM cells, both in vitro and in patients, exhibit different sensitivity to the drug due to different post-translational response. The effect of bortezomib on telomerase activity may correlate with resistance to bortezomib in patients, suggesting its potential utility as a pre-treatment assessment.
Collapse
Affiliation(s)
- C Weiss
- Laniado Medical Center, Netanya, Israel
| | - O Uziel
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - O Wolach
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - J Nordenberg
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - E Beery
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - S Bulvick
- Laniado Medical Center, Netanya, Israel
| | - G Kanfer
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - O Cohen
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - R Ram
- Institute of Hematology, Davidoff Cancer Center, Davidoff, Israel
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| | - M Bakhanashvili
- Division of Infectious Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - H Magen-Nativ
- Institute of Hematology, Davidoff Cancer Center, Davidoff, Israel
| | - N Shilo
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| | - M Lahav
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| |
Collapse
|
44
|
Varma S, Cao Y, Tagne JB, Lakshminarayanan M, Li J, Friedman TB, Morell RJ, Warburton D, Kotton DN, Ramirez MI. The transcription factors Grainyhead-like 2 and NK2-homeobox 1 form a regulatory loop that coordinates lung epithelial cell morphogenesis and differentiation. J Biol Chem 2012; 287:37282-95. [PMID: 22955271 DOI: 10.1074/jbc.m112.408401] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Grainyhead family of transcription factors controls morphogenesis and differentiation of epithelial cell layers in multicellular organisms by regulating cell junction- and proliferation-related genes. Grainyhead-like 2 (Grhl2) is expressed in developing mouse lung epithelium and is required for normal lung organogenesis. The specific epithelial cells expressing Grhl2 and the genes regulated by Grhl2 in normal lungs are mostly unknown. In these studies we identified the NK2-homeobox 1 transcription factor (Nkx2-1) as a direct transcriptional target of Grhl2. By binding and transcriptional assays and by confocal microscopy we showed that these two transcription factors form a positive feedback loop in vivo and in cell lines and are co-expressed in lung bronchiolar and alveolar type II cells. The morphological changes observed in flattening lung alveolar type II cells in culture are associated with down-regulation of Grhl2 and Nkx2-1. Reduction of Grhl2 in lung epithelial cell lines results in lower expression levels of Nkx2-1 and of known Grhl2 target genes. By microarray analysis we identified that in addition to Cadherin1 and Claudin4, Grhl2 regulates other cell interaction genes such as semaphorins and their receptors, which also play a functional role in developing lung epithelium. Impaired collective cell migration observed in Grhl2 knockdown cell monolayers is associated with reduced expression of these genes and may contribute to the altered epithelial phenotype reported in Grhl2 mutant mice. Thus, Grhl2 functions at the nexus of a novel regulatory network, connecting lung epithelial cell identity, migration, and cell-cell interactions.
Collapse
Affiliation(s)
- Saaket Varma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cieply B, Riley P, Pifer PM, Widmeyer J, Addison JB, Ivanov AV, Denvir J, Frisch SM. Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res 2012; 72:2440-53. [PMID: 22379025 DOI: 10.1158/0008-5472.can-11-4038] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Grainyhead genes are involved in wound healing and developmental neural tube closure. In light of the high degree of similarity between the epithelial-mesenchymal transitions (EMT) occurring in wound-healing processes and the cancer stem cell-like compartment of tumors, including TGF-β dependence, we investigated the role of the Grainyhead gene, Grainyhead-like-2 (GRHL2) in oncogenic EMT. GRHL2 was downregulated specifically in the claudin-low subclass breast tumors and in basal-B subclass breast cancer cell lines. GRHL2 suppressed TGF-β-induced, Twist-induced or spontaneous EMT, enhanced anoikis sensitivity, and suppressed mammosphere generation in mammary epithelial cells. These effects were mediated in part by suppression of ZEB1 expression via direct repression of the ZEB1 promoter. GRHL2 also inhibited Smad-mediated transcription and it upregulated mir-200b/c as well as the TGF-β receptor antagonist, BMP2. Finally, ectopic expression of GRHL2 in MDA-MB-231 breast cancer cells triggered an MET and restored sensitivity to anoikis. Taken together, our findings define a major role for GRHL2 in the suppression of oncogenic EMT in breast cancer cells.
Collapse
Affiliation(s)
- Benjamin Cieply
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang S, Samakovlis C. Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr Top Dev Biol 2012; 98:35-63. [PMID: 22305158 DOI: 10.1016/b978-0-12-386499-4.00002-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Grainy head (Grh) family of transcription factors is characterized by a unique DNA-binding domain that binds to a conserved consensus sequence. Nematodes and flies have a single grh gene, whereas mice and humans have evolved three genes encoding Grainy head-like (Grhl) factors. We review the biological function of Grh in different animals and the mechanisms modulating its activity. grh and grhl genes play a remarkably conserved role in epithelial organ development and extracellular barrier repair after tissue damage. Recent studies in flies and vertebrates suggest that Grh factors may be primary determinants of cell adhesion and epithelial tissue formation. Grh proteins can dimerize and act as activators or repressors in different developmental contexts. In flies, tissue-specific, alternative splicing generates different Grh isoforms with different DNA-binding specificities and functions. Grh activity is also modulated by receptor tyrosine kinases: it is phosphorylated by extracellular signal regulated kinase, and this phosphorylation is selectively required for epidermal barrier repair. Two mechanisms have been proposed to explain the repressive function of Grh on target gene transcription. First, Grh can target the Polycomb silencing complex to specific response elements. Second, it can directly compete for DNA binding with transcriptional activators. Understanding the molecular mechanisms of gene regulation by Grh factors is likely to elucidate phylogenetically conserved mechanisms of epithelial cell morphogenesis and regeneration upon tissue damage.
Collapse
Affiliation(s)
- Shenqiu Wang
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
47
|
Kim RH, Lee RS, Williams D, Bae S, Woo J, Lieberman M, Oh JE, Dong Q, Shin KH, Kang MK, Park NH. Bisphosphonates induce senescence in normal human oral keratinocytes. J Dent Res 2011; 90:810-6. [PMID: 21427353 DOI: 10.1177/0022034511402995] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) commonly occurs in individuals receiving bisphosphonates (BPs) with clinical manifestations of the exposed necrotic bone. Although defective wound healing of soft tissue is frequently, if not always, observed in BRONJ, the effects of BPs on oral soft tissue or cells remain unknown. To investigate the effects of BPs on cells of oral mucosal tissue, we studied the effect of pamidronate (PAM), one of the BPs most commonly administered to cancer patients, on the phenotypes of normal human oral keratinocytes (NHOK) and fibroblasts (NHOF). When exposed to PAM at 10 µM, NHOK, not NHOF, underwent senescence: NHOK overexpressed senescence-associated β-galactosidase (SA-β-Gal), p16INK4A, IL-6, and IL-8. When exposed to a higher level (50 µM) of PAM, NHOK maintained senescent phenotypes, but NHOF underwent apoptosis. PAM-induced senescence in NHOK is mediated, in part, via geranylgeranylation of the mevalonate pathway. Our in vitro 3D oral mucosal tissue construction studies further demonstrated that PAM induced senescence and impaired re-epithelialization of oral mucosa. Analysis of these data indicates that premature senescence of oral mucosal cells and subsequent defective soft-tissue wound healing might be partly responsible for the development of BRONJ in individuals receiving PAM or other BPs.
Collapse
Affiliation(s)
- R H Kim
- UCLA School of Dentistry, Center for the Health Sciences, Room 43-091, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|