1
|
Waickman AT, Keller HR, Kim TH, Luckey MA, Tai X, Hong C, Molina-París C, Walsh STR, Park JH. The Cytokine Receptor IL-7Rα Impairs IL-2 Receptor Signaling and Constrains the In Vitro Differentiation of Foxp3 + Treg Cells. iScience 2020; 23:101421. [PMID: 32791329 PMCID: PMC7424196 DOI: 10.1016/j.isci.2020.101421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
IL-7 receptor signaling is essential for the generation and maintenance of conventional T cells. Immunosuppressive Foxp3+ Treg cells, however, express uniquely low amounts of the IL-7-proprietary IL-7Rα so that they are impaired in IL-7 signaling. Because Treg cells depend on IL-2, the loss of IL-7Rα has been considered irrelevant for Treg cells. In contrast, here, we report that IL-7Rα downregulation is necessary to maximize IL-2R signaling. Although IL-7Rα overexpression promoted IL-7 signaling, unexpectedly, IL-2 signaling was suppressed in the same cells. Mechanistically, we found that γc, which is a receptor subunit shared by IL-7R and IL-2R, directly binds and pre-associates with IL-7Rα, thus limiting its availability for IL-2R binding. Consequently, overexpression of signaling-deficient, tailless IL-7Rα proteins inhibited IL-2R signaling, demonstrating that IL-7Rα sequesters γc and suppresses IL-2R signaling by extracellular interactions. Collectively, these results reveal a previously unappreciated regulatory mechanism of IL-2 receptor signaling that is governed by IL-7Rα abundance.
Collapse
Affiliation(s)
- Adam T Waickman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD 20892, USA
| | - Hilary R Keller
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD 20892, USA; Department of Surgery, Guthrie Robert Packer Hospital, Sayre, PA, USA
| | - Tae-Hyoun Kim
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD 20892, USA
| | - Megan A Luckey
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD 20892, USA
| | - Xuguang Tai
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD 20892, USA
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, South Korea
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Scott T R Walsh
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Lang F, Singh Y, Salker MS, Ma K, Pandyra AA, Lang PA, Lang KS. Glucose transport in lymphocytes. Pflugers Arch 2020; 472:1401-1406. [PMID: 32529300 DOI: 10.1007/s00424-020-02416-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Glucose uptake into lymphocytes is accomplished by non-concentrative glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4, GLUT6) and/or by the Na+-coupled glucose carrier SGLT1. The latter accumulates glucose against glucose gradients and is still effective at very low extracellular glucose concentrations. Signaling involved in SGLT1 expression and activity includes protein kinase A (PKA), protein kinase C (PKC), serum- and glucocorticoid-inducible kinase (SGK1), AMP-activated kinase (AMPK), and Janus kinases (JAK2 and JAK3). Glucose taken up is partially stored as glycogen. In hypoxic environments, such as in tumors as well as infected and inflamed tissues, lymphocytes depend on energy production from glycogen-dependent glycolysis. The lack of SGLT1 may compromise glycogen storage and thus lymphocyte survival and function in hypoxic tissues. Accordingly, in mice, genetic knockout of sglt1 compromised bacterial clearance following Listeria monocytogenes infection leading to an invariably lethal course of the disease. Whether the effect was due to the lack of sglt1 in lymphocytes or in other cell types still remains to be determined. Clearly, additional experimental effort is required to define the role of glucose transport by GLUTs and particularly by SGLT1 for lymphocyte survival and function, as well as orchestration of the host defense against tumors and bacterial infections.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard Karl University, Tubingen, Germany.
- Department of Physiology, University of Tübingen, Wilhelmstr. 56, 72076, Tubingen, Germany.
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karl University, Tubingen, Germany
| | - Madhuri S Salker
- Research Institute of Women's Health, Eberhard Karl University, Tubingen, Germany
| | - Ke Ma
- Department of Physiology, Eberhard Karl University, Tubingen, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Dusseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Karl S Lang
- Department of Immunology, University of Essen, Essen, Germany
| |
Collapse
|
3
|
LEFTY2/endometrial bleeding-associated factor up-regulates Na+ Coupled Glucose Transporter SGLT1 expression and Glycogen Accumulation in Endometrial Cancer Cells. PLoS One 2020; 15:e0230044. [PMID: 32236143 PMCID: PMC7112196 DOI: 10.1371/journal.pone.0230044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/20/2020] [Indexed: 02/05/2023] Open
Abstract
LEFTY2 (endometrial bleeding associated factor; EBAF or LEFTYA), a cytokine released shortly before menstrual bleeding, is a negative regulator of cell proliferation and tumour growth. LEFTY2 down-regulates Na+/H+ exchanger activity with subsequent inhibition of glycolytic flux and lactate production in endometrial cancer cells. Glucose can be utilized not only for glycolysis but also for glycogen formation. Both glycolysis and glycogen formation require cellular glucose uptake which could be accomplished by the Na+ coupled glucose transporter-1 (SGLT1; SLC5A1). The present study therefore explored whether LEFTY2 modifies endometrial SGLT1 expression and activity as well as glycogen formation. Ishikawa and HEC1a cells were exposed to LEFTY2, SGLT1 and glycogen synthase (GYS1) transcript levels determined by qRT-PCR. SGLT1, GYS1 and phospho-GYS1 protein abundance was quantified by western blotting, cellular glucose uptake from 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) uptake, and cellular glycogen content utilizing an enzymatic assay and subsequent colorimetry. As a result, a 48-hour treatment with LEFTY2 significantly increased SGLT1 and GYS1 transcript levels as well as SGLT1 and GYS1 protein abundance in both Ishikawa and HEC1a cells. 2-NBDG uptake and cellular glycogen content were upregulated significantly in Ishikawa (type 1) but not in type 2 endometrial HEC1a cells, although there was a tendency of increased 2-NBDG uptake. Further, none of the effects were seen in human benign endometrial cells (HESCs). Interestingly, in both Ishikawa and HEC1a cells, a co-treatment with TGF-β reduced SGLT1, GYS and phospho-GYS protein levels, and thus reduced glycogen levels and again HEC1a cells had no significant change. In conclusion, LEFTY2 up-regulates expression and activity of the Na+ coupled glucose transporter SGLT1 and glycogen synthase GYS1 in a cell line specific manner. We further show the treatment with LEFTY2 fosters cellular glucose uptake and glycogen formation and TGF-β can negate this effect in endometrial cancer cells.
Collapse
|
4
|
Campos LW, Pissinato LG, Yunes JA. Deleterious and Oncogenic Mutations in the IL7RA. Cancers (Basel) 2019; 11:cancers11121952. [PMID: 31817502 PMCID: PMC6966522 DOI: 10.3390/cancers11121952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin 7 (IL-7) is a critical cytokine that plays a fundamental role in B- and T-cell development and in acute lymphoblastic leukemia (ALL). Its receptor (IL7R) is a transmembrane heterodimer formed by the IL7Rα and the IL2Rγ chain (γc). The IL7R signals through the JAK/STAT pathway. Loss-of-function mutations and some polymorphisms of the IL7Rα were associated to immunodeficiency and inflammatory diseases, respectively. Gain-of-function mutations were described in T-cell ALL and in high risk precursor B-cell ALL. Most confirmed loss-of-function mutations occur in the extracellular part of the IL7Rα while oncogenic mutations are exclusively found in the extracellular juxtamembrane (EJM) or transmembrane regions. Oncogenic mutations promote either IL7Rα/IL7Rα homodimerization and constitutive signaling, or increased affinity to γc or IL-7. This work presents a review on IL7Rα polymorphisms/mutations and attempts to present a classification based on their structural consequences and resulting biological activity.
Collapse
Affiliation(s)
- Lívia Weijenborg Campos
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - Leonardo Granato Pissinato
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - José Andrés Yunes
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Medical Genetics Department, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-894, Brazil
- Correspondence: ; Tel.: +55-19-37875070; Fax: +55-19-3289-3571
| |
Collapse
|
5
|
Meier-Schellersheim M, Varma R, Angermann BR. Mechanistic Models of Cellular Signaling, Cytokine Crosstalk, and Cell-Cell Communication in Immunology. Front Immunol 2019; 10:2268. [PMID: 31681261 PMCID: PMC6798038 DOI: 10.3389/fimmu.2019.02268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
The cells of the immune system respond to a great variety of different signals that frequently reach them simultaneously. Computational models of signaling pathways and cellular behavior can help us explore the biochemical mechanisms at play during such responses, in particular when those models aim at incorporating molecular details of intracellular reaction networks. Such detailed models can encompass hypotheses about the interactions among molecular binding domains and how these interactions are modulated by, for instance, post-translational modifications, or steric constraints in multi-molecular complexes. In this way, the models become formal representations of mechanistic immunological hypotheses that can be tested through quantitative simulations. Due to the large number of parameters (molecular abundances, association-, dissociation-, and enzymatic transformation rates) the goal of simulating the models can, however, in many cases no longer be the fitting of particular parameter values. Rather, the simulations perform sweeps through parameter space to test whether a model can account for certain experimentally observed features when allowing the parameter values to vary within experimentally determined or physiologically reasonable ranges. We illustrate how this approach can be used to explore possible mechanisms of immunological pathway crosstalk. Probing the input-output behavior of mechanistic pathway models through systematic simulated variations of receptor stimuli will soon allow us to derive cell population behavior from single-cell models, thereby bridging a scale gap that currently still is frequently addressed through heuristic phenomenological multi-scale models.
Collapse
Affiliation(s)
- Martin Meier-Schellersheim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Bastian R Angermann
- Translational Science and Experimental Medicine, Early Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
IL7 receptor signaling in T cells: A mathematical modeling perspective. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1447. [DOI: 10.1002/wsbm.1447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 01/14/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
|
7
|
Bai M, He X, He Y, Yuan D, Jin T, Wang L. IL-7R gene polymorphisms among patients with rheumatoid arthritis: A case-control study. Mol Genet Genomic Med 2019; 7:e00738. [PMID: 31131543 PMCID: PMC6625337 DOI: 10.1002/mgg3.738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is the most common inflammatory disease which refers to bony erosions and joint destruction largely caused by genetic factors. Our study aimed to explore whether interleukin‐7 receptor (IL‐7R) gene polymorphisms influenced RA risk in the Han Chinese population. Methods Five single nucleotide polymorphisms (SNPs) in IL‐7R gene were successfully genotyped using Agena MassARRAY platform. The associations between IL‐7R polymorphisms and RA were evaluated by the Chi‐squared test, T test, genetic model analysis, and haplotype analysis. We calculated odds ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression analysis. Results Rs969129 and rs6451231 in the IL‐7R gene were associated with an increased risk of RA in the allele model (OR = 1.25, 95% CI = 1.05–1.49, p = 0.013; OR = 1.23, 95% CI = 1.03–1.48, p = 0.023), respectively. In the genetic models, rs969129 and rs6451231 were associated with an increased risk of RA. After stratification analysis by age, rs969129 and rs6451231 were associated with an increased risk of RA in patients (age <54). After stratification analysis by gender, rs6451231 was associated with an increased risk of RA in males, while rs969129 was found to be associated with an elevated risk of RA in females. And there was a strong linkage disequilibrium among the four SNPs (rs969129, rs118137916, rs10053847, and rs6451231). Conclusion These results suggested rs969129 and rs6451231 in the IL‐7R gene were associated with an increased risk of RA in the Han Chinese population.
Collapse
Affiliation(s)
- Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyang, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
8
|
Kan M, Shumyatcher M, Diwadkar A, Soliman G, Himes BE. Integration of Transcriptomic Data Identifies Global and Cell-Specific Asthma-Related Gene Expression Signatures. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2018; 2018:1338-1347. [PMID: 30815178 PMCID: PMC6371257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over 140,000 transcriptomic studies performed in healthy and diseased cell and tissue types, at baseline and after exposure to various agents, are available in public repositories. Integrating results of transcriptomic datasets has been an attractive approach to identify gene expression signatures that are more robust than those obtained for individual datasets, especially datasets with small sample size. We developed Reproducible Analysis and Validation of Expression Data (RAVED), a pipeline that facilitates the creation of R Markdown reports detailing reproducible analysis of publicly available transcriptomic data, and used it to analyze asthma and glucocorticoid response microarray and RNA-Seq datasets. Subsequently, we used three approaches to integrate summary statistics of these studies and identify cell/tissue-specific and global asthma and glucocorticoid-induced gene expression changes. Transcriptomic integration methods were incorporated into an online app called REALGAR, where end-users can specify datasets to integrate and quickly obtain results that may facilitate design of experimental studies.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Avantika Diwadkar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel Soliman
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Gonnord P, Angermann BR, Sadtler K, Gombos E, Chappert P, Meier-Schellersheim M, Varma R. A hierarchy of affinities between cytokine receptors and the common gamma chain leads to pathway cross-talk. Sci Signal 2018; 11:11/524/eaal1253. [PMID: 29615515 DOI: 10.1126/scisignal.aal1253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines belonging to the common gamma chain (γc) family depend on the shared γc receptor subunit for signaling. We report the existence of a fast, cytokine-induced pathway cross-talk acting at the receptor level, resulting from a limiting amount of γc on the surface of T cells. We found that this limited abundance of γc reduced interleukin-4 (IL-4) and IL-21 responses after IL-7 preexposure but not vice versa. Computational modeling combined with quantitative experimental assays indicated that the asymmetric cross-talk resulted from the ability of the "private" IL-7 receptor subunits (IL-7Rα) to bind to many of the γc molecules even before stimulation with cytokine. Upon exposure of T cells to IL-7, the high affinity of the IL-7Rα:IL-7 complex for γc further reduced the amount of free γc in a manner dependent on the concentration of IL-7. Measurements of bioluminescence resonance energy transfer (BRET) between IL-4Rα and γc were reduced when IL-7Rα was overexpressed. Furthermore, in a system expressing IL-7Rα, IL-4Rα, and γc, BRET between IL-4Rα and γc increased after IL-4 binding and decreased when cells were preexposed to IL-7, supporting the assumption that IL-7Rα and the IL-7Rα:IL-7 complex limit the accessibility of γc for other cytokine receptor complexes. We propose that in complex inflammatory environments, such asymmetric cross-talk establishes a hierarchy of cytokine responsiveness.
Collapse
Affiliation(s)
- Pauline Gonnord
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bastian R Angermann
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaitlyn Sadtler
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Gombos
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Chappert
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Meier-Schellersheim
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rajat Varma
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Mocsár G, Volkó J, Rönnlund D, Widengren J, Nagy P, Szöllősi J, Tóth K, Goldman CK, Damjanovich S, Waldmann TA, Bodnár A, Vámosi G. MHC I Expression Regulates Co-clustering and Mobility of Interleukin-2 and -15 Receptors in T Cells. Biophys J 2017; 111:100-12. [PMID: 27410738 DOI: 10.1016/j.bpj.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
MHC glycoproteins form supramolecular clusters with interleukin-2 and -15 receptors in lipid rafts of T cells. The role of highly expressed MHC I in maintaining these clusters is unknown. We knocked down MHC I in FT7.10 human T cells, and studied protein clustering at two hierarchic levels: molecular aggregations and mobility by Förster resonance energy transfer and fluorescence correlation spectroscopy; and segregation into larger domains or superclusters by superresolution stimulated emission depletion microscopy. Fluorescence correlation spectroscopy-based molecular brightness analysis revealed that the studied molecules diffused as tight aggregates of several proteins of a kind. Knockdown reduced the number of MHC I containing molecular aggregates and their average MHC I content, and decreased the heteroassociation of MHC I with IL-2Rα/IL-15Rα. The mobility of not only MHC I but also that of IL-2Rα/IL-15Rα increased, corroborating the general size decrease of tight aggregates. A multifaceted analysis of stimulated emission depletion images revealed that the diameter of MHC I superclusters diminished from 400-600 to 200-300 nm, whereas those of IL-2Rα/IL-15Rα hardly changed. MHC I and IL-2Rα/IL-15Rα colocalized with GM1 ganglioside-rich lipid rafts, but MHC I clusters retracted to smaller subsets of GM1- and IL-2Rα/IL-15Rα-rich areas upon knockdown. Our results prove that changes in expression level may significantly alter the organization and mobility of interacting membrane proteins.
Collapse
Affiliation(s)
- Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Rönnlund
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Jerker Widengren
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences and the University of Debrecen, Debrecen, Hungary
| | - Katalin Tóth
- German Cancer Research Center, Biophysics of Macromolecules, Heidelberg, Germany
| | - Carolyn K Goldman
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sándor Damjanovich
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
11
|
IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex. Mediators Inflamm 2017; 2017:9096829. [PMID: 28127156 PMCID: PMC5240581 DOI: 10.1155/2017/9096829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
IL-7 signaling via IL-7Rα and common γ-chain (γc) is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα.
Collapse
|
12
|
Waickman AT, Park JY, Park JH. The common γ-chain cytokine receptor: tricks-and-treats for T cells. Cell Mol Life Sci 2016; 73:253-69. [PMID: 26468051 PMCID: PMC6315299 DOI: 10.1007/s00018-015-2062-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Originally identified as the third subunit of the high-affinity IL-2 receptor complex, the common γ-chain (γc) also acts as a non-redundant receptor subunit for a series of other cytokines, collectively known as γc family cytokines. γc plays essential roles in T cell development and differentiation, so that understanding the molecular basis of its signaling and regulation is a critical issue in T cell immunology. Unlike most other cytokine receptors, γc is thought to be constitutively expressed and limited in its function to the assembly of high-affinity cytokine receptors. Surprisingly, recent studies reported a series of findings that unseat γc as a simple housekeeping gene, and unveiled γc as a new regulatory molecule in T cell activation and differentiation. Cytokine-independent binding of γc to other cytokine receptor subunits suggested a pre-association model of γc with proprietary cytokine receptors. Also, identification of a γc splice isoform revealed expression of soluble γc proteins (sγc). sγc directly interacted with surface IL-2Rβ to suppress IL-2 signaling and to promote pro-inflammatory Th17 cell differentiation. As a result, endogenously produced sγc exacerbated autoimmune inflammatory disease, while the removal of endogenous sγc significantly ameliorated disease outcome. These data provide new insights into the role of both membrane and soluble γc in cytokine signaling, and open new venues to interfere and modulate γc signaling during immune activation. These unexpected discoveries further underscore the perspective that γc biology remains largely uncharted territory that invites further exploration.
Collapse
Affiliation(s)
- Adam T Waickman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Faller EM, Ghazawi FM, Cavar M, MacPherson PA. IL-7 induces clathrin-mediated endocytosis of CD127 and subsequent degradation by the proteasome in primary human CD8 T cells. Immunol Cell Biol 2015; 94:196-207. [PMID: 26272555 DOI: 10.1038/icb.2015.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
Abstract
Interleukin-7 (IL-7), a key immunoregulatory cytokine, plays an essential role in peripheral T-cell homeostasis and function. Signaling via the IL-7 receptor is tightly regulated and we and others have shown IL-7 provides negative feedback on its own signaling by downregulating expression of the IL-7 receptor alpha-chain (CD127) through both suppression of CD127 gene transcription and by internalization of existing CD127 proteins from the cell membrane. We show here for the first time in primary human CD8 T cells that upon stimulation with IL-7, CD127 is internalized through clathrin-coated pits, a process dependent on both lipid-raft formation and the activity of dynamin. As visualized by confocal microscopy, CD127 shows increased co-localization with clathrin within 5 min of IL-7 stimulation and within 15-30 min is seen in multiple intracellular punctae co-localizing with the early endosomal marker EEA1. By 2 h after addition of IL-7, CD127 staining associates with the late endosomal marker RAB7 and with the proteasomal 20S subunit. By inducing receptor internalization and translocation from early endosomes to the proteasome, IL-7 directly influences its receptor density on the cell surface and thus regulates the intensity of its own signaling cascades. Given the important role IL-7 plays in T-cell development, homeostasis and function, deciphering how expression of its receptor is controlled on the cell surface is essential in understanding how T-cell activity can be regulated in different microenvironments and in response to different pathogens.
Collapse
Affiliation(s)
| | - Feras M Ghazawi
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marko Cavar
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul A MacPherson
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Kurgonaite K, Gandhi H, Kurth T, Pautot S, Schwille P, Weidemann T, Bökel C. Essential role of endocytosis for Interleukin-4 receptor mediated JAK/STAT signalling. J Cell Sci 2015; 128:3781-95. [DOI: 10.1242/jcs.170969] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/21/2015] [Indexed: 01/15/2023] Open
Abstract
Many important signalling cascades operate through specialized signalling endosomes, but a corresponding mechanism has as yet not been described for hematopoietic cytokine receptors. Based on live cell affinity measurements we recently proposed that ligand induced Interleukin-4 receptor (IL-4R) complex formation and thus JAK/STAT pathway activation requires a local, subcellular increase in receptor density. Here we show that this concentration step is provided by the internalization of IL-4R subunits through a constitutive, Rac1/Pak and actin mediated endocytosis route that causes IL-4R subunits to become enriched by about two orders of magnitude within a population of cortical endosomes. Consistently, ligand induced receptor dimers are preferentially detected within these endosomes. IL-4 signalling can be blocked by pharmacological inhibitors targeting the actin polymerization machinery driving receptor internalization, placing endocytosis unambigously upstream of receptor activation. Together these observations demonstrate a role for endocytosis that is mechanistically distinct from the scaffolding function of signalling endosomes in other pathways.
Collapse
Affiliation(s)
- Kristina Kurgonaite
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Hetvi Gandhi
- BIOTEC/Biophysics, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Thomas Kurth
- BIOTEC/Biophysics, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Sophie Pautot
- BIOTEC/Biophysics, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Petra Schwille
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Thomas Weidemann
- BIOTEC/Biophysics, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Christian Bökel
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| |
Collapse
|
15
|
Gandhi H, Worch R, Kurgonaite K, Hintersteiner M, Schwille P, Bökel C, Weidemann T. Dynamics and interaction of interleukin-4 receptor subunits in living cells. Biophys J 2014; 107:2515-27. [PMID: 25468331 DOI: 10.1016/j.bpj.2014.07.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/08/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
It has long been established that dimerization of Interleukin-4 receptor (IL-4R) subunits is a pivotal step for JAK/STAT signal transduction. However, ligand-induced complex formation at the surface of living cells has been challenging to observe. Here we report an experimental assay employing trisNTA dyes for orthogonal, external labeling of eGFP-tagged receptor constructs that allows the quantification of receptor heterodimerization by dual-color fluorescence cross-correlation spectroscopy. Fluorescence cross-correlation spectroscopy analysis at the plasma membrane shows that IL-4R subunit dimerization is indeed a strictly ligand-induced process. Under conditions of saturating cytokine occupancy, we determined intramembrane dissociation constants (K(d,2D)) of 180 and 480 receptors per μm(2) for the type-2 complexes IL-4:IL-4Rα/IL-13Rα1 and IL-13:IL-13Rα1/IL-4Rα, respectively. For the lower affinity type-1 complex IL-4:IL-4Rα/IL-2Rγ, we estimated a K(d,2D) of ∼1000 receptors per μm(2). The receptor densities required for effective dimerization thus exceed the typical, average expression levels by several orders of magnitude. In addition, we find that all three receptor subunits accumulate rapidly within a subpopulation of early sorting and recycling endosomes stably anchored just beneath the plasma membrane (cortical endosomes, CEs). The receptors, as well as labeled IL-4 and trisNTA ligands are specifically trafficked into CEs by a constitutive internalization mechanism. This may compensate for the inherent weak affinities that govern ligand-induced receptor dimerization at the plasma membrane. Consistently, activated receptors are also concentrated at the CEs. Our observations thus suggest that receptor trafficking may play an important role for the regulation of IL-4R-mediated JAK/STAT signaling.
Collapse
Affiliation(s)
- Hetvi Gandhi
- BIOTEC/Biophysics, Technische Universität Dresden, Dresden, Germany
| | - Remigiusz Worch
- BIOTEC/Biophysics, Technische Universität Dresden, Dresden, Germany; Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Kristina Kurgonaite
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Petra Schwille
- BIOTEC/Biophysics, Technische Universität Dresden, Dresden, Germany; Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Bökel
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Thomas Weidemann
- BIOTEC/Biophysics, Technische Universität Dresden, Dresden, Germany; Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
16
|
Wang XS, Wen PF, Zhang M, Hu LF, Ni J, Qiu LJ, Liang Y, Zhao W, Huang Q, Tao SS, Xu WD, Feng CC, Cen H, Leng RX, Pan HF, Ye DQ. Interleukin-7 receptor single nucleotide polymorphism rs6897932 (C/T) and the susceptibility to systemic lupus erythematosus. Inflammation 2014; 37:615-20. [PMID: 24242875 DOI: 10.1007/s10753-013-9777-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Emerging evidences were accumulated to support the view that aberrant interleukin-7 (IL-7) signaling might be associated with autoimmunity. Former studies demonstrated the single nucleotide polymorphism (SNP) rs6897932 C/T in the IL-7 receptor (IL-7R) gene was associated with susceptibility to autoimmune diseases, including multiple sclerosis and type I diabetes. Given these, this study was conducted to investigate whether an association existed between SNP rs6897932 and the susceptibility to systemic lupus erythematosus (SLE), a severe systemic autoimmune disease. In this context, 816 SLE patients and 816 controls from a Chinese population were recruited for this study, and the results showed that the major allele C of rs6897932 showed a higher frequency in SLE patients compared with controls (P = 0.039, C versus T); significant difference was also detected under a recessive model with regard to the distribution of genotype frequencies between SLE patients and controls (P = 0.041, CC versus CT + TT), which was not consistent with the results under a dominant model (P = 0.349, CC + CT versus TT). Moreover, association studies were also performed contraposing the relationship between the SNP rs6897932 C/T and lupus nephritis as well as 10 clinical features of SLE; however, no significant association signal was found regarding the distribution of allele and genotype frequencies between SLE patients positive and negative for the presence of 11 sub-phenotypes. In conclusion, the major allele C of SNP rs6897932 may be associated with increased SLE risk in Chinese populations, and further studies are still encouraged to shed light on the true associations between SLE and its susceptibility genes with respect to IL-7R gene.
Collapse
Affiliation(s)
- Xiao-Song Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Regulatory T-cell therapy in the induction of transplant tolerance: the issue of subpopulations. Transplantation 2014; 98:370-9. [PMID: 24933458 DOI: 10.1097/tp.0000000000000243] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clinical tolerance induction to permit minimization or cessation of immunosuppressive drugs is one of the key research goals in solid organ transplantation. The use of ex vivo expanded or manipulated immunologic cells, including CD4CD25FOXP3 regulatory T cells (Tregs), to achieve this aim is already a reality, with several trials currently recruiting patients. Tregs are a highly suppressive, nonredundant, population of regulatory cells that prevent the development of autoimmune diseases in mammals. Data from transplanted humans and animal models support the notion that Tregs can mediate both induction and adoptive transfer of transplantation tolerance. However, human Tregs are highly heterogeneous and include subpopulations with the potential to produce the proinflammatory cytokine interleukin-17, which has been linked to transplant rejection. Tregs are also small in number in the peripheral circulation, thus they require ex vivo expansion before infusion into man. Selection of the most appropriate Treg population for cell therapy is, therefore, a critical step in ensuring successful clinical outcomes. In this review, we discuss Treg subpopulations, their subdivision based on nonmutually exclusive criteria of origin, expression of immunologic markers and function, availability in the peripheral blood of patients awaiting transplantation, and their suitability for programs of cell-based therapy.
Collapse
|
18
|
Nizsalóczki E, Csomós I, Nagy P, Fazekas Z, Goldman CK, Waldmann TA, Damjanovich S, Vámosi G, Mátyus L, Bodnár A. Distinct spatial relationship of the interleukin-9 receptor with interleukin-2 receptor and major histocompatibility complex glycoproteins in human T lymphoma cells. Chemphyschem 2014; 15:3969-78. [PMID: 25297818 DOI: 10.1002/cphc.201402501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/16/2014] [Indexed: 11/07/2022]
Abstract
The interleukin-9 receptor (IL-9R) consists of an α subunit and a γ(c) chain that are shared with other cytokine receptors, including interleukin-2 receptor (IL-2R), an important regulator of T cells. We previously showed that IL-2R is expressed in common clusters with major histocompatibility complex (MHC) glycoproteins in lipid rafts of human T lymphoma cells, which raised the question about what the relationship between clusters of IL-2R/MHC and IL-9R is. Confocal microscopy colocalization and fluorescence resonance energy transfer experiments capable of detecting membrane protein organization at different size scales revealed nonrandom association of IL-9R with IL-2R/MHC clusters at the surface of human T lymphoma cells. Accommodation of IL-9Rα in membrane areas segregated from the IL-2R/MHC domains was also detected. The bipartite nature of IL-9R distribution was mirrored by signal transducer and activator of transcription (STAT) activation results. Our data indicate that co-compartmentalization with MHC glycoproteins is a general property of γ(c) receptors. Distribution of receptor chains between different membrane domains may regulate their function.
Collapse
Affiliation(s)
- Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, P.O.B. 39., 4012, Debrecen (Hungary)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Majdinasab N, Hosseini Behbahani M, Galehdari H, Mohaghegh M. Association of interleukin 7 receptor gene polymorphism rs6897932 with multiple sclerosis patients in Khuzestan. IRANIAN JOURNAL OF NEUROLOGY 2014; 13:168-71. [PMID: 25422737 PMCID: PMC4240935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 04/19/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of central nervous system with unknown causes. Etiology of MS involves both genetic and environment factors. The interleukin 7 receptor (IL7R) gene is a promising candidate for MS, because its involvement in the autoimmunity, regulation of the T-cell homeostasis, proliferation, and anti-apoptotic signaling. METHODS We investigated the association of the IL7R gene polymorphism rs6897932 in MS patients in a case and control study. In this case and control study participating, 127 relapsing-remitting MS (RRMS) patients (mean age: 32.25, age range: 16-57) selected according McDonald criteria, and 109 ethnically, sex and age matched healthy control (mean age: 27.44, age range: 14-63) with no personal or family history of autoimmune diseases were studied. DNA was extracted from whole blood using high pure polymerase chain reaction template preparation kit from Roch Company. Amplification refractory mutation system method was applied to define the genotyping C/T within exon 6 of the IL7R gene among individuals. RESULTS Evaluation of the IL7R gene polymorphism revealed that the T allele and the C/T and T/T genotypes are present in 53.5%, 42.5%, 4.0%, and 68.8%, 26.6%, 4.6% in MS patients and controls, respectively. Comparison between alleles and genotypes in the MS patients and healthy controls show significant differences (P = 0.038). CONCLUSION The distribution of the rs6897932 polymorphism is significantly different in our case/control study in Khuzestan Province. This single nucleotide polymorphism causes alternative splicing in exon 6 of the IL7R gene with possible influence of the autoimmunity.
Collapse
Affiliation(s)
- Nastaran Majdinasab
- Musculoskeletal Rehabilitation Research Center AND Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hamid Galehdari
- Departmanet of Genetic, School of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Maryam Mohaghegh
- Departmanet of Genetic, School of Sciences, Shahid Chamran University, Ahvaz, Iran
| |
Collapse
|
20
|
Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 2014; 124:106-10. [DOI: 10.1182/blood-2013-10-529685] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Gain-of-function somatic mutations introducing cysteines to either the extracellular or to the transmembrane domain (TMD) in interleukin-7 receptor α (IL7R) or cytokine receptor-like factor 2 (CRLF2) have been described in acute lymphoblastic leukemias. Here we report noncysteine in-frame mutations in IL7R and CRLF2 located in a region of the TMD closer to the cytosolic domain. Biochemical and functional assays showed that these are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells in vitro and are transforming in vivo. Protein fragment complementation assays suggest that despite the absence of cysteines, the mechanism of activation is through ligand-independent dimerization. Mutagenesis experiments and ConSurf calculations suggest that the mutations stabilize the homodimeric conformation, positioning the cytosolic kinases in predefined orientation to each other, thereby inducing spontaneous receptor activation independently of external signals. Hence, type I cytokine receptors may be activated in leukemia through 2 types of transmembrane somatic dimerizing mutations.
Collapse
|
21
|
Tal N, Shochat C, Geron I, Bercovich D, Izraeli S. Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci 2014; 71:365-78. [PMID: 23625073 PMCID: PMC11113825 DOI: 10.1007/s00018-013-1337-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/10/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.
Collapse
Affiliation(s)
- Noa Tal
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Shochat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Ifat Geron
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Biological Sciences and Department of Medicine Stem Cell Program, University of California San Diego, La Jolla, California USA
| | - Dani Bercovich
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Shai Izraeli
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Romeo MJ, Agrawal R, Pomés A, Woodfolk JA. A molecular perspective on TH2-promoting cytokine receptors in patients with allergic disease. J Allergy Clin Immunol 2013; 133:952-60. [PMID: 24084078 DOI: 10.1016/j.jaci.2013.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
The cytokines IL-4, IL-13, and thymic stromal lymphopoietin play a key role in allergic disease by virtue of their ability to initiate, maintain, and augment TH2 responses. These molecules mediate their effects through type 1 cytokine receptors, which bind cytokines with a characteristic structure. Receptors are expressed on a broad array of immune cell types and are integral to complex cytokine networks operating in health and disease. TH2-promoting cytokines bind different configurations of receptors. Receptor subunits can exist in surface-bound or soluble forms, as well as in isolation or in partnership with other subunits. Sharing of receptor subunits among different cytokine receptor complexes adds to the intricate landscape. This article describes the characteristics of receptors for IL-4, IL-13, and thymic stromal lymphopoietin and their respective ligands from a structure-function perspective. We detail the mechanisms of receptor complex assembly, the interrelated nature of these receptors, and the effect on allergic inflammation. The ability for novel and atypical types of receptors to modulate inflammatory processes is also discussed. We highlight current and emerging treatments that target TH2-promoting receptor complexes. Understanding the molecular features of these receptors provides insight into different disease phenotypes and the variable clinical outcomes arising from targeted therapies. These considerations can be used to inform future directions for research and creative strategies for treating individual patients.
Collapse
Affiliation(s)
- Martin J Romeo
- Asthma and Allergic Diseases Center, University of Virginia, Charlottesville, Va
| | - Rachana Agrawal
- Asthma and Allergic Diseases Center, University of Virginia, Charlottesville, Va
| | - Anna Pomés
- Indoor Biotechnologies Inc, Charlottesville, Va
| | - Judith A Woodfolk
- Asthma and Allergic Diseases Center, University of Virginia, Charlottesville, Va.
| |
Collapse
|
23
|
Perspectives of the relationship between IL-7 and autoimmune diseases. Clin Rheumatol 2013; 32:1703-9. [PMID: 23934388 DOI: 10.1007/s10067-013-2360-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/31/2013] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-7 is one of the IL-2 family cytokines comprised of IL-2, IL-4, IL-7, IL-9, IL-15, as well as IL-21. IL-7 is mainly secreted by stroma cells in primary lymphoid tissues, playing an essential role in the program of T cell development. Recently, studies have revealed that physiological function exerted by immunocytes can be influenced by aberrant IL-7 signaling, which is common in abnormal autoimmunity regulation. There is also increasing evidence that IL-7 is involved in several autoimmune diseases, such as rheumatoid arthritis, type I diabetes, multiple sclerosis and systemic lupus erythematosus, etc. Targeting components in IL-7 signaling pathways may have potential significance for treating numerous autoimmune diseases. In this review, we therefore summarize our current understandings regarding the relationship between IL-7 and autoimmune diseases so as to render more valuable information on this kind of research.
Collapse
|
24
|
Cotari JW, Voisinne G, Dar OE, Karabacak V, Altan-Bonnet G. Cell-to-cell variability analysis dissects the plasticity of signaling of common γ chain cytokines in T cells. Sci Signal 2013; 6:ra17. [PMID: 23482665 DOI: 10.1126/scisignal.2003240] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural variability in the abundance of signaling regulators can lead to divergence in cell fate, even within genetically identical cells that share a common differentiation state. We introduce cell-to-cell variability analysis (CCVA), an experimental and computational methodology that quantifies the correlation between variability in signaling regulator abundance and variation in the sensitivity of cells to stimuli. With CCVA, we investigated the unexpected effects of the interleukin 2 (IL-2) receptor α chain (IL-2Rα) on the sensitivity of primary mouse T lymphocytes to cytokines that signal through receptors that have the common γ chain (γ(c)). Our work showed that increased IL-2Rα abundance decreased the concentration of IL-2 required for a half-maximal activation (EC(50)) of the downstream effector signal transducer and activator of transcription 5 (STAT5), but reduced the responsiveness to IL-7 or IL-15, without affecting the EC(50) values of other γ(c) cytokines. To investigate the mechanism of the effect of IL-2Rα on γ(c) cytokine signaling, we introduced a Bayesian-inference computational framework that models the formation of receptor signaling complexes with data from previous biophysical measurements. With this framework, we found that a model in which IL-2Rα drives γ(c) depletion through the assembly of functional IL-2R complexes was consistent with both the CCVA data and experimental measurements. The combination of CCVA and computational modeling produced quantitative understanding of the crosstalk between γ(c) cytokine receptor signaling in T lymphocytes.
Collapse
Affiliation(s)
- Jesse W Cotari
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.,Center for Cancer Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Guillaume Voisinne
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.,Center for Cancer Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Orly Even Dar
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Volkan Karabacak
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.,Center for Cancer Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.,Center for Cancer Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
25
|
Walsh STR. Structural insights into the common γ-chain family of cytokines and receptors from the interleukin-7 pathway. Immunol Rev 2013; 250:303-16. [PMID: 23046137 DOI: 10.1111/j.1600-065x.2012.01160.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past 13 years, numerous crystal structures of complexes of the common γ-chain (γ(c)) cytokine receptors and their cytokines have been solved. Even with the remarkable progress in the structural biology of γ(c) receptors and their cytokines or interleukins, there are valuable lessons to be learned from the structural and biophysical studies of interleukin-7 (IL-7) and its α-receptor (IL-7Rα) and comparisons with other γ(c) family members. The structure of the IL-7/IL-7Rα complex teaches that interfaces between the γ(c) interleukins and their receptors can vary in size, polarity, and specificity, and that significant conformational changes might be necessary for complexes of interleukins and their receptors to bind the shared, activating γ(c) receptor. Binding, kinetic, and thermodynamic studies of IL-7 and IL-7Rα show that glycosylation and electrostatics can be important to interactions between interleukins and their receptor, even where the glycans and charged residues are distant from the interface. The structure of the IL-7Rα homodimer is a reminder that often-ignored non-activating complexes likely perform roles just as important to signaling as activating complexes. And last but not least, the structural and biophysical studies help explain and potentially treat the diseases caused by aberrant IL-7 signaling.
Collapse
Affiliation(s)
- Scott T R Walsh
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, MD, USA.
| |
Collapse
|
26
|
Tamarit B, Bugault F, Pillet AH, Lavergne V, Bochet P, Garin N, Schwarz U, Thèze J, Rose T. Membrane microdomains and cytoskeleton organization shape and regulate the IL-7 receptor signalosome in human CD4 T-cells. J Biol Chem 2013; 288:8691-8701. [PMID: 23329834 DOI: 10.1074/jbc.m113.449918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center.
Collapse
Affiliation(s)
- Blanche Tamarit
- Institut Pasteur, Département Infection et Epidémiologie, Département d'Immunologie, Unité d'Immunogénétique Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France; Université Pierre et Marie Curie, Cellule Pasteur-UPMC, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Florence Bugault
- Institut Pasteur, Département Infection et Epidémiologie, Département d'Immunologie, Unité d'Immunogénétique Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Anne-Hélène Pillet
- Institut Pasteur, Département Infection et Epidémiologie, Département d'Immunologie, Unité d'Immunogénétique Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France; Université Pierre et Marie Curie, Cellule Pasteur-UPMC, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Vincent Lavergne
- Institut Pasteur, Département Infection et Epidémiologie, Département d'Immunologie, Unité d'Immunogénétique Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Pascal Bochet
- Institut Pasteur, Département Infection et Epidémiologie, Département d'Immunologie, Unité d'Immunogénétique Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3525, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Nathalie Garin
- Leica Microsystems AG, Max Schmidheiny Strasse 201, CH-9435 Heerbrugg, Switzerland
| | - Ulf Schwarz
- Leica Microsystems CMS GmbH, Am Friedrichplatz, D-68165 Mannheim, Germany
| | - Jacques Thèze
- Institut Pasteur, Département Infection et Epidémiologie, Département d'Immunologie, Unité d'Immunogénétique Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Thierry Rose
- Institut Pasteur, Département Infection et Epidémiologie, Département d'Immunologie, Unité d'Immunogénétique Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
27
|
IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol 2012; 24:190-7. [PMID: 22421575 DOI: 10.1016/j.smim.2012.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/15/2012] [Indexed: 12/28/2022]
Abstract
The development and homeostasis of adaptive and innate lymphocytes is dependent on the stromal cytokine IL-7. The initial priming of immune responses to pathogenic challenges is executed by innate lymphoid cells (ILCs) with programmed capacity to rapidly secrete effector cytokines. How ILCs are controlled by IL-7 in distinct anatomical locale has evolved into a more complex problem as IL-7 receptor is not only expressed on ILCs, but also on surrounding neighbors, including vascular endothelium and mesenchymal cells that compete for limiting IL-7. For the generation of γδ T and B cells IL-7 is required for the production of antigen receptors, and it is likely that IL-7 performs critical function in facilitating ILC effector programming in addition to its regulatory actions on cell survival and proliferation. Most of our current understanding of the highly calibrated regulatory circuits of IL-7 function and IL-7 receptor signaling has derived from studies of adaptive, conventional lymphocytes. Here we highlight recent advances in mapping the gene circuits and cellular interactions that regulate temporospatial activities of IL-7 in diverse macro and micro niches that have direct relevance to deciphering the sphere of impact of IL-7 on ILC differentiation.
Collapse
|
28
|
Abstract
We report here an unliganded receptor structure in the common gamma-chain (γ(c)) family of receptors and cytokines. The crystal structure of the unliganded form of the interleukin-7 alpha receptor (IL-7Rα) extracellular domain (ECD) at 2.15 Å resolution reveals a homodimer forming an "X" geometry looking down onto the cell surface with the C termini of the two chains separated by 110 Å and the dimer interface comprising residues critical for IL-7 binding. Further biophysical studies indicate a weak association of the IL-7Rα ECDs but a stronger association between the γ(c)/IL-7Rα ECDs, similar to previous studies of the full-length receptors on CD4(+) T cells. Based on these and previous results, we propose a molecular mechanism detailing the progression from the inactive IL-7Rα homodimer and IL-7Rα-γ(c) heterodimer to the active IL-7-IL-7Rα-γ(c) ternary complex whereby the two receptors undergo at least a 90° rotation away from the cell surface, moving the C termini of IL-7Rα and γ(c) from a distance of 110 Å to less than 30 Å at the cell surface. This molecular mechanism can be used to explain recently discovered IL-7- and γ(c)-independent gain-of-function mutations in IL-7Rα from B- and T-cell acute lymphoblastic leukemia patients. The mechanism may also be applicable to other γ(c) receptors that form inactive homodimers and heterodimers independent of their cytokines.
Collapse
|
29
|
Ruprecht V, Wieser S, Marguet D, Schütz G. Spot variation fluorescence correlation spectroscopy allows for superresolution chronoscopy of confinement times in membranes. Biophys J 2011; 100:2839-45. [PMID: 21641330 PMCID: PMC3117160 DOI: 10.1016/j.bpj.2011.04.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/12/2011] [Accepted: 04/15/2011] [Indexed: 11/19/2022] Open
Abstract
Resolving the dynamical interplay of proteins and lipids in the live-cell plasma membrane represents a central goal in current cell biology. Superresolution concepts have introduced a means of capturing spatial heterogeneity at a nanoscopic length scale. Similar concepts for detecting dynamical transitions (superresolution chronoscopy) are still lacking. Here, we show that recently introduced spot-variation fluorescence correlation spectroscopy allows for sensing transient confinement times of membrane constituents at dramatically improved resolution. Using standard diffraction-limited optics, spot-variation fluorescence correlation spectroscopy captures signatures of single retardation events far below the transit time of the tracer through the focal spot. We provide an analytical description of special cases of transient binding of a tracer to pointlike traps, or association of a tracer with nanodomains. The influence of trap mobility and the underlying binding kinetics are quantified. Experimental approaches are suggested that allow for gaining quantitative mechanistic insights into the interaction processes of membrane constituents.
Collapse
Affiliation(s)
- Verena Ruprecht
- Biophysics Institute, Johannes Kepler University Linz, Linz, Austria
| | - Stefan Wieser
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
| | - Gerhard J. Schütz
- Biophysics Institute, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
30
|
Yabas M, Teh CE, Frankenreiter S, Lal D, Roots CM, Whittle B, Andrews DT, Zhang Y, Teoh NC, Sprent J, Tze LE, Kucharska EM, Kofler J, Farell GC, Bröer S, Goodnow CC, Enders A. ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat Immunol 2011; 12:441-9. [PMID: 21423173 PMCID: PMC3272780 DOI: 10.1038/ni.2011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/21/2011] [Indexed: 12/14/2022]
Abstract
Subcompartments of the plasma membrane are believed to be critical for lymphocyte responses, but few genetic tools are available to test their function. Here we describe a previously unknown X-linked B cell-deficiency syndrome in mice caused by mutations in Atp11c, which encodes a member of the P4 ATPase family thought to serve as 'flippases' that concentrate aminophospholipids in the cytoplasmic leaflet of cell membranes. Defective ATP11C resulted in a lower rate of phosphatidylserine translocation in pro-B cells and much lower pre-B cell and B cell numbers despite expression of pre-rearranged immunoglobulin transgenes or enforced expression of the prosurvival protein Bcl-2 to prevent apoptosis and abolished pre-B cell population expansion in response to a transgene encoding interleukin 7. The only other abnormalities we noted were anemia, hyperbilirubinemia and hepatocellular carcinoma. Our results identify an intimate connection between phospholipid transport and B lymphocyte function.
Collapse
Affiliation(s)
- Mehmet Yabas
- Ramaciotti Immunization Genomics Laboratory, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
IL-2 Induces Conformational Changes in Its Preassembled Receptor Core, Which Then Migrates in Lipid Raft and Binds to the Cytoskeleton Meshwork. J Mol Biol 2010; 403:671-92. [DOI: 10.1016/j.jmb.2010.08.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/23/2010] [Accepted: 08/30/2010] [Indexed: 01/01/2023]
|