1
|
Leone M, Cazorla-Vázquez S, Ferrazzi F, Wiederstein JL, Gründl M, Weinstock G, Vergarajauregui S, Eckstein M, Krüger M, Gaubatz S, Engel FB. IQGAP3, a YAP Target, Is Required for Proper Cell-Cycle Progression and Genome Stability. Mol Cancer Res 2021; 19:1712-1726. [PMID: 34183451 DOI: 10.1158/1541-7786.mcr-20-0639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Controlling cell proliferation is critical for organism development, tissue homeostasis, disease, and regeneration. IQGAP3 has been shown to be required for proper cell proliferation and migration, and is associated to a number of cancers. Moreover, its expression is inversely correlated with the overall survival rate in the majority of cancers. Here, we show that IQGAP3 expression is elevated in cervical cancer and that in these cancers IQGAP3 high expression is correlated with an increased lethality. Furthermore, we demonstrate that IQGAP3 is a target of YAP, a regulator of cell cycle gene expression. IQGAP3 knockdown resulted in an increased percentage of HeLa cells in S phase, delayed progression through mitosis, and caused multipolar spindle formation and consequentially aneuploidy. Protein-protein interaction studies revealed that IQGAP3 interacts with MMS19, which is known in Drosophila to permit, by competitive binding to Xpd, Cdk7 to be fully active as a Cdk-activating kinase (CAK). Notably, IQGAP3 knockdown caused decreased MMS19 protein levels and XPD knockdown partially rescued the reduced proliferation rate upon IQGAP3 knockdown. This suggests that IQGAP3 modulates the cell cycle via the MMS19/XPD/CAK axis. Thus, in addition to governing proliferation and migration, IQGAP3 is a critical regulator of mitotic progression and genome stability. IMPLICATIONS: Our data indicate that, while IQGAP3 inhibition might be initially effective in decreasing cancer cell proliferation, this approach harbors the risk to promote aneuploidy and, therefore, the formation of more aggressive cancers.
Collapse
Affiliation(s)
- Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marco Gründl
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Grit Weinstock
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Muscle Research Center Erlangen (MURCE), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
2
|
Sala E, Vived C, Luna J, Saavedra-Ávila NA, Sengupta U, Castaño AR, Villar-Pazos S, Haba L, Verdaguer J, Ropero AB, Stratmann T, Pizarro J, Vázquez-Carrera M, Nadal A, Lahti JM, Mora C. CDK11 Promotes Cytokine-Induced Apoptosis in Pancreatic Beta Cells Independently of Glucose Concentration and Is Regulated by Inflammation in the NOD Mouse Model. Front Immunol 2021; 12:634797. [PMID: 33664748 PMCID: PMC7923961 DOI: 10.3389/fimmu.2021.634797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose. Methods We studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ), and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either pro-inflammatory cytokines in the presence of increasing glucose concentrations, or Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was also determined. Results N-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of glucose concentration. However, thapsigargin-induced apoptosis was not altered. Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused by Cyclin D3 deficiency. Conclusions This study is the first to report that CDK11 is repressed in T1D as a protection mechanism against inflammation-induced apoptosis and suggests that CDK11 lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new potential intervention target in T1D.
Collapse
Affiliation(s)
- Ester Sala
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Celia Vived
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Júlia Luna
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Noemí Alejandra Saavedra-Ávila
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Upasana Sengupta
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - A. Raúl Castaño
- Departament of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Sabrina Villar-Pazos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Laura Haba
- Experimental Diabetes Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Ana B. Ropero
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Javier Pizarro
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Diabetes and Associated Metabolic Disorders CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| |
Collapse
|
3
|
An S, Kwon OS, Yu J, Jang SK. A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis. Cell Mol Life Sci 2020; 77:4693-4708. [PMID: 32030451 PMCID: PMC7599166 DOI: 10.1007/s00018-019-03436-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
During mitosis, translation of most mRNAs is strongly repressed; none of the several explanatory hypotheses suggested can fully explain the molecular basis of this phenomenon. Here we report that cyclin-dependent CDK11/p58-a serine/threonine kinase abundantly expressed during M phase-represses overall translation by phosphorylating a subunit (eIF3F) of the translation factor eIF3 complex that is essential for translation initiation of most mRNAs. Ectopic expression of CDK11/p58 strongly repressed cap-dependent translation, and knockdown of CDK11/p58 nullified the translational repression during M phase. We identified the phosphorylation sites in eIF3F responsible for M phase-specific translational repression by CDK11/p58. Alanine substitutions of CDK11/p58 target sites in eIF3F nullified its effects on cell cycle-dependent translational regulation. The mechanism of translational regulation by the M phase-specific kinase, CDK11/p58, has deep evolutionary roots considering the conservation of CDK11 and its target sites on eIF3F from C. elegans to humans.
Collapse
Affiliation(s)
- Sihyeon An
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Oh Sung Kwon
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jinbae Yu
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Sung Key Jang
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
4
|
Ding J, Fang Z, Liu X, Zhu Z, Wen C, Wang H, Gu J, Li QR, Zeng R, Li H, Jin Y. CDK11 safeguards the identity of human embryonic stem cells via fine-tuning signaling pathways. J Cell Physiol 2019; 235:4279-4290. [PMID: 31612516 DOI: 10.1002/jcp.29305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 11/07/2022]
Abstract
Signaling pathways transmit extracellular cues into cells and regulate transcriptome and epigenome to maintain or change the cell identity. Protein kinases and phosphatases are critical for signaling transduction and regulation. Here, we report that CDK11, a member of the CDK family, is required for the maintenance of human embryonic stem cell (hESC) self-renewal. Our results show that, among the three main isoforms of CDK11, CDK11p46 is the main isoform safeguarding the hESC identity. Mechanistically, CDK11 constrains two important mitogen-activated protein kinase (MAPK) signaling pathways (JNK and p38 signaling) through modulating the activity of protein phosphatase 1. Furthermore, CDK11 knockdown activates transforming growth factor β (TGF-β)/SMAD2/3 signaling and upregulates certain nonneural differentiation-associated genes. Taken together, this study uncovers a kinase required for hESC self-renewal through fine-tuning MAPK and TGF-β signaling at appropriate levels. The kinase-phosphatase axis reported here may shed new light on the molecular mechanism sustaining the identity of hESCs.
Collapse
Affiliation(s)
- Jianyi Ding
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Xinyuan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Zhexin Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Chunsheng Wen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Han Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Gu
- Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Run Li
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China.,Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
5
|
CDK11 Loss Induces Cell Cycle Dysfunction and Death of BRAF and NRAS Melanoma Cells. Pharmaceuticals (Basel) 2019; 12:ph12020050. [PMID: 30987032 PMCID: PMC6631185 DOI: 10.3390/ph12020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 12/25/2022] Open
Abstract
Cyclin dependent kinase 11 (CDK11) is a protein kinase that regulates RNA transcription, pre-mRNA splicing, mitosis, and cell death. Targeting of CDK11 expression levels is effective in the experimental treatment of breast and other cancers, but these data are lacking in melanoma. To understand CDK11 function in melanoma, we evaluated protein and RNA levels of CDK11, Cyclin L1 and Cyclin L2 in benign melanocytes and BRAF- as well as NRAS-mutant melanoma cell lines. We investigated the effectiveness of reducing expression of this survival kinase using RNA interference on viability, clonal survival, and tumorsphere formation in melanoma cell lines. We examined the impact of CDK11 loss in BRAF-mutant melanoma on more than 700 genes important in cancer signaling pathways. Follow-up analysis evaluated how CDK11 loss alters cell cycle function in BRAF- and NRAS-mutant melanoma cells. We present data on CDK11, CCNL1 and CCNL2 mRNA expression in melanoma patients, including prognosis for survival. In sum, we found that CDK11 is necessary for melanoma cell survival, and a major impact of CDK11 loss in melanoma is to cause disruption of the cell cycle distribution with accumulation of G1- and loss of G2/M-phase cancer cells.
Collapse
|
6
|
Huang S, Chi Y, Qin Y, Wang Z, Xiu B, Su Y, Guo R, Guo L, Sun H, Zeng C, Zhou S, Hu X, Liu S, Shao Z, Wu Z, Jin W, Wu J. CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1 transcription. Theranostics 2018; 8:2549-2564. [PMID: 29721098 PMCID: PMC5928908 DOI: 10.7150/thno.22523] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
Macrophage-capping protein (CAPG) has been shown to promote cancer cell metastasis, although the mechanism remains poorly understood. Methods: Breast cancer (BC) tissue microarray was used to test the role of CAPG in the prognosis of BC patients. Xenograft mice model was used to validate the metastasis promotion role of CAPG in vivo. Gene expression array, chromatin immunoprecipitation and luciferase report assay were performed to search for the target genes of CAPG. Protein immunoprecipitation, MS/MS analysis, tissue microarray and histone methyltransferase assay were used to explore the mechanism of CAPG regulating stanniocalcin 1 (STC-1) transcription. Results: We demonstrate a novel mechanism by which CAPG enhances BC metastasis via promoting the transcription of the pro-metastatic gene STC-1, contributing to increased metastasis in BC. Mechanistically, CAPG competes with the transcriptional repressor arginine methyltransferase 5 (PRMT5) for binding to the STC-1 promoter, leading to reduced histone H4R3 methylation and enhanced STC-1 transcription. Our study also indicates that both CAPG and PRMT5 are independent prognostic factors for BC patient survival. High CAPG level is associated with poor survival, while high PRMT5 expression favors a better prognosis in BC patients. Conclusion: Our findings identify a novel role of CAPG in the promotion of BC metastasis by epigenetically enhancing STC-1 transcription.
Collapse
|
7
|
Liu TH, Wu YF, Dong XL, Pan CX, Du GY, Yang JG, Wang W, Bao XY, Chen P, Pan MH, Lu C. Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation. Cell Cycle 2017; 16:861-868. [PMID: 28318374 DOI: 10.1080/15384101.2017.1304339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cyclin proteins are the key regulatory and activity partner of cyclin-dependent kinases (CDKs), which play pivotal regulatory roles in cell cycle progression. In the present study, we identified a Cyclin L1 and 2 CDK11 2 CDK11 splice variants, CDK11A and CDK11B, from silkworm, Bombyx mori. We determined that both Cyclin L1 and CDK11A/B are nuclear proteins, and further investigations were conducted to elucidate their spatiofunctional features. Cyclin L1 forms a complex with CDK11A/B and were co-localized to the nucleus. Moreover, the dimerization of CDK11A and CDK11B and the effects of Cyclin L1 and CDK11A/B on cell cycle regulation were also investigated. Using overexpression or RNA interference experiments, we demonstrated that the abnormal expression of Cyclin L1 and CDK11A/B leads to cell cycle arrest and cell proliferation suppression. Together, these findings indicate that CDK11A/B interacts with Cyclin L1 to regulate the cell cycle.
Collapse
Affiliation(s)
- Tai-Hang Liu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Yun-Fei Wu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xiao-Long Dong
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| | - Cai-Xia Pan
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Guo-Yu Du
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Ji-Gui Yang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Wei Wang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xi-Yan Bao
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Peng Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Min-Hui Pan
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,c Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Cheng Lu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,c Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| |
Collapse
|
8
|
Liao Y, Sassi S, Halvorsen S, Feng Y, Shen J, Gao Y, Cote G, Choy E, Harmon D, Mankin H, Hornicek F, Duan Z. Androgen receptor is a potential novel prognostic marker and oncogenic target in osteosarcoma with dependence on CDK11. Sci Rep 2017; 7:43941. [PMID: 28262798 PMCID: PMC5338289 DOI: 10.1038/srep43941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma is the most common bone cancer in children and adolescents. Previously, we have found that cyclin-dependent kinase 11 (CDK11) signaling was essential for osteosarcoma cell growth and survival. Subsequently, CDK11 siRNA gene targeting, expression profiling, and network reconstruction of differentially expressed genes were performed between CDK11 knock down and wild type osteosarcoma cells. Reconstructed network of the differentially expressed genes pointed to the AR as key to CDK11 signaling in osteosarcoma. CDK11 increased transcriptional activation of AR gene in osteosarcoma cell lines. AR protein was highly expressed in various osteosarcoma cell lines and patient tumor tissues. Tissue microarray analysis showed that the disease-free survival rate for patients with high-expression of AR was significantly shorter than for patients with low-expression of AR. In addition, AR gene expression knockdown via siRNA greatly inhibited cell growth and viability. Similar results were found in osteosarcoma cells treated with AR inhibitor. These findings suggest that CDK11 is involved in the regulation of AR pathway and AR can be a potential novel prognostic marker and therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yunfei Liao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022, China
| | - Slim Sassi
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
- Center for Computational and Integrative Biology (CCIB), Massachusetts General Hospital, Boston, Massachusetts 02139USA
| | - Stefan Halvorsen
- Center for Computational and Integrative Biology (CCIB), Massachusetts General Hospital, Boston, Massachusetts 02139USA
| | - Yong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022, China
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Gregory Cote
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edwin Choy
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - David Harmon
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Henry Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| |
Collapse
|
9
|
Dong C, Tang X, Xie Y, Zou Q, Yang X, Zhou H. The crystal structure of an inactive dimer of PDZ-binding kinase. Biochem Biophys Res Commun 2016; 476:586-593. [PMID: 27262437 DOI: 10.1016/j.bbrc.2016.05.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
The overexpression of PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) has been associated with hematologic tumors, breast cancer and various other cancers. However, the three-dimensional structure of PBK has not been solved. In this study, we determined the crystal structure of human PBK, which has two phospho-mimicking mutations T9E and T198E. The structural data indicated that PBK may assemble into an inactive dimer in alkaline conditions. Analytical size-exclusion chromatography and analytical ultracentrifugation confirmed that PBK exists in a conformational transition between dimers and monomers at different pH conditions. Co-IP and kinase assays suggested that the active state of PBK is a monomer and does not form a dimer even under alkaline conditions. These results showed that the conformational transition of PBK is important for its kinase activity regulation. Collectively, our observations may provide a novel starting point for structure-based functional studies.
Collapse
Affiliation(s)
- Chunming Dong
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Tang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ying Xie
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qingwei Zou
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Zhou
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
10
|
Chi Y, Huang S, Peng H, Liu M, Zhao J, Shao Z, Wu J. Critical role of CDK11(p58) in human breast cancer growth and angiogenesis. BMC Cancer 2015; 15:701. [PMID: 26470709 PMCID: PMC4608324 DOI: 10.1186/s12885-015-1698-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/07/2015] [Indexed: 11/24/2022] Open
Abstract
Background A capillary network is needed in cancer growth and metastasis. Induction of angiogenesis represents one of the major hallmarks of cancer. CDK11p58, a Ser/Thr kinase that belongs to the Cell Division Cycle 2-like 1 (CDC2L1) subfamily is associated with cell cycle progression, tumorigenesis, sister chromatid cohesion and apoptotic signaling. However, its role in breast cancer proliferation and angiogenesis remains unclear. Methods Tumorigenicity assays and blood vessel assessment in athymic mice were used to assess the function of CDK11p58 in tumor proliferation and angiogenesis. CCK-8 assay was used to detect breast cancer cell growth. Immunohistochemistry was used to detect the expression of vascular endothelial growth factor (VEGF), CD31 and CD34 in CDK11 positive patient breast cancer tissues. Dual-Luciferase array was used to analyze the function of CDK11p58 in the regulation of VEGF promoter activity. Western blot was used to detect related protein expression levels. Results CDK11p58 inhibited breast cancer growth and angiogenesis in breast cancer cells and in nude mice transplanted with tumors. Immunohistochemistry confirmed that CDK11p58 was negatively associated with angiogenesis-related proteins such as VEGF, CD31 and CD34 in breast cancer patients. Real-time PCR and dual-luciferase assay showed CDK11p58 inhibited the mRNA levels of VEGF and the promoter activity of VEGF. As CDK11p58 is a Ser/Thr kinase, the kinase-dead mutant failed to inhibit VEGF mRNA and promoter activity. Western blot analysis showed the same pattern of related protein expression. The data suggested angiogenesis inhibition was dependent on CDK11p58 kinase activity. Conclusion This study indicates that CDK11p58 inhibits the growth and angiogenesis of breast cancer dependent on its kinase activity. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1698-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yayun Chi
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Haojie Peng
- School of Biomedical Engineering, hanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mengying Liu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jun Zhao
- School of Biomedical Engineering, hanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhiming Shao
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiong Wu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
11
|
Zhang C, Zhang M, Wu Q, Peng J, Ruan Y, Gu J. Hepsin inhibits CDK11p58 IRES activity by suppressing unr expression and eIF-2α phosphorylation in prostate cancer. Cell Signal 2015; 27:789-97. [PMID: 25576733 DOI: 10.1016/j.cellsig.2014.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/31/2014] [Indexed: 11/29/2022]
Abstract
Hepsin is a type II transmembrane serine protease frequently overexpressed in prostate cancer (PCa). However, the role of hepsin in PCa remains unclear. In this study, we found that hepsin inhibited the internal ribosome entry site (IRES) activity and expression of CDK11p58, which is associated with cell cycle progression and pro-apoptotic signaling in PCa. Hepsin suppressed CDK11p58 IRES activity in PCa by modulating unr expression and eIF-2α phosphorylation. Further studies revealed that hepsin inhibited the expression of unr by directly binding to unr IRES element and suppressing its activity, and also repressed eIF-2α phosphorylation through down-regulating the expression and phosphorylation of general control non-derepressible-2 (GCN2). Taken together, our data suggest a novel role of hepsin in regulating CDK11p58 IRES activity, and imply that hepsin may act on the machinery of translation to modulate cell cycle progression and survival in PCa cells.
Collapse
Affiliation(s)
- Chunyi Zhang
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Zhang
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingyu Wu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jianhao Peng
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Yuanyuan Ruan
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jianxin Gu
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Chi Y, Huang S, Wang L, Zhou R, Wang L, Xiao X, Li D, Cai Y, Zhou X, Wu J. CDK11p58 inhibits ERα-positive breast cancer invasion by targeting integrin β3 via the repression of ERα signaling. BMC Cancer 2014; 14:577. [PMID: 25106495 PMCID: PMC4138392 DOI: 10.1186/1471-2407-14-577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Background CDK11p58, a Ser/Thr kinase that belongs to the cell division cycle 2-like 1 (CDC2L1) subfamily, is associated with cell cycle progression, tumorigenesis and apoptotic signaling. CDK11p58 is also involved in the regulation of steroid receptors, such as androgen and estrogen receptors. We previously found that CDK11p58 was abnormally expressed in prostate cancer. However, its role in breast cancer remains unclear. Methods CDK11p58 expression was evaluated by immunohistochemical staining in a tissue array. A Transwell assay was used to detect invasion and metastasis in breast cancer cells. The TaqMan® Metastasis Gene Expression Assay was used to search for potential downstream factors in the CDK11p58 signaling pathway. qRT-PCR was used to evaluate mRNA levels, and the dual luciferase array was used to analyze promoter activity. Western blotting was used to detect the protein level. Results CDK11p58 expression was negatively correlated with node status (P = 0.012), relapse status (P = 0.002) and metastasis status (P = 0.023). Kaplan-Meier survival curves indicated that the disease-free survival (DFS) was significantly poor in breast cancer patients with low CDK11 expression. Interestingly, using the breast cancer cell lines ZR-75-30 and MDA-MB-231, we found that CDK11p58 was capable of repressing the migration and invasion of ERα-positive breast cancer cells, but not ERα-negative breast cancer cells, in a kinase-dependent manner. Gene expression assays demonstrated that integrin β3 mRNA was dramatically repressed by CDK11p58, and luciferase results confirmed that the integrin β3 promoter was inhibited by CDK11p58 through ERα repression. The expression of integrin β3 was highly related to ERα signaling; ERα overexpression stimulated integrin β3 expression, whereas siRNA-mediated knockdown of ERα attenuated integrin β3 expression. Conclusions These data indicate that CDK11p58 is an anti-metastatic gene in ERα-positive breast cancer and that the regulation of integrin β3 by CDK11p58 via the repression of ERα signaling may constitute part of a signaling pathway underlying breast cancer invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiong Wu
- Breast Cancer Institute; Department of Breast Surgery, Fudan University Shanghai Cancer Center, Building 7, No, 270 Dong An Road, Shanghai 200032, China.
| |
Collapse
|
13
|
Koryakina Y, Ta HQ, Gioeli D. Androgen receptor phosphorylation: biological context and functional consequences. Endocr Relat Cancer 2014; 21:T131-45. [PMID: 24424504 PMCID: PMC4437516 DOI: 10.1530/erc-13-0472] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The androgen receptor (AR) is a ligand-regulated transcription factor that belongs to the family of nuclear receptors. In addition to regulation by steroid, the AR is also regulated by post-translational modifications generated by signal transduction pathways. Thus, the AR functions not only as a transcription factor but also as a node that integrates multiple extracellular signals. The AR plays an important role in many diseases, including complete androgen insensitivity syndrome, spinal bulbar muscular atrophy, prostate and breast cancer, etc. In the case of prostate cancer, dependence on AR signaling has been exploited for therapeutic intervention for decades. However, the effectiveness of these therapies is limited in advanced disease due to restoration of AR signaling. Greater understanding of the molecular mechanisms involved in AR action will enable the development of improved therapeutics to treat the wide range of AR-dependent diseases. The AR is subject to regulation by a number of kinases through post-translational modifications on serine, threonine, and tyrosine residues. In this paper, we review the AR phosphorylation sites, the kinases responsible for these phosphorylations, as well as the biological context and the functional consequences of these phosphorylations. Finally, what is known about the state of AR phosphorylation in clinical samples is discussed.
Collapse
Affiliation(s)
- Yulia Koryakina
- Department of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USA
| | - Huy Q Ta
- Department of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USA
| | - Daniel Gioeli
- Department of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USADepartment of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USA
| |
Collapse
|
14
|
Ammerpohl O, Bens S, Appari M, Werner R, Korn B, Drop SLS, Verheijen F, van der Zwan Y, Bunch T, Hughes I, Cools M, Riepe FG, Hiort O, Siebert R, Holterhus PM. Androgen receptor function links human sexual dimorphism to DNA methylation. PLoS One 2013; 8:e73288. [PMID: 24023855 PMCID: PMC3762730 DOI: 10.1371/journal.pone.0073288] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023] Open
Abstract
Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS) due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.
Collapse
Affiliation(s)
- Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mahesh Appari
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Werner
- Department of Pediatrics, University of Lübeck & University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Bernhard Korn
- Core Facility, Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Stenvert L. S. Drop
- Department of Pediatrics, Division of Pediatric Endocrinology, ErasmusMC-Sophia, Rotterdam, The Netherlands
| | - Frans Verheijen
- Department of Clinical Genetics, ErasmusMC, Rotterdam, The Netherlands
| | - Yvonne van der Zwan
- Department of Pediatrics, Division of Pediatric Endocrinology, ErasmusMC-Sophia, Rotterdam, The Netherlands
| | - Trevor Bunch
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ieuan Hughes
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Martine Cools
- Department of Pediatrics, University Hospital Gent, Gent, Belgium
| | - Felix G. Riepe
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Olaf Hiort
- Department of Pediatrics, University of Lübeck & University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul-Martin Holterhus
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
15
|
Choi HH, Choi HK, Jung SY, Hyle J, Kim BJ, Yoon K, Cho EJ, Youn HD, Lahti JM, Qin J, Kim ST. CHK2 kinase promotes pre-mRNA splicing via phosphorylating CDK11(p110). Oncogene 2012. [PMID: 23178491 DOI: 10.1038/onc.2012.535] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Checkpoint kinase 2 (CHK2) kinase is a key mediator in many cellular responses to genotoxic stresses, including ionizing radiation (IR) and topoisomerase inhibitors. Upon IR, CHK2 is activated by ataxia telangiectasia mutated kinase and regulates the S-phase and G1-S checkpoints, apoptosis and DNA repair by phosphorylating downstream target proteins, such as p53 and Brca1. In addition, CHK2 is thought to be a multi-organ cancer susceptibility gene. In this study, we used a tandem affinity purification strategy to identify proteins that interact with CHK2 kinase. Cyclin-dependent kinase 11 (CDK11)(p110) kinase, implicated in pre-mRNA splicing and transcription, was identified as a CHK2-interacting protein. CHK2 kinase phosphorylated CDK11(p110) on serine 737 in vitro. Unexpectedly, CHK2 kinase constitutively phosphorylated CDK11(p110) in a DNA damage-independent manner. At a molecular level, CDK11(p110) phosphorylation was required for homodimerization without affecting its kinase activity. Overexpression of CHK2 promoted pre-mRNA splicing. Conversely, CHK2 depletion decreased endogenous splicing activity. Mutation of the phosphorylation site in CDK11(p110) to alanine abrogated its splicing-activating activity. These results provide the first evidence that CHK2 kinase promotes pre-mRNA splicing via phosphorylating CDK11(p110).
Collapse
Affiliation(s)
- H-H Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - H-K Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - S Y Jung
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - J Hyle
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - B-J Kim
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - K Yoon
- School of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - E-J Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - H-D Youn
- National Research Laboratory for Metabolic Checkpoint, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J M Lahti
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - J Qin
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - S-T Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| |
Collapse
|
16
|
Mikolcevic P, Rainer J, Geley S. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell Cycle 2012; 11:3758-68. [PMID: 22895054 DOI: 10.4161/cc.21592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PCTAIRE kinases (PCTK) are a highly conserved, but poorly characterized, subgroup of cyclin-dependent kinases (CDK). They are characterized by a conserved catalytic domain flanked by N- and C-terminal extensions that are involved in cyclin binding. Vertebrate genomes contain three highly similar PCTAIRE kinases (PCTK1,2,3, a.k.a., CDK16,17,18), which are most abundant in post-mitotic cells in brain and testis. Consistent with this restricted expression pattern, PCTK1 (CDK16) has recently been shown to be essential for spermatogenesis. PCTAIREs are activated by cyclin Y (CCNY), a highly conserved single cyclin fold protein. By binding to N-myristoylated CCNY, CDK16 is targeted to the plasma membrane. Unlike conventional cyclin-CDK interactions, binding of CCNY to CDK16 not only requires the catalytic domain, but also domains within the N-terminal extension. Interestingly, phosphorylation within this domain blocks CCNY binding, providing a novel means of cyclin-CDK regulation. By using these functional characteristics, we analyzed "PCTAIRE" sequence containing protein kinase genes in genomes of various organisms and found that CCNY and CCNY-dependent kinases are restricted to eumetazoa and possibly evolved along with development of a central nervous system. Here, we focus on the structure and regulation of PCTAIREs and discuss their established functions.
Collapse
Affiliation(s)
- Petra Mikolcevic
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|