1
|
Niebergall EB, Weekley D, Mazur A, Olszewski NA, DeSchepper KM, Radant N, Vijay AS, Risher WC. Abnormal Morphology and Synaptogenic Signaling in Astrocytes Following Prenatal Opioid Exposure. Cells 2024; 13:837. [PMID: 38786059 PMCID: PMC11119541 DOI: 10.3390/cells13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - W. Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (E.B.N.); (D.W.); (A.M.); (N.A.O.); (K.M.D.); (N.R.); (A.S.V.)
| |
Collapse
|
2
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Hynes T, Fouyssac M, Puaud M, Joshi D, Chernoff C, Stiebahl S, Michaud L, Belin D. Pan-striatal reduction in the expression of the astrocytic dopamine transporter precedes the development of dorsolateral striatum dopamine-dependent incentive heroin seeking habits. Eur J Neurosci 2024; 59:2502-2521. [PMID: 38650303 DOI: 10.1111/ejn.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
The emergence of compulsive drug-seeking habits, a hallmark feature of substance use disorder, has been shown to be predicated on the engagement of dorsolateral striatal control over behaviour. This process involves the dopamine-dependent functional coupling of the anterior dorsolateral striatum (aDLS) with the nucleus accumbens core, but the mechanisms by which this coupling occurs have not been fully elucidated. The striatum is tiled by a syncytium of astrocytes that express the dopamine transporter (DAT), the level of which is altered in individuals with heroin use disorder. Astrocytes are therefore uniquely placed functionally to bridge dopamine-dependent mechanisms across the striatum. Here we tested the hypothesis that exposure to heroin influences the expression of DAT in striatal astrocytes across the striatum before the development of DLS-dependent incentive heroin seeking habits. Using Western-blot, qPCR, and RNAscope™, we measured DAT protein and mRNA levels in whole tissue, culture and in situ astrocytes from striatal territories of rats with a well-established cue-controlled heroin seeking habit and rats trained to respond for heroin or food under continuous reinforcement. Incentive heroin seeking habits were associated with a reduction in DAT protein levels in the anterior aDLS that was preceded by a heroin-induced reduction in DAT mRNA and protein in astrocytes across the striatum. Striatal astrocytes were also shown to be susceptible to direct dopamine- and opioid-induced downregulation of DAT expression. These results suggest that astrocytes may critically regulate the striatal dopaminergic adaptations that lead to the development of incentive heroin seeking habits.
Collapse
Affiliation(s)
- Tristan Hynes
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mickaël Puaud
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Dhaval Joshi
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Chloe Chernoff
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Sonja Stiebahl
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lola Michaud
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
5
|
Siemsen BM, Denton AR, Parrila-Carrero J, Hooker KN, Carpenter EA, Prescot ME, Brock AG, Westphal AM, Leath MN, McFaddin JA, Jhou TC, McGinty JF, Scofield MD. Heroin Self-Administration and Extinction Increase Prelimbic Cortical Astrocyte-Synapse Proximity and Alter Dendritic Spine Morphometrics That Are Reversed by N-Acetylcysteine. Cells 2023; 12:1812. [PMID: 37508477 PMCID: PMC10378353 DOI: 10.3390/cells12141812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Clinical and preclinical studies indicate that adaptations in corticostriatal neurotransmission significantly contribute to heroin relapse vulnerability. In animal models, heroin self-administration and extinction produce cellular adaptations in both neurons and astrocytes within the nucleus accumbens (NA) core that are required for cue-induced heroin seeking. Specifically, decreased glutamate clearance and reduced association of perisynaptic astrocytic processes with NAcore synapses allow glutamate release from prelimbic (PrL) cortical terminals to engage synaptic and structural plasticity in NAcore medium spiny neurons. Normalizing astrocyte glutamate homeostasis with drugs like the antioxidant N-acetylcysteine (NAC) prevents cue-induced heroin seeking. Surprisingly, little is known about heroin-induced alterations in astrocytes or pyramidal neurons projecting to the NAcore in the PrL cortex (PrL-NAcore). Here, we observe functional adaptations in the PrL cortical astrocyte following heroin self-administration (SA) and extinction as measured by the electrophysiologically evoked plasmalemmal glutamate transporter 1 (GLT-1)-dependent current. We likewise observed the increased complexity of the glial fibrillary acidic protein (GFAP) cytoskeletal arbor and increased association of the astrocytic plasma membrane with synaptic markers following heroin SA and extinction training in the PrL cortex. Repeated treatment with NAC during extinction reversed both the enhanced astrocytic complexity and synaptic association. In PrL-NAcore neurons, heroin SA and extinction decreased the apical tuft dendritic spine density and enlarged dendritic spine head diameter in male Sprague-Dawley rats. Repeated NAC treatment during extinction prevented decreases in spine density but not dendritic spine head expansion. Moreover, heroin SA and extinction increased the co-registry of the GluA1 subunit of AMPA receptors in both the dendrite shaft and spine heads of PrL-NAcore neurons. Interestingly, the accumulation of GluA1 immunoreactivity in spine heads was further potentiated by NAC treatment during extinction. Finally, we show that the NAC treatment and elimination of thrombospondin 2 (TSP-2) block cue-induced heroin relapse. Taken together, our data reveal circuit-level adaptations in cortical dendritic spine morphology potentially linked to heroin-induced alterations in astrocyte complexity and association at the synapses. Additionally, these data demonstrate that NAC reverses PrL cortical heroin SA-and-extinction-induced adaptations in both astrocytes and corticostriatal neurons.
Collapse
Affiliation(s)
- Benjamin M. Siemsen
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Adam R. Denton
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Kaylee N. Hooker
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eilish A. Carpenter
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Meagan E. Prescot
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ashley G. Brock
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Annaka M. Westphal
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mary-Nan Leath
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John A. McFaddin
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas C. Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacqueline F. McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D. Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Dwivedi I, Caldwell AB, Zhou D, Wu W, Subramaniam S, Haddad GG. Methadone alters transcriptional programs associated with synapse formation in human cortical organoids. Transl Psychiatry 2023; 13:151. [PMID: 37147277 PMCID: PMC10163238 DOI: 10.1038/s41398-023-02397-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 05/07/2023] Open
Abstract
Opioid use disorder (OUD) among pregnant women has become an epidemic in the United States. Pharmacological interventions for maternal OUD most commonly involve methadone, a synthetic opioid analgesic that attenuates withdrawal symptoms and behaviors linked with drug addiction. However, evidence of methadone's ability to readily accumulate in neural tissue, and cause long-term neurocognitive sequelae, has led to concerns regarding its effect on prenatal brain development. We utilized human cortical organoid (hCO) technology to probe how this drug impacts the earliest mechanisms of cortico-genesis. Bulk mRNA sequencing of 2-month-old hCOs chronically treated with a clinically relevant dose of 1 μM methadone for 50 days revealed a robust transcriptional response to methadone associated with functional components of the synapse, the underlying extracellular matrix (ECM), and cilia. Co-expression network and predictive protein-protein interaction analyses demonstrated that these changes occurred in concert, centered around a regulatory axis of growth factors, developmental signaling pathways, and matricellular proteins (MCPs). TGFβ1 was identified as an upstream regulator of this network and appeared as part of a highly interconnected cluster of MCPs, of which thrombospondin 1 (TSP1) was most prominently downregulated and exhibited dose-dependent reductions in protein levels. These results demonstrate that methadone exposure during early cortical development alters transcriptional programs associated with synaptogenesis, and that these changes arise by functionally modulating extra-synaptic molecular mechanisms in the ECM and cilia. Our findings provide novel insight into the molecular underpinnings of methadone's putative effect on cognitive and behavioral development and a basis for improving interventions for maternal opioid addiction.
Collapse
Affiliation(s)
- Ila Dwivedi
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dan Zhou
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
7
|
Liu X, Bae C, Liu B, Zhang YM, Zhou X, Zhang D, Zhou C, DiBua A, Schutz L, Kaczocha M, Puopolo M, Yamaguchi TP, Chung JM, Tang SJ. Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling. Mol Psychiatry 2023; 28:767-779. [PMID: 36203006 PMCID: PMC10388343 DOI: 10.1038/s41380-022-01815-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Opioids are the frontline analgesics for managing various types of pain. Paradoxically, repeated use of opioid analgesics may cause an exacerbated pain state known as opioid-induced hyperalgesia (OIH), which significantly contributes to dose escalation and consequently opioid overdose. Neuronal malplasticity in pain circuits has been the predominant proposed mechanism of OIH expression. Although glial cells are known to become reactive in OIH animal models, their biological contribution to OIH remains to be defined and their activation mechanism remains to be elucidated. Here, we show that reactive astrocytes (a.k.a. astrogliosis) are critical for OIH development in both male and female mice. Genetic reduction of astrogliosis inhibited the expression of OIH and morphine-induced neural circuit polarization (NCP) in the spinal dorsal horn (SDH). We found that Wnt5a is a neuron-to-astrocyte signal that is required for morphine-induced astrogliosis. Conditional knock-out of Wnt5a in neurons or its co-receptor ROR2 in astrocytes blocked not only morphine-induced astrogliosis but also OIH and NCP. Furthermore, we showed that the Wnt5a-ROR2 signaling-dependent astrogliosis contributes to OIH via inflammasome-regulated IL-1β. Our results reveal an important role of morphine-induced astrogliosis in OIH pathogenesis and elucidate a neuron-to-astrocyte intercellular Wnt signaling pathway that controls the astrogliosis.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Chilman Bae
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, 62901, IL, USA
| | - Bolong Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Yong-Mei Zhang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Adriana DiBua
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Livia Schutz
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Martin Kaczocha
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Michelino Puopolo
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Terry P Yamaguchi
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, 21702, MD, USA
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.
| |
Collapse
|
8
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|
9
|
Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional morphine intake. Transl Psychiatry 2022; 12:374. [PMID: 36075888 PMCID: PMC9458645 DOI: 10.1038/s41398-022-02135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline. A second cohort of rats was allowed to self-administer intravenous morphine (1.0 mg/kg/infusion) for 10 consecutive days. Each morphine-experienced rat was paired with a yoked saline control rat. snRNAseq libraries were generated from NAc punches and used to identify cell type-specific gene expression changes associated with volitional morphine taking. We identified 1106 differentially expressed genes (DEGs) in the acute morphine group, compared to 2453 DEGs in the morphine self-administration group, across 27 distinct cell clusters. Importantly, we identified 1329 DEGs that were specific to morphine self-administration. DEGs were identified in novel clusters of astrocytes, oligodendrocytes, and D1R- and D2R-expressing medium spiny neurons in the NAc. Cell type-specific DEGs included Rgs9, Celf5, Oprm1, and Pde10a. Upregulation of Rgs9 and Celf5 in D2R-expressing neurons was validated by RNAscope. Approximately 85% of all oligodendrocyte DEGs, nearly all of which were associated with morphine taking, were identified in two subtypes. Bioinformatic analyses identified cell type-specific upstream regulatory mechanisms of the observed transcriptome alterations and downstream signaling pathways, including both novel and previously identified molecular pathways. These findings show that volitional morphine taking is associated with distinct cell type-specific transcriptomic changes in the rat NAc and highlight specific striatal cell populations and novel molecular substrates that could be targeted to reduce compulsive opioid taking.
Collapse
|
10
|
Düzenli N, Ülker S, Şengül G, Kayhan B, Önal A. Effects of cyanocobalamin and its combination with morphine on neuropathic rats and the relationship between these effects and thrombospondin-4 expression. Korean J Pain 2022; 35:66-77. [PMID: 34966013 PMCID: PMC8728557 DOI: 10.3344/kjp.2022.35.1.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 11/06/2022] Open
Abstract
Background Thrombospondin-4 (TSP4) upregulates in the spinal cord following peripheral nerve injury and contributes to the development of neuropathic pain (NP). We investigated the effects of cyanocobalamin alone or in combination with morphine on pain and the relationship between these effects and spinal TSP4 expression in neuropathic rats. Methods NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Cyanocobalamin (5 and 10 mg/kg/day) was administered 15 days before CCI and then for 4 and 14 postoperative days. Morphine (2.5 and 5 mg/kg/day) was administered only post-CCI. Combination treatment included cyanocobalamin and morphine, 10 and 5 mg/kg/day, respectively. All drugs were administered intraperitoneally. Nociceptive thresholds were detected by esthesiometer, analgesia meter, and plantar test, and TSP4 expression was assessed by western blotting and fluorescence immunohistochemistry. Results CCI decreased nociceptive thresholds in all tests and induced TSP4 expression on the 4th postoperative day. The decrease in nociceptive thresholds persisted except for the plantar test, and the increased TSP4 expression reversed on the 14th postoperative day. Cyanocobalamin and low-dose morphine alone did not produce any antinociceptive effects. High-dose morphine improved the decreased nociceptive thresholds in the esthesiometer when administered alone but combined with cyanocobalamin in all tests. Cyanocobalamin and morphine significantly induced TSP4 expression when administered alone in both doses for 4 or 14 days. However, this increase was less when the two drugs are combined. Conclusions The combination of cyanocobalamin and morphine is more effective in antinociception and partially decreased the induced TSP4 expression compared to the use of either drug alone.
Collapse
Affiliation(s)
- Neslihan Düzenli
- Department of Medical Pharmacology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sibel Ülker
- Department of Medical Pharmacology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Gülgün Şengül
- Department of Anatomy, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Buse Kayhan
- Department of Neuroscience, Faculty of Health Sciences, Ege University, Bornova, Izmir, Turkey
| | - Aytül Önal
- Department of Medical Pharmacology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
11
|
Boggess T, Williamson JC, Niebergall EB, Sexton H, Mazur A, Egleton RD, Grover LM, Risher WC. Alterations in Excitatory and Inhibitory Synaptic Development Within the Mesolimbic Dopamine Pathway in a Mouse Model of Prenatal Drug Exposure. Front Pediatr 2021; 9:794544. [PMID: 34966707 PMCID: PMC8710665 DOI: 10.3389/fped.2021.794544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The rise in rates of opioid abuse in recent years in the United States has led to a dramatic increase in the incidence of neonatal abstinence syndrome (NAS). Despite improved understanding of NAS and its acute symptoms, there remains a paucity of information regarding the long-term effects of prenatal exposure to drugs of abuse on neurological development. The primary goal of this study was to investigate the effects of prenatal drug exposure on synaptic connectivity within brain regions associated with the mesolimbic dopamine pathway, the primary reward pathway associated with drug abuse and addiction, in a mouse model. Our secondary goal was to examine the role of the Ca+2 channel subunit α2δ-1, known to be involved in key developmental synaptogenic pathways, in mediating these effects. Pregnant mouse dams were treated orally with either the opioid drug buprenorphine (commonly used in medication-assisted treatment for substance use patients), gabapentin (neuropathic pain drug that binds to α2δ-1 and has been increasingly co-abused with opioids), a combination of both drugs, or vehicle daily from gestational day 6 until postnatal day 11. Confocal fluorescence immunohistochemistry (IHC) imaging of the brains of the resulting wild-type (WT) pups at postnatal day 21 revealed a number of significant alterations in excitatory and inhibitory synaptic populations within the anterior cingulate cortex (ACC), nucleus accumbens (NAC), and medial prefrontal cortex (PFC), particularly in the buprenorphine or combinatorial buprenorphine/gabapentin groups. Furthermore, we observed several drug- and region-specific differences in synaptic connectivity between WT and α2δ-1 haploinsufficient mice, indicating that critical α2δ-1-associated synaptogenic pathways are disrupted with early life drug exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - W. Christopher Risher
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
12
|
Abstract
Astroglia are key regulators of synaptic function, playing central roles in homeostatic ion buffering, energy dynamics, transmitter uptake, maintenance of neurotransmitter pools, and regulation of synaptic plasticity through release of neuroactive chemicals. Given the myriad of crucial homeostatic and signaling functions attributed to astrocytes and the variety of neurotransmitter receptors expressed by astroglia, they serve as prime cellular candidates for establishing maladaptive synaptic plasticity following drug exposure. Initial studies on astroglia and addiction have placed drug-mediated disruptions in the homeostatic regulation of glutamate as a central aspect of relapse vulnerability. However, the generation of sophisticated tools to study and manipulate astroglia have proven that the interaction between addictive substances, astroglia, and relapse-relevant synaptic plasticity extends far beyond the homeostatic regulation of glutamate. Here we present astroglial systems impacted by drug exposure and discuss how changes in astroglial biology contribute to addiction biology.
Collapse
|
13
|
Radhakrishna U, Vishweswaraiah S, Uppala LV, Szymanska M, Macknis J, Kumar S, Saleem-Rasheed F, Aydas B, Forray A, Muvvala SB, Mishra NK, Guda C, Carey DJ, Metpally RP, Crist RC, Berrettini WH, Bahado-Singh RO. Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics 2021; 113:1127-1135. [PMID: 33711455 DOI: 10.1016/j.ygeno.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Opioid abuse during pregnancy can result in Neonatal Opioid Withdrawal Syndrome (NOWS). We investigated genome-wide methylation analyses of 96 placental tissue samples, including 32 prenatally opioid-exposed infants with NOWS who needed therapy (+Opioids/+NOWS), 32 prenatally opioid-exposed infants with NOWS who did not require treatment (+Opioids/-NOWS), and 32 prenatally unexposed controls (-Opioids/-NOWS, control). Statistics, bioinformatics, Artificial Intelligence (AI), including Deep Learning (DL), and Ingenuity Pathway Analyses (IPA) were performed. We identified 17 dysregulated pathways thought to be important in the pathophysiology of NOWS and reported accurate AI prediction of NOWS diagnoses. The DL had an AUC (95% CI) =0.98 (0.95-1.0) with a sensitivity and specificity of 100% for distinguishing NOWS from the +Opioids/-NOWS group and AUCs (95% CI) =1.00 (1.0-1.0) with a sensitivity and specificity of 100% for distinguishing NOWS versus control and + Opioids/-NOWS group versus controls. This study provides strong evidence of methylation dysregulation of placental tissue in NOWS development.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA.
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Lavanya V Uppala
- College of Information Science & Technology, University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, USA
| | - Marta Szymanska
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | | | - Sandeep Kumar
- Department of Pathology, Beaumont Health System, Royal Oak, MI, USA
| | - Fozia Saleem-Rasheed
- Department of Newborn Medicine, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, USA
| | - Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Nitish K Mishra
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Raghu P Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Geisinger Clinic, Danville, PA, USA
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
14
|
Dozio V, Daali Y, Desmeules J, Sanchez JC. Deep proteomics and phosphoproteomics reveal novel biological pathways perturbed by morphine, morphine-3-glucuronide and morphine-6-glucuronide in human astrocytes. J Neurosci Res 2020; 100:220-236. [PMID: 32954564 DOI: 10.1002/jnr.24731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
Tolerance and hyperalgesia associated with chronic exposure to morphine are major limitations in the clinical management of chronic pain. At a cellular level, neuronal signaling can in part account for these undesired side effects, but unknown mechanisms mediated by central nervous system glial cells are likely also involved. Here we applied data-independent acquisition mass spectrometry to perform a deep proteome and phosphoproteome analysis of how human astrocytes responds to opioid stimulation. We unveil time- and dose-dependent effects induced by morphine and its major active metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide that converging on activation of mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. We also find that especially longer exposure to M3G leads to significant dysregulation of biological pathways linked to extracellular matrix organization, antigen presentation, cell adhesion, and glutamate homeostasis, which are crucial for neuron- and leukocyte-astrocyte interactions.
Collapse
Affiliation(s)
- Vito Dozio
- Department of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Youssef Daali
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Cares, Geneva University Hospitals, Geneva, Switzerland
| | - Jules Desmeules
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Cares, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| |
Collapse
|
15
|
Chromatin accessibility mapping of the striatum identifies tyrosine kinase FYN as a therapeutic target for heroin use disorder. Nat Commun 2020; 11:4634. [PMID: 32929078 PMCID: PMC7490718 DOI: 10.1038/s41467-020-18114-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
The current opioid epidemic necessitates a better understanding of human addiction neurobiology to develop efficacious treatment approaches. Here, we perform genome-wide assessment of chromatin accessibility of the human striatum in heroin users and matched controls. Our study reveals distinct neuronal and non-neuronal epigenetic signatures, and identifies a locus in the proximity of the gene encoding tyrosine kinase FYN as the most affected region in neurons. FYN expression, kinase activity and the phosphorylation of its target Tau are increased by heroin use in the post-mortem human striatum, as well as in rats trained to self-administer heroin and primary striatal neurons treated with chronic morphine in vitro. Pharmacological or genetic manipulation of FYN activity significantly attenuates heroin self-administration and responding for drug-paired cues in rodents. Our findings suggest that striatal FYN is an important driver of heroin-related neurodegenerative-like pathology and drug-taking behavior, making FYN a promising therapeutic target for heroin use disorder. Epigenetic mechanisms have emerged as contributors to the molecular impairments caused by exposure to environmental factors such as abused substances. Here the authors perform epigenetic profiling of the striatum and identify the tyrosine kinase FYN is an important driver of neurodegenerative-like pathology and drug-taking behaviour.
Collapse
|
16
|
Boggess T, Risher WC. Clinical and basic research investigations into the long-term effects of prenatal opioid exposure on brain development. J Neurosci Res 2020; 100:396-409. [PMID: 32459039 DOI: 10.1002/jnr.24642] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Coincident with the opioid epidemic in the United States has been a dramatic increase in the number of children born with neonatal abstinence syndrome (NAS), a form of withdrawal resulting from opioid exposure during pregnancy. Many research efforts on NAS have focused on short-term care, including acute symptom treatment and weaning of the infants off their drug dependency prior to authorizing their release. However, investigations into the long-term effects of prenatal opioid exposure (POE) on brain development, from the cellular to the behavioral level, have not been as frequent. Given the importance of the perinatal period for human brain development, opioid-induced disturbances in the formation and function of nascent synaptic networks and glia have the potential to impact brain connectivity and cognition long after the drug supply is cutoff shortly after birth. In this review, we will summarize the current state of NAS research, bringing together findings from human studies and preclinical animal models to highlight what is known about how POE can induce significant, prolonged deficits in brain structure and function. With rates of NAS continuing to rise, particularly in regions that already face substantial socioeconomic challenges, we speculate as to the most promising avenues for future research to alleviate this growing multigenerational threat.
Collapse
Affiliation(s)
- Taylor Boggess
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - W Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| |
Collapse
|
17
|
Salarinasab S, Salimi L, Alidadiani N, Shokrollahi E, Arzhanga P, Karbasforush S, Marofi F, Nasirzadeh M, Rahbarghazi R, Nourazarian A, Nikanfar M. Interaction of opioid with insulin/IGFs signaling in Alzheimer's disease. J Mol Neurosci 2020; 70:819-834. [PMID: 32026387 DOI: 10.1007/s12031-020-01478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is associated with biochemical and histopathological changes characterized by molecular abnormalities. Due to the lack of effective treatments for Alzheimer's disease, many attempts have been made to find potential therapies to reduce or even return neuronal loss after disease initiation. Alzheimer's disease is also touted as type III diabetes, showing an association with insulin signaling. The large distribution of the insulin receptor on the cell surface and its regulatory role in the central nervous system suggests that the pathogenesis of Alzheimer's disease could be ascribed to insulin signaling. The interference of opioids, such as morphine with insulin signaling pathways, is thought to occur via direct crosstalk between the signaling pathways of the insulin receptor and the mu-opioid receptor. In this review article, we discuss the possible crosstalk between the mu-opioid receptor and insulin signaling pathways. The association of these two signaling pathways with Alzheimer's disease is also debated.
Collapse
Affiliation(s)
- Sadegh Salarinasab
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadiani
- Department of Cardiac Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Elhameh Shokrollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saedeh Karbasforush
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nasirzadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, 51666-14756, Iran.
| | - Alireza Nourazarian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht St, Tabriz, 51666-16471, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Huang X, Cen X, Zhang B, Liao Y, Zhu G, Liu J, Zhao Z. Prospect of circular RNA in osteogenesis: A novel orchestrator of signaling pathways. J Cell Physiol 2019; 234:21450-21459. [PMID: 31131457 DOI: 10.1002/jcp.28866] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) were initially regarded as by-products of aberrant splicing. But now, there are substantial evidence on their various roles in the regulation of genes during the development of organs and diseases. Consistent with these breakthroughs, it is experiencing rapid growth that circRNAs function as the important checkpoints during the osteogenesis. Therefore, characterizing the roles of circRNAs is useful and critical to better understanding the process of osteogenic differentiation, which could provide new avenues for the diagnosis and treatment of bone diseases, such as bone defects and osteoporosis. In this review, we presented a map of the interaction between circRNAs and the molecules of signaling pathways associated with osteogenesis, summarized the current knowledge of the biological functions of circRNAs during the osteogenic differentiation, figured out the limits of existing research works, and provided a novel look on the diagnostic and therapeutic methods of bone diseases based on circRNAs.
Collapse
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Gupta K, Chen C, Lutty GA, Hebbel RP. Morphine promotes neovascularizing retinopathy in sickle transgeneic mice. Blood Adv 2019; 3:1073-1083. [PMID: 30944099 PMCID: PMC6457224 DOI: 10.1182/bloodadvances.2018026898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Neovascularizing retinopathy is a significant complication of sickle cell disease (SCD), occurring more frequently in HbSC than HbSS disease. This risk difference is concordant with a divergence of angiogenesis risk, as identified by levels of pro- vs anti-angiogenic factors in the sickle patient's blood. Because our prior studies documented that morphine promotes angiogenesis in both malignancy and wound healing, we tested whether chronic opioid treatment would promote retinopathy in NY1DD sickle transgenic mice. After 10 to 15 months of treatment, sickle mice treated with morphine developed neovascularizing retinopathy to a far greater extent than either of the controls (sickle mice treated with saline and wild-type mice treated identically with morphine). Our dissection of the mechanistic linkage between morphine and retinopathy revealed a complex interplay among morphine engagement with its μ opioid receptor (MOR) on retinal endothelial cells (RECs); morphine-induced production of tumor necrosis factor α and interleukin-6 (IL-6), causing increased expression of both MOR and vascular endothelial growth factor receptor 2 (VEGFR2) on RECs; morphine/MOR engagement transactivating VEGFR2; and convergence of MOR, VEGFR2, and IL-6 activation on JAK/STAT3-dependent REC proliferation and angiogenesis. In the NY1DD mice, the result was increased angiogenesis, seen as neovascularizing retinopathy, similar to the retinal pathology occurring in humans with SCD. Therefore, we conclude that chronic opioid exposure, superimposed on the already angiogenic sickle milieu, might enhance risk for retinopathy. These results provide an additional reason for development and application of opioid alternatives for pain control in SCD.
Collapse
Affiliation(s)
- Kalpna Gupta
- Vascular Biology Center, and
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| | - Chunsheng Chen
- Vascular Biology Center, and
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, John Hopkins School of Medicine, Baltimore, MD
| | - Robert P Hebbel
- Vascular Biology Center, and
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| |
Collapse
|
20
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
21
|
Liu D, DiMeglio M, DiMartino M, Hajj J, Mukhanova M, Rai K, Winikor M, Laudanski K. Implications of Chronic Opioid Therapy on Perioperative Complications and Long-Term Surgical Recovery. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2019; 6:120-128. [PMID: 31528664 PMCID: PMC6746432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With chronic opioid use becoming an increasingly common occurrenceamong the general population, perioperative specialties must adapt to the physiologic changes caused by long-term opioids. However, data on the clinicalanesthetics implications of long-term opioid use is scarce. This review intends to survey the literature addressing the molecular mechanisms of long-term opioid use as well as their interaction with various organ systems.
Collapse
Affiliation(s)
- Da Liu
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew DiMeglio
- DO/MBA Student, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Michael DiMartino
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jihane Hajj
- Department of Cardiology, Penn Presbyterian Medical Center, Philadelphia, PA, USA,Department of Nursing, Widener University, Chester, PA, USA
| | - Maria Mukhanova
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Karima Rai
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Mazell Winikor
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, USA,Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Wang H, Feng C, Jin Y, Tan W, Wei F. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells. J Cell Physiol 2018; 234:10166-10177. [PMID: 30422310 DOI: 10.1002/jcp.27686] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) play critical roles in signal transduction during cell proliferation, differentiation, and apoptosis in a posttranscriptional manner. Recently, circRNAs have been proved to be a large class of animal RNAs with regulatory potency. However, whether circRNAs can respond to mechanical force (MF) and impact on human periodontal ligament stem cells (PDLSCs) and the orthodontic tooth movement (OTM) process remain unknown. Here, we investigated the circRNAs expression patterns in PDLSCs induced by MF and found that circRNAs were responsive to the MF in PDLSCs. Through the valid reads' distribution analysis, we found that the majority of reads in both the control PDLSCs and the MF-induced PDLSCs were distributed in exons. Then we analyzed Gene Ontology terms of genes that overlap with or are neighbors of the stress-responsive circRNAs and found unique enrichment patterns in biological processes, molecular function, and cellular component of PDLSCs. Next, we predicted the possible functions of circRNAs through circRNAs-miRNAs networks. We found that one circRNA may regulate one or several miRNA/miRNAs and one miRNA may interact with one or multiple circRNA/circRNAs. Importantly, a number of circRNAs were predicted to directly or indirectly regulate miRNAs-mediated osteogenic differentiation in mesenchymal stem cells. For instance, circRNA3140 was highly and widely associated with microRNA-21, which plays a critical role in MF-induced osteogenic differentiation of PDLSCs. Taken together, these findings reveal a previously unrecognized mechanism that MF can induce the expression changes of circRNAs in PDLSCs, which may modulate the OTM process and the alveolar bone remodeling.
Collapse
Affiliation(s)
- Hong Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Cheng Feng
- Jinan Hospital of Traditional Chinese Medicine, Jinan, China
| | - Ye Jin
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Wanye Tan
- Department of Stomatology, Qilu Hospital, Shandong University, Jinan, China
| | - Fulan Wei
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
23
|
Morphine-Mediated Brain Region-Specific Astrocytosis Involves the ER Stress-Autophagy Axis. Mol Neurobiol 2018; 55:6713-6733. [PMID: 29344928 DOI: 10.1007/s12035-018-0878-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/07/2018] [Indexed: 01/08/2023]
Abstract
A recent study from our lab has revealed a link between morphine-mediated autophagy and synaptic impairment. The current study was aimed at investigating whether morphine-mediated activation of astrocytes involved the ER stress/autophagy axis. Our in vitro findings demonstrated upregulation of GFAP indicating astrocyte activation with a concomitant increase in the production of proinflammatory cytokines in morphine-exposed human astrocytes. Using both pharmacological and gene-silencing approaches, it was demonstrated that morphine-mediated defective autophagy involved upstream activation of ER stress with subsequent downstream astrocyte activation via the μ-opioid receptor (MOR). In vivo validation demonstrated preferential activation of ER stress/autophagy axis in the areas of the brain not associated with pain such as the basal ganglia, frontal cortex, occipital cortex, and the cerebellum of morphine-dependent rhesus macaques, and this correlated with increased astrocyte activation and neuroinflammation. Interventions aimed at blocking either the MOR or ER stress could thus likely be developed as promising therapeutic targets for abrogating morphine-mediated astrocytosis.
Collapse
|
24
|
Kim DH, Lim H, Lee D, Choi SJ, Oh W, Yang YS, Oh JS, Hwang HH, Jeon HB. Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer's disease model. Sci Rep 2018; 8:354. [PMID: 29321508 PMCID: PMC5762817 DOI: 10.1038/s41598-017-18542-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterised clinically by learning and memory impairments. Amyloid beta (Aβ) peptide-induced synaptic dysfunction is a pathological process associated with early-stage AD. Here, we show that paracrine action of human umbilical cord blood-derived-mesenchymal stem cells (hUCB-MSCs) protects the hippocampus from synaptic-density loss in in vitro and in vivo AD models. To identify paracrine factors underlying this rescue effect, we analysed hUCB-MSCs’ secretome co-cultured with Aβ42-treated mouse hippocampal neurons. Thrombospondin-1 (TSP-1), a protein secreted by hUCB-MSCs in in vitro and 5XFAD AD mouse models, was selected for study. Treatment with exogenous recombinant TSP-1 or co-cultures with hUCB-MSCs significantly increased expression of synaptic-density markers, such as synaptophysin (SYP) and post-synaptic density protein-95 (PSD-95) in Aβ42-treated mouse hippocampal neurons. Knockdown of TSP-1 expression in hUCB-MSCs through small interfering RNA (siRNA) abolished the reversal of Aβ42-induced hippocampal synaptic-density loss. We demonstrate that the rescue effect of hUCB-MSC-secreted TSP-1 was mediated by neuroligin-1 (NLGN1) or α2δ-1 receptors. Interestingly, NLGN1 and α2δ-1 expression, which was reduced in Aβ42-treated hippocampal neurons, increased in co-cultures with hUCB-MSCs or exogenous TSP-1. Together, these findings suggest that hUCB-MSCs can attenuate Aβ42-induced synaptic dysfunction by regulating TSP-1 release, thus providing a potential alternative therapeutic option for early-stage AD.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd, Gyeonggi-do, Republic of Korea.,Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hoon Lim
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Dahm Lee
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun Ho Hwang
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hong Bae Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
25
|
Pu Y, Meng K, Gu C, Wang L, Zhang X. Thrombospondin-1 modified bone marrow mesenchymal stem cells (BMSCs) promote neurite outgrowth and functional recovery in rats with spinal cord injury. Oncotarget 2017; 8:96276-96289. [PMID: 29221205 PMCID: PMC5707099 DOI: 10.18632/oncotarget.22018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/23/2017] [Indexed: 01/02/2023] Open
Abstract
Stem cell therapies are currently gaining momentum in the treatment of spinal cord injury (SCI). However, unsatisfied intrinsic neurite growth capacity constitutes significant obstacles for injured spinal cord repair and ultimately results in neurological dysfunction. The present study assessed the efficacy of thrombospondin-1 (TSP-1), a neurite outgrowth-promoting molecule, modified bone marrow mesenchymal stem cells (BMSCs) on promoting neurite outgrowth in vitro and in vivo of Oxygen–Glucose Deprivation (OGD) treated motor neurons and SCI rat models. The present results demonstrated that the treatment of BMSCs+TSP-1 could promote the neurite length, neuronal survival, and functional recovery after SCI. Additionally, TSP-1 could activate transforming growth factor-β1 (TGF-β1) then induced the smad2 phosphorylation, and expedited the expression of GAP-43 to promote neurite outgrowth. The present study for the first time demonstrated that BMSCs+TSP-1 could promote neurite outgrowth and functional recovery after SCI partly through the TGF-β1/p-Samd2 pathway. The study provided a novel encouraging evidence for the potential treatment of BMSCs modification with TSP-1 in patients with SCI.
Collapse
Affiliation(s)
- Yujie Pu
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ke Meng
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chuanlong Gu
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Zhang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Hauser KF, Knapp PE. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System. Front Pediatr 2017; 5:294. [PMID: 29410949 PMCID: PMC5787058 DOI: 10.3389/fped.2017.00294] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
27
|
Li S, Gu X, Yi S. The Regulatory Effects of Transforming Growth Factor-β on Nerve Regeneration. Cell Transplant 2016; 26:381-394. [PMID: 27983926 DOI: 10.3727/096368916x693824] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-β (TGF-β) belongs to a group of pleiotropic cytokines that are involved in a variety of biological processes, such as inflammation and immune reactions, cellular phenotype transition, extracellular matrix (ECM) deposition, and epithelial-mesenchymal transition. TGF-β is widely distributed throughout the body, including the nervous system. Following injury to the nervous system, TGF-β regulates the behavior of neurons and glial cells and thus mediates the regenerative process. In the current article, we reviewed the production, activation, as well as the signaling pathway of TGF-β. We also described altered expression patterns of TGF-β in the nervous system after nerve injury and the regulatory effects of TGF-β on nerve repair and regeneration in many aspects, including inflammation and immune response, phenotypic modulation of neural cells, neurite outgrowth, scar formation, and modulation of neurotrophic factors. The diverse biological actions of TGF-β suggest that it may become a potential therapeutic target for the treatment of nerve injury and regeneration.
Collapse
|
28
|
Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, Zhou H, Lv Y, Chen Z, Wang J, Zhou YD. Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 2016; 215:719-734. [PMID: 27920126 PMCID: PMC5147000 DOI: 10.1083/jcb.201605046] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/30/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
Shen et al. demonstrate a developmental role of astrocytes in shaping a predisposition to seizure generation. Activation of TLR4–MyD88–ERK1/2 signaling pathway in astrocytes during a critical postnatal period promotes excitatory synapse generation, leading to enhanced seizure susceptibility. Astrocytes are critical in synapse development, and their dysfunction in crucial developmental stages leads to serious neurodevelopmental diseases, including seizures and epilepsy. Immune challenges not only affect brain development, but also promote seizure generation and epileptogenesis, implying immune activation is one of the key factors linking seizures and epilepsy to abnormal brain development. In this study, we report that activating astrocytes by systemic lipopolysaccharide (LPS) challenges in the second postnatal week promotes excitatory synapse development, leading to enhanced seizure susceptibility in mice. Toll-like receptor 4 (TLR4) activation in astrocytes increased astrocytic extracellular signal–related kinase 1/2 (Erk1/2) and phospho-Erk1/2 levels in a myeloid differentiation primary response protein 88 (MyD88)–dependent manner. Constitutively activating Erk1/2 in astrocytes was sufficient to enhance excitatory synaptogenesis without activating TLR4. Deleting MyD88 or suppressing Erk1/2 in astrocytes rescued LPS-induced developmental abnormalities of excitatory synapses and restored the enhanced seizure sensitivity. Thus, we provide direct evidence for a developmental role of astrocytes in shaping a predisposition to seizure generation.
Collapse
Affiliation(s)
- Yi Shen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Huaping Qin
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Juan Chen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lingyan Mou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yang He
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yixiu Yan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hang Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ya Lv
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhong Chen
- Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu-Dong Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China .,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
29
|
Cheng C, Lau SKM, Doering LC. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model. Mol Brain 2016; 9:74. [PMID: 27485117 PMCID: PMC4971702 DOI: 10.1186/s13041-016-0256-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/15/2016] [Indexed: 01/24/2023] Open
Abstract
Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome.
Collapse
Affiliation(s)
- Connie Cheng
- McMaster Integrative Neuroscience Discovery and Study Program (MINDS), McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, HSC 1R15A, Hamilton, Ontario, L8N 3Z5, Canada
| | - Sally K M Lau
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, HSC 1R15A, Hamilton, Ontario, L8N 3Z5, Canada
| | - Laurie C Doering
- McMaster Integrative Neuroscience Discovery and Study Program (MINDS), McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, HSC 1R15A, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
30
|
Crosby ND, Winkelstein BA. Spinal Astrocytic Thrombospondin-4 Induced by Excitatory Neuronal Signaling Mediates Pain After Facet Capsule Injury. Ann Biomed Eng 2016; 44:3215-3224. [PMID: 27160673 DOI: 10.1007/s10439-016-1639-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Thrombospondin-4 (TSP4) is a synaptogenic molecule that is upregulated in the spinal cord after painful facet joint injury and may contribute to spinal hyperexcitability. However, the mechanisms leading to increased spinal TSP4 are unclear. Because primary afferent activity is critical in the development of spinal hyperexcitability after facet joint injury, this study evaluated the role of afferent firing in the increase of spinal TSP4 and excitatory synapses. Intra-articular bupivacaine was administered immediately or 4 days after painful facet joint injury in male Holtzman rats, and TSP4 and excitatory synapses were quantified in the spinal cord at day 7. Immediate, but not delayed bupivacaine treatment, prevents the injury-induced increase in TSP4 and excitatory synapses in the dorsal horn (p < 0.0001). Preliminary in vitro experiments suggest that the excitatory signaling molecules ATP and glutamate may stimulate astrocytic TSP4 expression (p ≤ 0.04). Collectively, these results suggest that afferent activity early after facet joint injury is critical for the induction of spinal TSP4. This study advances the understanding of the timing and role of afferent activity in TSP4 expression after injury, which is critical for the therapeutic targeting of TSP4 to treat persistent pain conditions.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA. .,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Lin SL, Chang FL, Ho SY, Charoenkwan P, Wang KW, Huang HL. Predicting Neuroinflammation in Morphine Tolerance for Tolerance Therapy from Immunostaining Images of Rat Spinal Cord. PLoS One 2015; 10:e0139806. [PMID: 26437460 PMCID: PMC4593634 DOI: 10.1371/journal.pone.0139806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023] Open
Abstract
Long-term morphine treatment leads to tolerance which attenuates analgesic effect and hampers clinical utilization. Recent studies have sought to reveal the mechanism of opioid receptors and neuroinflammation by observing morphological changes of cells in the rat spinal cord. This work proposes a high-content screening (HCS) based computational method, HCS-Morph, for predicting neuroinflammation in morphine tolerance to facilitate the development of tolerance therapy using immunostaining images for astrocytes, microglia, and neurons in the spinal cord. HCS-Morph first extracts numerous HCS-based features of cellular phenotypes. Next, an inheritable bi-objective genetic algorithm is used to identify a minimal set of features by maximizing the prediction accuracy of neuroinflammation. Finally, a mathematic model using a support vector machine with the identified features is established to predict drug-treated images to assess the effects of tolerance therapy. The dataset consists of 15 saline controls (1 μl/h), 15 morphine-tolerant rats (15 μg/h), and 10 rats receiving a co-infusion of morphine (15 μg/h) and gabapentin (15 μg/h, Sigma). The three individual models of astrocytes, microglia, and neurons for predicting neuroinflammation yielded respective Jackknife test accuracies of 96.67%, 90.00%, and 86.67% on the 30 rats, and respective independent test accuracies of 100%, 90%, and 60% on the 10 co-infused rats. The experimental results suggest that neuroinflammation activity expresses more predominantly in astrocytes and microglia than in neuron cells. The set of features for predicting neuroinflammation from images of astrocytes comprises mean cell intensity, total cell area, and second-order geometric moment (relating to cell distribution), relevant to cell communication, cell extension, and cell migration, respectively. The present investigation provides the first evidence for the role of gabapentin in the attenuation of morphine tolerance from phenotypic changes of astrocytes and microglia. Based on neuroinflammation prediction, the proposed computer-aided image diagnosis system can greatly facilitate the development of tolerance therapy with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Shinn-Long Lin
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Fang-Lin Chang
- Department of Anesthesiology, Kang-Ning General Hospital, Taipei, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Phasit Charoenkwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuan-Wei Wang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer's disease. Neurobiol Aging 2015; 36:3214-3227. [PMID: 26452999 DOI: 10.1016/j.neurobiolaging.2015.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is characterized by impaired cognitive function and memory loss, which are often the result of synaptic pathology. Thrombospondin (TSP) is an astrocyte-secreted protein, well known for its function as a modulator of synaptogenesis and neurogenesis. Here, we investigated the effects of TSP-1 on AD pathogenesis. We found that the level of TSP-1 expression was decreased in AD brains. When we treated astrocytes with amyloid beta (Aβ), secreted TSP-1 was decreased in autophagy-dependent manner. In addition, treatment with Aβ induced synaptic pathology, such as decreased dendritic spine density and reduced synaptic activity. These effects were prevented by coincubation of TSP-1 with Aβ, which acts through the TSP-1 receptor alpha-2-delta-1 in neurons. Finally, intrasubicular injection with TSP-1 into AD model mouse brains mitigated the Aβ-mediated reduction of synaptic proteins and related signaling pathways. These results indicate that TSP-1 is a potential therapeutic target in AD pathogenesis.
Collapse
|
33
|
Wang B, Guo W, Huang Y. Thrombospondins and synaptogenesis. Neural Regen Res 2015; 7:1737-43. [PMID: 25624796 PMCID: PMC4302456 DOI: 10.3969/j.issn.1673-5374.2012.22.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/03/2012] [Indexed: 12/28/2022] Open
Abstract
Here, we review research on the mechanisms underlying the ability of thrombospondin to promote synaptogenesis and examine its role in central nervous system diseases and drug actions. Thrombospondin secreted by glial cells plays a critical role in synaptogenesis and maintains synapse stability. Thrombospondin regulates synaptogenesis through receptor α2δ-1 and neuroligin 1, and promotes the proliferation and differentiation of neural progenitor cells. It also participates in synaptic remodeling following injury and in the action of some nervous system drugs.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Weitao Guo
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Yun Huang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| |
Collapse
|
34
|
Masvekar RR, El-Hage N, Hauser KF, Knapp PE. GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Mol Cell Neurosci 2015; 65:11-20. [PMID: 25616162 DOI: 10.1016/j.mcn.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 01/03/2023] Open
Abstract
Infection of the CNS with HIV-1 occurs rapidly after primary peripheral infection. HIV-1 can induce a wide range of neurological deficits, collectively known as HIV-1-associated neurocognitive disorders. Our previous work has shown that the selected neurotoxic effects induced by individual viral proteins, Tat and gp120, and by HIV(+) supernatant are enhanced by co-exposure to morphine. This mimics co-morbid neurological effects observed in opiate-abusing HIV(+) patients. Although there is a correlation between opiate drug abuse and progression of HIV-1-associated neurocognitive disorders, the mechanisms underlying interactions between HIV-1 and opiates remain obscure. Previous studies have shown that HIV-1 induces neurotoxic effects through abnormal activation of GSK3β. Interestingly, expression of GSK3β has shown to be elevated in brains of young opiate abusers indicating that GSK3β is also linked to neuropathology seen with opiate-abusing patients. Thus, we hypothesize that GSK3β activation is a point of convergence for HIV- and opiate-mediated interactive neurotoxic effects. Neuronal cultures were treated with supernatant from HIV-1SF162-infected THP-1 cells, in the presence or absence of morphine and GSK3β inhibitors. Our results show that GSK3β inhibitors, including valproate and small molecule inhibitors, significantly reduce HIV-1-mediated neurotoxic outcomes, and also negate interactions with morphine that result in cell death, suggesting that GSK3β-activation is an important point of convergence and a potential therapeutic target for HIV- and opiate-mediated neurocognitive deficits.
Collapse
Affiliation(s)
- Ruturaj R Masvekar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
35
|
Huang Y, Lu M, Guo W, Zeng R, Wang B, Wang H. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells. Neural Regen Res 2014; 8:869-81. [PMID: 25206378 PMCID: PMC4145928 DOI: 10.3969/j.issn.1673-5374.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/07/2013] [Indexed: 01/13/2023] Open
Abstract
In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Yun Huang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Mingnan Lu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Weitao Guo
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Rong Zeng
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Bin Wang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Huaibo Wang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| |
Collapse
|
36
|
Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 2014; 62:1227-40. [PMID: 24733756 PMCID: PMC4061255 DOI: 10.1002/glia.22675] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/27/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022]
Abstract
Astrocytes limit inflammation after CNS injury, at least partially by physically containing it within an astrocytic scar at the injury border. We report here that astrocytic transforming growth factor-beta (TGFβ) signaling is a second, distinct mechanism that astrocytes utilize to limit neuroinflammation. TGFβs are anti-inflammatory and neuroprotective cytokines that are upregulated subacutely after stroke, during a clinically accessible time window. We have previously demonstrated that TGFβs signal to astrocytes, neurons and microglia in the stroke border days after stroke. To investigate whether TGFβ affects astrocyte immunoregulatory functions, we engineered "Ast-Tbr2DN" mice where TGFβ signaling is inhibited specifically in astrocytes. Despite having a similar infarct size to wildtype controls, Ast-Tbr2DN mice exhibited significantly more neuroinflammation during the subacute period after distal middle cerebral occlusion (dMCAO) stroke. The peri-infarct cortex of Ast-Tbr2DN mice contained over 60% more activated CD11b(+) monocytic cells and twice as much immunostaining for the activated microglia and macrophage marker CD68 than controls. Astrocytic scarring was not altered in Ast-Tbr2DN mice. However, Ast-Tbr2DN mice were unable to upregulate TGF-β1 and its activator thrombospondin-1 2 days after dMCAO. As a result, the normal upregulation of peri-infarct TGFβ signaling was blunted in Ast-Tbr2DN mice. In this setting of lower TGFβ signaling and excessive neuroinflammation, we observed worse motor outcomes and late infarct expansion after photothrombotic motor cortex stroke. Taken together, these data demonstrate that TGFβ signaling is a molecular mechanism by which astrocytes limit neuroinflammation, activate TGFβ in the peri-infarct cortex and preserve brain function during the subacute period after stroke.
Collapse
Affiliation(s)
- Egle Cekanaviciute
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
- Neurosciences Graduate Program, Stanford University, Stanford, CA, 94305-5489
| | - Nancy Fathali
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Kristian P. Doyle
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Aaron M. Williams
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Jullet Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305-5489
| |
Collapse
|
37
|
Masvekar RR, El-Hage N, Hauser KF, Knapp PE. Morphine enhances HIV-1SF162-mediated neuron death and delays recovery of injured neurites. PLoS One 2014; 9:e100196. [PMID: 24949623 PMCID: PMC4064991 DOI: 10.1371/journal.pone.0100196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup) was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through µ-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10–500 pg/ml). Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml), and GSK3β was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting unique interactions with virions or other viral or cellular proteins released by infected and/or activated cells.
Collapse
Affiliation(s)
- Ruturaj R. Masvekar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Phamduong E, Rathore MK, Crews NR, D’Angelo AS, Leinweber AL, Kappera P, Krenning TM, Rendell VR, Belcheva MM, Coscia CJ. Acute and chronic mu opioids differentially regulate thrombospondins 1 and 2 isoforms in astrocytes. ACS Chem Neurosci 2014; 5:106-14. [PMID: 24304333 DOI: 10.1021/cn400172n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic μ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by μ opioids in astrocytes involves crosstalk between three different classes of receptors, μ opioid receptor, EGFR and TGFβR. Moreover, TGFβ1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFβ1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic μ opioids, morphine, and the prototypic μ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFβ1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the "reactive" state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that μ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, μ opioids may deter synaptogenesis via both TSP1/2 isoforms, but by distinct mechanisms.
Collapse
Affiliation(s)
- Ellen Phamduong
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Maanjot K. Rathore
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Nicholas R. Crews
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Alexander S. D’Angelo
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Andrew L. Leinweber
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Pranay Kappera
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Thomas M. Krenning
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Victoria R. Rendell
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Mariana M. Belcheva
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| | - Carmine J. Coscia
- E. A. Doisy Department of
Biochemistry and Molecular Biology, St. Louis University of Medicine, 1100 S. Grand Blvd., St. Louis, Missouri, 63104, United States
| |
Collapse
|
39
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
40
|
Laux-Biehlmann A, Mouheiche J, Vérièpe J, Goumon Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013; 233:95-117. [DOI: 10.1016/j.neuroscience.2012.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
|
41
|
Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, Kahn SA, Romão LF, de Miranda J, Alves-Leon SV, de Souza JM, Castro NG, Panizzutti R, Gomes FCA. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 2012; 287:41432-45. [PMID: 23055518 PMCID: PMC3510841 DOI: 10.1074/jbc.m112.380824] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Assembly of synapses requires proper coordination between pre- and postsynaptic elements. Identification of cellular and molecular events in synapse formation and maintenance is a key step to understand human perception, learning, memory, and cognition. A key role for astrocytes in synapse formation and function has been proposed. Here, we show that transforming growth factor β (TGF-β) signaling is a novel synaptogenic pathway for cortical neurons induced by murine and human astrocytes. By combining gain and loss of function approaches, we show that TGF-β1 induces the formation of functional synapses in mice. Further, TGF-β1-induced synaptogenesis involves neuronal activity and secretion of the co-agonist of the NMDA receptor, d-serine. Manipulation of d-serine signaling, by either genetic or pharmacological inhibition, prevented the TGF-β1 synaptogenic effect. Our data show a novel molecular mechanism that might impact synaptic function and emphasize the evolutionary aspect of the synaptogenic property of astrocytes, thus shedding light on new potential therapeutic targets for synaptic deficit diseases.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE. Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 2012; 10:435-52. [PMID: 22591368 PMCID: PMC3431547 DOI: 10.2174/157016212802138779] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 11/22/2022]
Abstract
Opiate abuse and HIV-1 have been described as interrelated epidemics, and even in the advent of combined anti-retroviral therapy, the additional abuse of opiates appears to result in greater neurologic and cognitive deficits. The central nervous system (CNS) is particularly vulnerable to interactive opiate-HIV-1 effects, in part because of the unique responses of microglia and astroglia. Although neurons are principally responsible for behavior and cognition, HIV-1 infection and replication in the brain is largely limited to microglia, while astroglia and perhaps glial progenitors can be latently infected. Thus, neuronal dysfunction and injury result from cellular and viral toxins originating from HIV-1 infected/exposed glia. Importantly, subsets of glial cells including oligodendrocytes, as well as neurons, express µ-opioid receptors and therefore can be direct targets for heroin and morphine (the major metabolite of heroin in the CNS), which preferentially activate µ-opioid receptors. This review highlights findings that neuroAIDS is a glially driven disease, and that opiate abuse may act at multiple glial-cell types to further compromise neuron function and survival. The ongoing, reactive cross-talk between opiate drug and HIV-1 co-exposed microglia and astroglia appears to exacerbate critical proinflammatory and excitotoxic events leading to neuron dysfunction, injury, and potentially death. Opiates enhance synaptodendritic damage and a loss of synaptic connectivity, which is viewed as the substrate of cognitive deficits. We especially emphasize that opioid signaling and interactions with HIV-1 are contextual, differing among cell types, and even within subsets of the same cell type. For example, astroglia even within a single brain region are heterogeneous in their expression of µ-, δ-, and κ-opioid receptors, as well as CXCR4 and CCR5, and Toll-like receptors. Thus, defining the distinct targets engaged by opiates in each cell type, and among brain regions, is critical to an understanding of how opiate abuse exacerbates neuroAIDS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, 1217 East Marshall Street, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.
| | | | | | | | | |
Collapse
|
43
|
Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012; 134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
In the past two decades a trickle of manuscripts examining the non-neuronal central nervous system immune consequences of the drugs of abuse has now swollen to a significant body of work. Initially, these studies reported associative evidence of central nervous system proinflammation resulting from exposure to the drugs of abuse demonstrating key implications for neurotoxicity and disease progression associated with, for example, HIV infection. However, more recently this drug-induced activation of central immune signaling is now understood to contribute substantially to the pharmacodynamic actions of the drugs of abuse, by enhancing the engagement of classical mesolimbic dopamine reward pathways and withdrawal centers. This review will highlight the key in vivo animal, human, biological and molecular evidence of these central immune signaling actions of opioids, alcohol, cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). Excitingly, this new appreciation of central immune signaling activity of drugs of abuse provides novel therapeutic interventions and opportunities to identify 'at risk' individuals through the use of immunogenetics. Discussion will also cover the evidence of modulation of this signaling by existing clinical and pre-clinical drug candidates, and novel pharmacological targets. Finally, following examination of the breadth of central immune signaling actions of the drugs of abuse highlighted here, the current known common immune signaling components will be outlined and their impact on established addiction neurocircuitry discussed, thereby synthesizing a common neuroimmune hypothesis of addiction.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
44
|
Abstract
Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled and activate inhibitory G proteins. These receptors form homo- and heterodimeric complexes and signal to kinase cascades and scaffold a variety of proteins.The authors discuss classic mechanisms and developments in understanding opioid tolerance and opioid receptor signaling and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. The authors put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, the authors conclude there is a continued need for more translational work on opioid receptors in vivo.
Collapse
|
45
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|