1
|
Jiao M, He W, Ouyang Z, Yu Q, Zhang J, Qin Q, Wang R, Guo X, Liu R, He X, Hwang PM, Zheng F, Wen Y. Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis. SCIENCE ADVANCES 2025; 11:eadq9686. [PMID: 39813328 PMCID: PMC11734730 DOI: 10.1126/sciadv.adq9686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in Acinetobacter baumannii. Crystal structures of molybdate-coordinated A. baumannii ModA show a noncanonical disulfide bond with a conformational change between reduced and oxidized states. Disulfide bond formation reduced binding affinity to molybdate by two orders of magnitude and contributes to its substrate preference. ModA-mediated molybdate binding was important for A. baumannii infection in a murine pneumonia model. Together, our study sheds light on the structural and functional diversity of molybdate uptake and highlights a potential target for antibacterial development.
Collapse
Affiliation(s)
- Min Jiao
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qinyue Yu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ruochen Wang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaolong Guo
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ruihan Liu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoyu He
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peter M. Hwang
- Departments of Medicine and Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
2
|
Holani R, Bar-Yoseph H, Krekhno Z, Serapio-Palacios A, Moon KM, Stacey RG, Donald KA, Deng W, Bressler B, Magaña AA, Foster LJ, Atser MG, Johnson JD, Finlay B. Bile acid-induced metabolic changes in the colon promote Enterobacteriaceae expansion and associate with dysbiosis in Crohn's disease. Sci Signal 2024; 17:eadl1786. [PMID: 39689182 DOI: 10.1126/scisignal.adl1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Bile acids (BAs) affect the growth of potentially pathogenic commensals, including those from the Enterobacteriaceae family, which are frequently overrepresented in inflammatory bowel disease (IBD). BAs are normally reabsorbed in the ileum for recycling and are often increased in the colonic lumina of patients with IBD, including those with Crohn's disease (CD). Here, we investigated the influence of BAs on gut colonization by Enterobacteriaceae. We found increased abundance of Enterobacteriaceae in the colonic mucosae of patients with CD with a concomitant decrease in the transporters that resorb BAs in the ileum. The increase in Enterobacteriaceae colonization was greater in the colons of patients who had undergone terminal ileum resection compared with those with intact ileum, leading us to hypothesize that BAs promote intestinal colonization by Enterobacteriaceae. Exposure of human colonic epithelial cell lines to BAs reduced mitochondrial respiration, increased oxygen availability, and enhanced the epithelial adherence of several Enterobacteriaceae members. In a publicly available human dataset, mucosal Enterobacteriaceae was negatively associated with the expression of genes related to mitochondrial function. In a murine model, increased intestinal BA availability enhanced colonization by Escherichia coli in a manner that depended on bacterial respiration. Together, our findings demonstrate that BAs reduce mitochondrial respiration in the colon, leading to an increase in oxygen availability that facilitates Enterobacteriaceae colonization. This identification of BAs as facilitators of host-commensal interactions may be relevant to multiple intestinal diseases.
Collapse
Affiliation(s)
- Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard G Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine A Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Bressler
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando A Magaña
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Atser
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barton Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Adolph C, Hards K, Williams ZC, Cheung CY, Keighley LM, Jowsey WJ, Kyte M, Inaoka DK, Kita K, Mackenzie JS, Steyn AJC, Li Z, Yan M, Tian GB, Zhang T, Ding X, Furkert DP, Brimble MA, Hickey AJR, McNeil MB, Cook GM. Identification of Chemical Scaffolds That Inhibit the Mycobacterium tuberculosis Respiratory Complex Succinate Dehydrogenase. ACS Infect Dis 2024; 10:3496-3515. [PMID: 39268963 DOI: 10.1021/acsinfecdis.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Drug-resistant Mycobacterium tuberculosis is a significant cause of infectious disease morbidity and mortality for which new antimicrobials are urgently needed. Inhibitors of mycobacterial respiratory energy metabolism have emerged as promising next-generation antimicrobials, but a number of targets remain unexplored. Succinate dehydrogenase (SDH), a focal point in mycobacterial central carbon metabolism and respiratory energy production, is required for growth and survival in M. tuberculosis under a number of conditions, highlighting the potential of inhibitors targeting mycobacterial SDH enzymes. To advance SDH as a novel drug target in M. tuberculosis, we utilized a combination of biochemical screening and in-silico deep learning technologies to identify multiple chemical scaffolds capable of inhibiting mycobacterial SDH activity. Antimicrobial susceptibility assays show that lead inhibitors are bacteriostatic agents with activity against wild-type and drug-resistant strains of M. tuberculosis. Mode of action studies on lead compounds demonstrate that the specific inhibition of SDH activity dysregulates mycobacterial metabolism and respiration and results in the secretion of intracellular succinate. Interaction assays demonstrate that the chemical inhibition of SDH activity potentiates the activity of other bioenergetic inhibitors and prevents the emergence of resistance to a variety of drugs. Overall, this study shows that SDH inhibitors are promising next-generation antimicrobials against M. tuberculosis.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Laura M Keighley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Matson Kyte
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Host-Defence Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Jared S Mackenzie
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Centres for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guo-Bao Tian
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
- Advanced Medical Technology Centre, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaobo Ding
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Daniel P Furkert
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Anthony J R Hickey
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
4
|
Borisov VB. Generation of Membrane Potential by Cytochrome bd. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1504-1512. [PMID: 38105020 DOI: 10.1134/s0006297923100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
An overview of current notions on the mechanism of generation of a transmembrane electric potential difference (Δψ) during the catalytic cycle of a bd-type triheme terminal quinol oxidase is presented in this work. It is suggested that the main contribution to Δψ formation is made by the movement of H+ across the membrane along the intra-protein hydrophilic proton-conducting pathway from the cytoplasm to the active site for oxygen reduction of this bacterial enzyme.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Derdouri N, Ginet N, Denis Y, Ansaldi M, Battesti A. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology. PLoS Genet 2023; 19:e1010672. [PMID: 36930675 PMCID: PMC10057817 DOI: 10.1371/journal.pgen.1010672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E. coli K-12 that carries 9 defective prophages in its genome, we aimed at highlighting the impact of genes encoded by prophages on host physiology. We focused our work on AppY, a transcriptional regulator encoded on the DLP12 prophage. By performing RNA-Seq experiments, we showed that AppY production modulates the expression of more than 200 genes. Among them, 11 were identified by ChIP-Seq as direct AppY targets. AppY directly and positively regulates several genes involved in the acid stress response including the master regulator gene gadE but also nhaR and gadY, two genes important for biofilm formation. Moreover, AppY indirectly and negatively impacts bacterial motility by favoring the degradation of FlhDC, the master regulator of the flagella biosynthesis. As a consequence of these regulatory effects, AppY increases acid stress resistance and biofilm formation while also causing a strong defect in motility. Our research shed light on the importance to consider the genetic interactions occurring between prophages and bacteria to fully understand bacterial physiology. It also highlights how a prophage-encoded transcriptional regulator integrates in a complex manner into the host regulatory network and how it benefits its host, allowing it to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Naoual Derdouri
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Ginet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Aix Marseille Université, Centre National de la Recherche Scientifique, Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée-, Marseille, France
| | - Mireille Ansaldi
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Aurélia Battesti
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
6
|
Huang H, Lin L, Bu F, Su Y, Zheng X, Chen Y. Reductive Stress Boosts the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes: The Neglected Side of the Intracellular Redox Spectrum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15594-15606. [PMID: 36322896 DOI: 10.1021/acs.est.2c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) among bacteria is becoming a global challenge to the "One Health" concept. During conjugation, the donor/recipient usually encounter diverse stresses induced by the surrounding environment. Previous studies mainly focused on the effects of oxidative stress on plasmid conjugation, but ignored the potential contribution of reductive stress (RS), the other side of the intracellular redox spectrum. Herein, we demonstrated for the first time that RS induced by dithiothreitol could significantly boost the horizontal transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella Typhimurium, and Pseudomonas putida KT2440). Phenotypic and genotypic tests confirmed that RS upregulated genes encoding the transfer apparatus of plasmid RP4, which was attributed to the promoted consumption of intracellular glutamine in the donor rather than the widely reported SOS response. Moreover, RS was verified to benefit ATP supply by activating glycolysis (e.g., GAPDH) and the respiratory chain (e.g., appBC), triggering the deficiency of intracellular free Mg2+ by promoting its binding, and reducing membrane permeability by stimulating cardiolipin biosynthesis, all of which were beneficial to the functioning of transfer apparatus. Overall, our findings uncovered the neglected risks of RS in ARG spreading and updated the regulatory mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Bu
- Shanghai Electric Environmental Protection Group, Shanghai Electric Group Co. Ltd, Shanghai 200092, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
7
|
Ketcham A, Freddolino PL, Tavazoie S. Intracellular acidification is a hallmark of thymineless death in E. coli. PLoS Genet 2022; 18:e1010456. [PMID: 36279294 PMCID: PMC9632930 DOI: 10.1371/journal.pgen.1010456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Thymidine starvation causes rapid cell death. This enigmatic process known as thymineless death (TLD) is the underlying killing mechanism of diverse antimicrobial and antineoplastic drugs. Despite decades of investigation, we still lack a mechanistic understanding of the causal sequence of events that culminate in TLD. Here, we used a diverse set of unbiased approaches to systematically determine the genetic and regulatory underpinnings of TLD in Escherichia coli. In addition to discovering novel genes in previously implicated pathways, our studies revealed a critical and previously unknown role for intracellular acidification in TLD. We observed that a decrease in cytoplasmic pH is a robust early event in TLD across different genetic backgrounds. Furthermore, we show that acidification is a causal event in the death process, as chemical and genetic perturbations that increase intracellular pH substantially reduce killing. We also observe a decrease in intracellular pH in response to exposure to the antibiotic gentamicin, suggesting that intracellular acidification may be a common mechanistic step in the bactericidal effects of other antibiotics.
Collapse
Affiliation(s)
- Alexandra Ketcham
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Peter L. Freddolino
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
8
|
Forte E, Nastasi MR, Borisov VB. Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:720-730. [PMID: 36171653 DOI: 10.1134/s0006297922080041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.
Collapse
Affiliation(s)
- Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Martina R Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Hayashi-Nishino M, Aoki K, Kishimoto A, Takeuchi Y, Fukushima A, Uchida K, Echigo T, Yagi Y, Hirose M, Iwasaki K, Shin'ya E, Washio T, Furusawa C, Nishino K. Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images. Front Microbiol 2022; 13:839718. [PMID: 35369486 PMCID: PMC8965347 DOI: 10.3389/fmicb.2022.839718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of bacteria that are resistant to antibiotics is common in areas where antibiotics are used widely. The current standard procedure for detecting bacterial drug resistance is based on bacterial growth under antibiotic treatments. Here we describe the morphological changes in enoxacin-resistant Escherichia coli cells and the computational method used to identify these resistant cells in transmission electron microscopy (TEM) images without using antibiotics. Our approach was to create patches from TEM images of enoxacin-sensitive and enoxacin-resistant E. coli strains, use a convolutional neural network for patch classification, and identify the strains on the basis of the classification results. The proposed method was highly accurate in classifying cells, achieving an accuracy rate of 0.94. Using a gradient-weighted class activation mapping to visualize the region of interest, enoxacin-resistant and enoxacin-sensitive cells were characterized by comparing differences in the envelope. Moreover, Pearson's correlation coefficients suggested that four genes, including lpp, the gene encoding the major outer membrane lipoprotein, were strongly associated with the image features of enoxacin-resistant cells.
Collapse
Affiliation(s)
- Mitsuko Hayashi-Nishino
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Artificial Intelligence Research Center (AIRC-ISIR), Osaka University, Ibaraki, Japan
| | - Kota Aoki
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Akihiro Kishimoto
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Yuna Takeuchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Aiko Fukushima
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Kazushi Uchida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tomio Echigo
- Department of Engineering Informatics, Osaka Electro-Communication University, Neyagawa, Japan
| | - Yasushi Yagi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Eitaro Shin'ya
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Takashi Washio
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Chikara Furusawa
- RIKEN, Center for Biosystems Dynamics Research, Suita, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Nishino
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Proton motive force underpins respiration-mediated potentiation of aminoglycoside lethality in pathogenic Escherichia coli. Arch Microbiol 2022; 204:120. [PMID: 34989857 PMCID: PMC8739286 DOI: 10.1007/s00203-021-02710-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
It is well known that loss of aerobic respiration in Gram-negative bacteria can diminish the efficacy of a variety of bactericidal antibiotics, which has lead to subsequent demonstrations that the formation of reactive oxygen species (ROS) and the proton motive force (PMF) can both play a role in antibiotic toxicity. The susceptibility of Gram-negative bacteria to aminoglycoside antibiotics, particularly gentamicin, has previously been linked to both the production of ROS and the rate of antibiotic uptake that is mediated by the PMF, although the relative contributions of ROS and PMF to aminoglycoside toxicity has remained poorly understood. Herein, gentamicin was shown to elicit a very modest increase in ROS levels in an aerobically grown Escherichia coli clinical isolate. The well-characterised uncoupler 2,4-dinitrophenol (DNP) was used to disrupt the PMF, which resulted in a significant decrease in gentamicin lethality towards E. coli. DNP did not significantly alter respiratory oxygen consumption, supporting the hypothesis that this uncoupler does not increase ROS production via elevated respiratory oxidase activity. These observations support the hypothesis that maintenance of PMF rather than induction of ROS production underpins the mechanism for how the respiratory chain potentiates the toxicity of aminoglycosides. This was further supported by the demonstration that the uncoupler DNP elicits a dramatic decrease in gentamicin lethality under anaerobic conditions. Together, these data strongly suggest that maintenance of the PMF is the dominant mechanism for the respiratory chain in potentiating the toxic effects of aminoglycosides.
Collapse
|
11
|
Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2114013118. [PMID: 34873041 DOI: 10.1073/pnas.2114013118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment of infectious diseases caused by multidrug-resistant pathogens is a major clinical challenge of the 21st century. The membrane-embedded respiratory cytochrome bd-type oxygen reductase is a critical survival factor utilized by pathogenic bacteria during infection, proliferation and the transition from acute to chronic states. Escherichia coli encodes for two cytochrome bd isoforms that are both involved in respiration under oxygen limited conditions. Mechanistic and structural differences between cydABX (Ecbd-I) and appCBX (Ecbd-II) operon encoded cytochrome bd variants have remained elusive in the past. Here, we demonstrate that cytochrome bd-II catalyzes oxidation of benzoquinols while possessing additional specificity for naphthoquinones. Our data show that although menaquinol-1 (MK1) is not able to directly transfer electrons onto cytochrome bd-II from E. coli, it has a stimulatory effect on its oxygen reduction rate in the presence of ubiquinol-1. We further determined cryo-EM structures of cytochrome bd-II to high resolution of 2.1 Å. Our structural insights confirm that the general architecture and substrate accessible pathways are conserved between the two bd oxidase isoforms, but two notable differences are apparent upon inspection: (i) Ecbd-II does not contain a CydH-like subunit, thereby exposing heme b 595 to the membrane environment and (ii) the AppB subunit harbors a structural demethylmenaquinone-8 molecule instead of ubiquinone-8 as found in CydB of Ecbd-I Our work completes the structural landscape of terminal respiratory oxygen reductases of E. coli and suggests that structural and functional properties of the respective oxidases are linked to quinol-pool dependent metabolic adaptations in E. coli.
Collapse
|
12
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
13
|
Gu Y, Wang S, Huang L, Sa W, Li J, Huang J, Dai M, Cheng G. Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox. Antibiotics (Basel) 2020; 9:E791. [PMID: 33182563 PMCID: PMC7696260 DOI: 10.3390/antibiotics9110791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/31/2023] Open
Abstract
Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76-4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations.
Collapse
Affiliation(s)
- Yufeng Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuge Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Jun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Junhong Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Menghong Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Guyue Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clin Microbiol Rev 2019; 33:33/1/e00101-19. [PMID: 31619395 DOI: 10.1128/cmr.00101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause a majority of urinary tract infections (UTIs). Since UPEC strains can become antibiotic resistant, adjunct or alternate therapies are urgently needed. UPEC strains grow extremely rapidly in patients with UTIs. Thus, this review focuses on the relation between urine composition and UPEC growth and metabolism. Compilation of urinary components from two major data sources suggests the presence of sufficient amino acids and carbohydrates as energy sources and abundant phosphorus, sulfur, and nitrogen sources. In a mouse UTI model, mutants lacking enzymes of the tricarboxylic acid cycle, gluconeogenesis, and the nonoxidative branch of the pentose cycle are less competitive than the corresponding parental strains, which is consistent with amino acids as major energy sources. Other evidence suggests that carbohydrates are required energy sources. UPEC strains in urine ex vivo and in vivo express transporters for peptides, amino acids, carbohydrates, and iron and genes associated with nitrogen limitation, amino acid synthesis, nucleotide synthesis, and nucleotide salvage. Mouse models confirm the requirement for many, but not all, of these genes. Laboratory evolution studies suggest that rapid nutrient uptake without metabolic rewiring is sufficient to account for rapid growth. Proteins and pathways required for rapid growth should be considered potential targets for alternate or adjunct therapies.
Collapse
|
15
|
Beebout CJ, Eberly AR, Werby SH, Reasoner SA, Brannon JR, De S, Fitzgerald MJ, Huggins MM, Clayton DB, Cegelski L, Hadjifrangiskou M. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli. mBio 2019; 10:e02400-18. [PMID: 30940709 PMCID: PMC6445943 DOI: 10.1128/mbio.02400-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization to the biofilm community such that biofilm residents can benefit from the production of common goods while being protected from exogenous insults. Spatial organization is driven by the presence of chemical gradients, such as oxygen. Here we show that two quinol oxidases found in Escherichia coli and other bacteria organize along the biofilm oxygen gradient and that this spatially coordinated expression controls architectural integrity. Cytochrome bd, a high-affinity quinol oxidase required for aerobic respiration under hypoxic conditions, is the most abundantly expressed respiratory complex in the biofilm community. Depletion of the cytochrome bd-expressing subpopulation compromises biofilm complexity by reducing the abundance of secreted extracellular matrix as well as increasing cellular sensitivity to exogenous stresses. Interrogation of the distribution of quinol oxidases in the planktonic state revealed that ∼15% of the population expresses cytochrome bd at atmospheric oxygen concentration, and this population dominates during acute urinary tract infection. These data point toward a bet-hedging mechanism in which heterogeneous expression of respiratory complexes ensures respiratory plasticity of E. coli across diverse host niches.IMPORTANCE Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization in the biofilm community. Here we demonstrate that oxygen gradients in uropathogenic Escherichia coli (UPEC) biofilms lead to spatially distinct expression programs for quinol oxidases-components of the terminal electron transport chain. Our studies reveal that the cytochrome bd-expressing subpopulation is critical for biofilm development and matrix production. In addition, we show that quinol oxidases are heterogeneously expressed in planktonic populations and that this respiratory heterogeneity provides a fitness advantage during infection. These studies define the contributions of quinol oxidases to biofilm physiology and suggest the presence of respiratory bet-hedging behavior in UPEC.
Collapse
Affiliation(s)
- Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sabrina H Werby
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Seth A Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shuvro De
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Douglass B Clayton
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Abstract
NADH and NAD+ cofactors drive hundreds of biochemical reactions, and their ratio is a key metabolic marker of cellular state. Traditional assays to measure the NADH/NAD+ ratio is laborious, prone to inaccuracies, and not suitable for high-throughput screening. We report a genetically encoded ratiometric biosensor for NADH/NAD+ based on redox-responsive bacterial transcription factor Rex that overcomes these limitations. We engineered a Rex-regulated E. coli promoter with improved biosensor characteristics by tuning the affinity of Rex and the operator site. Since NADH is oxidized during aerobic respiration, we used the biosensor-reporter to investigate the effect of removing respiratory chain enzymes on NADH/NAD+ ratio during aerobiosis. We found that the NADH/NAD+ signal increased in five of the nine mutants by over 3-fold compared to wildtype, including an NADH dehydrogenase double mutant with 6-fold elevation. We also found that among several common carbon sources, E. coli grown on acetate exhibited higher NADH/NAD+ compared to E. coli grown on glucose. As a proof-of-concept for high-throughput redox screening, we were able to enrich high NADH mutants present at 1 in 10 000 among wildtype cells by biosensor-guided pooled screen. Thus, our Rex biosensor-reporter enables facile, noninvasive, high-throughput redox measurement to understand and engineer redox metabolism.
Collapse
|
17
|
Giovannercole F, Mérigoux C, Zamparelli C, Verzili D, Grassini G, Buckle M, Vachette P, De Biase D. On the effect of alkaline pH and cofactor availability in the conformational and oligomeric state of Escherichia coli glutamate decarboxylase. Protein Eng Des Sel 2017; 30:235-244. [PMID: 28062647 DOI: 10.1093/protein/gzw076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli glutamate decarboxylase (EcGad) is a homohexameric pyridoxal 5'-phosphate (PLP)-dependent enzyme. It is the structural component of the major acid resistance system that protects E. coli from strong acid stress (pH < 3), typically encountered in the mammalian gastrointestinal tract. In fact EcGad consumes one proton/catalytic cycle while yielding γ-aminobutyrate and carbon dioxide from the decarboxylation of l-glutamate. Two isoforms of Gad occur in E. coli (GadA and GadB) that are 99% identical in sequence. GadB is the most intensively investigated. Prompted by the observation that some transcriptomic and proteomic studies show EcGad to be expressed in conditions far from acidic, we investigated the structural organization of EcGadB in solution in the pH range 7.5-8.6. Small angle X-ray scattering, combined with size exclusion chromatography, and analytical ultracentrifugation analysis show that the compact and entangled EcGadB hexameric structure undergoes dissociation into dimers as pH alkalinizes. When PLP is not present, the dimeric species is the most abundant in solution, though evidence for the occurrence of a likely tetrameric species was also obtained. Trp fluorescence emission spectra as well as limited proteolysis studies suggest that PLP plays a key role in the acquisition of a folding necessary for the canonical catalytic activity.
Collapse
Affiliation(s)
- F Giovannercole
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, I-04100 Latina, Italy
| | - C Mérigoux
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - C Zamparelli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, I-00185 Roma, Italy
| | - D Verzili
- CNR Istituto di Biologia e Patologia Molecolari, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, I-00185 Roma, Italy
| | - G Grassini
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, I-04100 Latina, Italy.,Present address at: Laboratoire de Chimie Bactérien (ACB), Aix-Marseille University
| | - M Buckle
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, F-94235, Cachan, France
| | - P Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - D De Biase
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, I-04100 Latina, Italy
| |
Collapse
|
18
|
Tramonti A, De Santis F, Pennacchietti E, De Biase D. The yhiM gene codes for an inner membrane protein involved in GABA export in Escherichia coli. AIMS Microbiol 2017; 3:71-87. [PMID: 31294150 PMCID: PMC6604978 DOI: 10.3934/microbiol.2017.1.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
In order to survive the exposure to acid pH, Escherichia coli activates molecular circuits leading from acid tolerance to extreme acid resistance (AR). The activation of the different circuits involves several global and specific regulators affecting the expression of membrane, periplasmic and cytosolic proteins acting at different levels to dampen the harmful consequences of the uncontrolled entry of protons intracellularly. Many genes coding for the structural components of the AR circuits (protecting from pH ≤ 2.5) and their specific transcriptional regulators cluster in a genomic region named AFI (acid fitness island) and respond in the same way to global regulators (such as RpoS and H-NS) as well as to anaerobiosis, alkaline, cold and respiratory stresses, in addition to the acid stress. Notably some genes coding for structural components of AR, though similarly regulated, are non-AFI localised. Amongst these the gadBC operon, coding for the major structural components of the glutamate-based AR system, and the ybaS gene, coding for a glutaminase required for the glutamine-based AR system. The yhiM gene, a non-AFI gene, appears to belong to this group. We mapped the transcription start of the 1.1 kb monocistronic yhiM transcript: it is an adenine residue located 22 nt upstream a GTG start codon. By real-time PCR we show that GadE and GadX equally affect the expression of yhiM under oxidative growth conditions. While YhiM is partially involved in the RpoS-dependent AR, we failed to detect a significant involvement in the glutamate- or glutamine-dependent AR at pH ≤ 2.5. However, when grown in EG at pH 5.0, the yhiM mutant displays impaired GABA export, whereas when YhiM is overexpressed, an increases of GABA export in EG medium in the pH range 2.5-5.5 is observed. Our data suggest that YhiM is a GABA transporter with a physiological role more relevant at mildly acidic pH, but not a key component of AR at pH < 2.5.
Collapse
Affiliation(s)
- Angela Tramonti
- Institute of Molecular Biology and Pathology, CNR, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Fiorenzo De Santis
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Eugenia Pennacchietti
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Daniela De Biase
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
19
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
20
|
Alteri CJ, Mobley HLT. Metabolism and Fitness of Urinary Tract Pathogens. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MBP-0016-2015. [PMID: 26185076 PMCID: PMC4510461 DOI: 10.1128/microbiolspec.mbp-0016-2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Among common infections, urinary tract infections (UTI) are the most frequently diagnosed urologic disease. The majority of UTIs are caused by uropathogenic Escherichia coli. The primary niche occupied by E. coli is the lower intestinal tract of mammals, where it resides as a beneficial component of the commensal microbiota. Although it is well-known that E. coli resides in the human intestine as a harmless commensal, specific strains or pathotypes have the potential to cause a wide spectrum of intestinal and diarrheal diseases. In contrast, extraintestinal E. coli pathotypes reside harmlessly in the human intestinal microenvironment but, upon access to sites outside of the intestine, become a major cause of human morbidity and mortality as a consequence of invasive UTI (pyelonephritis, bacteremia, or septicemia). Thus, extraintestinal pathotypes like uropathogenic E. coli (UPEC) possess an enhanced ability to cause infection outside of the intestinal tract and colonize the urinary tract, the bloodstream, or cerebrospinal fluid of human hosts. Due to the requirement for these E. coli to replicate in and colonize both the intestine and extraintestinal environments, we posit that physiology and metabolism of UPEC strains is paramount. Here we discuss that the ability to survive in the urinary tract depends as much on bacterial physiology and metabolism as it does on the well-considered virulence determinants.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
21
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
22
|
Abstract
Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate-specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophosphate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and dimethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O₂ is served by two major oxidoreductases (oxidases), cytochrome bo₃ encoded by cyoABCDE and cytochrome bd encoded by cydABX. Terminal oxidases of aerobic respiratory chains of bacteria, which use O₂ as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo₃ and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo₃ and cytochrome bd. The E. coli membrane contains three types of quinones that all have an octaprenyl side chain (C₄₀). It has been proposed that the bo₃ oxidase can have two ubiquinone-binding sites with different affinities. "WHAT'S NEW" IN THE REVISED ARTICLE: The revised article comprises additional information about subunit composition of cytochrome bd and its role in bacterial resistance to nitrosative and oxidative stresses. Also, we present the novel data on the electrogenic function of appBCX-encoded cytochrome bd-II, a second bd-type oxidase that had been thought not to contribute to generation of a proton motive force in E. coli, although its spectral properties closely resemble those of cydABX-encoded cytochrome bd.
Collapse
|
23
|
Holyoake LV, Poole RK, Shepherd M. The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. Adv Microb Physiol 2015. [PMID: 26210105 DOI: 10.1016/bs.ampbs.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type transporter (ABC transporter) that exports the thiol-containing redox-active molecules cysteine and glutathione. These reductants are thought to aid redox homeostasis of the periplasm, permitting correct disulphide folding of periplasmic and secreted proteins. Loss of CydDC results in the periplasm becoming more oxidising and abolishes the assembly of functional bd-type respiratory oxidases that couple the oxidation of ubiquinol to the reduction of oxygen to water. In addition, CydDC-mediated redox control is important for haem ligation during cytochrome c assembly. Given the diverse roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of virulence factors, this ABC transporter is an intriguing system for researchers interested in both the physiology of redox perturbations and the role of low-molecular-weight thiols during infection.
Collapse
|
24
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
|
26
|
McLean S, Begg R, Jesse HE, Mann BE, Sanguinetti G, Poole RK. Analysis of the bacterial response to Ru(CO)3Cl(Glycinate) (CORM-3) and the inactivated compound identifies the role played by the ruthenium compound and reveals sulfur-containing species as a major target of CORM-3 action. Antioxid Redox Signal 2013; 19:1999-2012. [PMID: 23472713 PMCID: PMC3869425 DOI: 10.1089/ars.2012.5103] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Carbon monoxide (CO)-releasing molecules (CO-RMs) are being developed with the ultimate goal of safely utilizing the therapeutic potential of CO clinically. One such application is antimicrobial activity; therefore, we aimed to characterize and compare the effects of the CO-RM, CORM-3, and its inactivated counterpart, where all labile CO has been removed, at the transcriptomic and cellular level. RESULTS We found that both compounds are able to penetrate the cell, but the inactive form is not inhibitory to bacterial growth under conditions where CORM-3 is. Transcriptomic analyses revealed that the bacterial response to inactivated CORM-3 (iCORM-3) is much lower than to the active compound and that a wide range of processes appear to be affected by CORM-3 and to a lesser extent iCORM-3, including energy metabolism, membrane transport, motility, and the metabolism of many sulfur-containing species, including cysteine and methionine. INNOVATION This work has demonstrated that both CORM-3 and its inactivated counterpart react with cellular functions to yield a complex response at the transcriptomic level. A full understanding of the actions of both compounds is vital to understand the toxic effects of CO-RMs. CONCLUSION This work has furthered our understanding of how CORM-3 behaves at the cellular level and identifies the responses that occur when the host is exposed to the Ru compound as well as those that result from the released CO. This is a vital step in laying the groundwork for future development of optimized CO-RMs for eventual use in antimicrobial therapy.
Collapse
Affiliation(s)
- Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Wilson JL, Jesse HE, Hughes B, Lund V, Naylor K, Davidge KS, Cook GM, Mann BE, Poole RK. Ru(CO)3Cl(Glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli. Antioxid Redox Signal 2013; 19. [PMID: 23186316 PMCID: PMC3704104 DOI: 10.1089/ars.2012.4784] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIMS Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. RESULTS CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits respiration, but much higher concentrations of CORM-3 than of a classic protonophore are required for stimulation. Proton translocation measurements (H(+)/O quotients, i.e., H(+) extrusion on pulsing anaerobic cells with O2) show that respiratory stimulation cannot be attributed to true "uncoupling," that is, dissipation of the protonmotive force, or to direct stimulation of oxidase activity. Our data are consistent with CORM-3 facilitating the electrogenic transmembrane movement of K(+) (or Na(+)), causing a stimulation of respiration and H(+) pumping to compensate for the transient drop in membrane potential (ΔΨ). The effects on respiration are not mimicked by CO gas or control Ru compounds that do not release CO. Inhibition of respiration and loss of bacterial viability elicited by CORM-3 are reversible by white light, unambiguously identifying heme-containing oxidase(s) as target(s). INNOVATION This is the most complete study to date of the antimicrobial action of a CO-RM. Noteworthy are the demonstration of respiratory stimulation, electrogenic ion transport, and photosensitive activity, establishing terminal oxidases and ion transport as primary targets. CONCLUSION CORM-3 has multifaceted effects: increased membrane permeability, inhibition of terminal oxidases, and perhaps other unidentified mechanisms underlie its effectiveness in tackling microbial pathogenesis.
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rolfe MD, Ocone A, Stapleton MR, Hall S, Trotter EW, Poole RK, Sanguinetti G, Green J. Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations. Open Biol 2013; 2:120091. [PMID: 22870390 PMCID: PMC3411108 DOI: 10.1098/rsob.120091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/20/2012] [Indexed: 11/13/2022] Open
Abstract
Understanding gene regulation requires knowledge of changes in transcription factor (TF) activities. Simultaneous direct measurement of numerous TF activities is currently impossible. Nevertheless, statistical approaches to infer TF activities have yielded non-trivial and verifiable predictions for individual TFs. Here, global statistical modelling identifies changes in TF activities from transcript profiles of Escherichia coli growing in stable (fixed oxygen availabilities) and dynamic (changing oxygen availability) environments. A core oxygen-responsive TF network, supplemented by additional TFs acting under specific conditions, was identified. The activities of the cytoplasmic oxygen-responsive TF, FNR, and the membrane-bound terminal oxidases implied that, even on the scale of the bacterial cell, spatial effects significantly influence oxygen-sensing. Several transcripts exhibited asymmetrical patterns of abundance in aerobic to anaerobic and anaerobic to aerobic transitions. One of these transcripts, ndh, encodes a major component of the aerobic respiratory chain and is regulated by oxygen-responsive TFs ArcA and FNR. Kinetic modelling indicated that ArcA and FNR behaviour could not explain the ndh transcript profile, leading to the identification of another TF, PdhR, as the source of the asymmetry. Thus, this approach illustrates how systematic examination of regulatory responses in stable and dynamic environments yields new mechanistic insights into adaptive processes.
Collapse
Affiliation(s)
- Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
ArcA and AppY antagonize IscR repression of hydrogenase-1 expression under anaerobic conditions, revealing a novel mode of O2 regulation of gene expression in Escherichia coli. J Bacteriol 2012; 194:6892-9. [PMID: 23065979 DOI: 10.1128/jb.01757-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Escherichia coli hydrogenase-1 operon (hyaABCDEF) is increased by the transcription factors ArcA and AppY under anaerobic growth conditions. However, IscR, which represses transcription of the hyaA promoter (P(hyaA)) under aerobic conditions, was not known to repress transcription of this promoter under anaerobic conditions. Here, we report that ArcA and AppY increase P(hyaA) expression under anaerobic conditions by antagonizing IscR binding at P(hyaA), since IscR repression is observed when either ArcA or AppY is eliminated. The ability of ArcA and AppY to act as antirepressors of IscR repression of P(hyaA) depended on IscR levels, suggesting that IscR competes with ArcA and/or AppY for binding. In support of this competition model, electrophoretic mobility shift assays and DNase I footprinting showed that the ArcA and IscR binding sites overlap and that binding of ArcA and IscR is mutually exclusive. Unexpectedly, IscR with a C92A mutation (IscR-C92A), which mimics the clusterless form of the protein that is present predominantly under aerobic conditions, was a better repressor under anaerobic conditions of both P(hyaA) and a constitutive promoter containing the IscR binding site from P(hyaA) than wild-type IscR, which is predominantly in the [2Fe-2S] form under anaerobic conditions. This observation could not be explained by differences in DNA binding affinities or IscR levels, so we conclude that [2Fe-2S]-IscR is a weaker repressor of P(hyaA) than clusterless IscR. In sum, a combination of ArcA and AppY antirepression of IscR function, lower levels of IscR, and weak repression by [2Fe-2S]-IscR leads to increased P(hyaA) expression under anaerobic conditions.
Collapse
|
30
|
De Biase D, Pennacchietti E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 2012; 86:770-86. [PMID: 22995042 DOI: 10.1111/mmi.12020] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate-dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP-dependent enzyme which performs a proton-consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein /γ-aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH-dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non-pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co-regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA-enriched foods possess health-promoting properties.
Collapse
Affiliation(s)
- Daniela De Biase
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, 04100, Latina, Italy.
| | | |
Collapse
|
31
|
Vogel C, Innerebner G, Zingg J, Guder J, Vorholt JA. Forward genetic in planta screen for identification of plant-protective traits of Sphingomonas sp. strain Fr1 against Pseudomonas syringae DC3000. Appl Environ Microbiol 2012; 78:5529-35. [PMID: 22660707 PMCID: PMC3406163 DOI: 10.1128/aem.00639-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/21/2012] [Indexed: 01/02/2023] Open
Abstract
Sphingomonas sp. strain Fr1 has recently been shown to protect Arabidopsis thaliana against the bacterial leaf pathogen Pseudomonas syringae DC3000. Here, we describe a forward genetic in planta screen to identify genes in Sphingomonas sp. Fr1 necessary for this effect. About 5,000 Sphingomonas sp. Fr1 mini-Tn5 mutants were assayed for a defect in plant protection against a luxCDABE-tagged P. syringae DC3000 derivative in a space-saving 24-well plate system. The bioluminescence of the pathogen was used as the indicator of pathogen proliferation and allowed for the identification of Sphingomonas sp. Fr1 mutants that had lost the ability to restrict pathogen growth before disease symptoms were visible. Potential candidates were validated using the same miniaturized experimental system. Of these mutants, 10 were confirmed as plant protection defective yet colonization competent. The mutants were subsequently evaluated in a previously described standard microbox system, and plants showed enhanced disease phenotypes after pathogen infection relative to those inoculated with the parental strain as a control. However, the disease severities were lower than those observed for control plants that were grown axenically prior to pathogen challenge, which suggests that several traits may contribute to plant protection. Transposon insertion sites of validated mutants with defects in plant protection were determined and mapped to 7 distinct genomic regions. In conclusion, the established screening protocol allowed us to identify mutations that affect plant protection, and it opens the possibility to uncover traits important for in planta microbe-microbe interactions.
Collapse
|
32
|
Zacher B, Abnaof K, Gade S, Younesi E, Tresch A, Fröhlich H. Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data. ACTA ACUST UNITED AC 2012; 28:1714-20. [PMID: 22563068 DOI: 10.1093/bioinformatics/bts257] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MOTIVATION There have been many successful experimental and bioinformatics efforts to elucidate transcription factor (TF)-target networks in several organisms. For many organisms, these annotations are complemented by miRNA-target networks of good quality. Attempts that use these networks in combination with gene expression data to draw conclusions on TF or miRNA activity are, however, still relatively sparse. RESULTS In this study, we propose Bayesian inference of regulation of transcriptional activity (BIRTA) as a novel approach to infer both, TF and miRNA activities, from combined miRNA and mRNA expression data in a condition specific way. That means our model explains mRNA and miRNA expression for a specific experimental condition by the activities of certain miRNAs and TFs, hence allowing for differentiating between switches from active to inactive (negative switch) and inactive to active (positive switch) forms. Extensive simulations of our model reveal its good prediction performance in comparison to other approaches. Furthermore, the utility of BIRTA is demonstrated at the example of Escherichia coli data comparing aerobic and anaerobic growth conditions, and by human expression data from pancreas and ovarian cancer. AVAILABILITY AND IMPLEMENTATION The method is implemented in the R package birta, which is freely available for Bio-conductor (>=2.10) on http://www.bioconductor.org/packages/release/bioc/html/birta.html.
Collapse
Affiliation(s)
- Benedikt Zacher
- Ludwig-Maximilians-Universität München, Gene Center Munich and Center for integrated Protein Science CiPSM, Department of Chemistry and Biochemistry, Feodor-Lynen-Street 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Bowman LAH, McLean S, Poole RK, Fukuto JM. The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv Microb Physiol 2012; 59:135-219. [PMID: 22114842 DOI: 10.1016/b978-0-12-387661-4.00006-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide and related nitrogen species (reactive nitrogen species) now occupy a central position in contemporary medicine, physiology, biochemistry, and microbiology. In particular, NO plays important antimicrobial defenses in innate immunity but microbes have evolved intricate NO-sensing and defense mechanisms that are the subjects of a vast literature. Unfortunately, the burgeoning NO literature has not always been accompanied by an understanding of the intricacies and complexities of this radical and other reactive nitrogen species so that there exists confusion and vagueness about which one or more species exert the reported biological effects. The biological chemistry of NO and derived/related molecules is complex, due to multiple species that can be generated from NO in biological milieu and numerous possible reaction targets. Moreover, the fate and disposition of NO is always a function of its biological environment, which can vary significantly even within a single cell. In this review, we consider newer aspects of the literature but, most importantly, consider the underlying chemistry and draw attention to the distinctiveness of NO and its chemical cousins, nitrosonium (NO(+)), nitroxyl (NO(-), HNO), peroxynitrite (ONOO(-)), nitrite (NO(2)(-)), and nitrogen dioxide (NO(2)). All these species are reported to be generated in biological systems from initial formation of NO (from nitrite, NO synthases, or other sources) or its provision in biological experiments (typically from NO gas, S-nitrosothiols, or NO donor compounds). The major targets of NO and nitrosative damage (metal centers, thiols, and others) are reviewed and emphasis is given to newer "-omic" methods of unraveling the complex repercussions of NO and nitrogen oxide assaults. Microbial defense mechanisms, many of which are critical for pathogenicity, include the activities of hemoglobins that enzymically detoxify NO (to nitrate) and NO reductases and repair mechanisms (e.g., those that reverse S-nitrosothiol formation). Microbial resistance to these stresses is generally inducible and many diverse transcriptional regulators are involved-some that are secondary sensors (such as Fnr) and those that are "dedicated" (such as NorR, NsrR, NssR) in that their physiological function appears to be detecting primarily NO and then regulating expression of genes that encode enzymes with NO as a substrate. Although generally harmful, evidence is accumulating that NO may have beneficial effects, as in the case of the squid-Vibrio light-organ symbiosis, where NO serves as a signal, antioxidant, and specificity determinant. Progress in this area will require a thorough understanding not only of the biology but also of the underlying chemical principles.
Collapse
Affiliation(s)
- Lesley A H Bowman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
34
|
Alteri CJ, Mobley HLT. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 2011; 15:3-9. [PMID: 22204808 DOI: 10.1016/j.mib.2011.12.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 01/20/2023]
Abstract
Bacterial growth in the host is required for pathogenesis. To successfully grow in vivo, pathogens have adapted their metabolism to replicate in specific host microenvironments. These adaptations reflect the nutritional composition of their host niches, inter-bacterial competition for carbon and energy sources, and survival in the face of bactericidal defense mechanisms. A subgroup of Escherichia coli, which cause urinary tract infection, bacteremia, sepsis, and meningitis, have adapted to grow as a harmless commensal in the nutrient-replete, carbon-rich human intestine but rapidly transition to pathogenic lifestyle in the nutritionally poorer, nitrogen-rich urinary tract. We discuss bacterial adaptations that allow extraintestinal pathogenic E. coli to establish both commensal associations and virulence as the bacterium transits between disparate microenvironments within the same individual.
Collapse
Affiliation(s)
- Christopher J Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | | |
Collapse
|
35
|
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1398-413. [PMID: 21756872 PMCID: PMC3171616 DOI: 10.1016/j.bbabio.2011.06.016] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/03/2023]
Abstract
Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation.
| | | | | | | |
Collapse
|
36
|
Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc Natl Acad Sci U S A 2011; 108:17320-4. [PMID: 21987791 DOI: 10.1073/pnas.1108217108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli is known to couple aerobic respiratory catabolism to ATP synthesis by virtue of the primary generators of the proton motive force-NADH dehydrogenase I, cytochrome bo(3), and cytochrome bd-I. An E. coli mutant deficient in NADH dehydrogenase I, bo(3) and bd-I can, nevertheless, grow aerobically on nonfermentable substrates, although its sole terminal oxidase cytochrome bd-II has been reported to be nonelectrogenic. In the current work, the ability of cytochrome bd-II to generate a proton motive force is reexamined. Absorption and fluorescence spectroscopy and oxygen pulse methods show that in the steady-state, cytochrome bd-II does generate a proton motive force with a H(+)/e(-) ratio of 0.94 ± 0.18. This proton motive force is sufficient to drive ATP synthesis and transport of nutrients. Microsecond time-resolved, single-turnover electrometry shows that the molecular mechanism of generating the proton motive force is identical to that in cytochrome bd-I. The ability to induce cytochrome bd-II biosynthesis allows E. coli to remain energetically competent under a variety of environmental conditions.
Collapse
|
37
|
The regulatory C-terminal domain of subunit ε of F₀F₁ ATP synthase is dispensable for growth and survival of Escherichia coli. J Bacteriol 2011; 193:2046-52. [PMID: 21335453 DOI: 10.1128/jb.01422-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal domain of subunit ε of the bacterial F₀F₁ ATP synthase is reported to be an intrinsic inhibitor of ATP synthesis/hydrolysis activity in vitro, preventing wasteful hydrolysis of ATP under low-energy conditions. Mutants defective in this regulatory domain exhibited no significant difference in growth rate, molar growth yield, membrane potential, or intracellular ATP concentration under a wide range of growth conditions and stressors compared to wild-type cells, suggesting this inhibitory domain is dispensable for growth and survival of Escherichia coli.
Collapse
|
38
|
Activators of the glutamate-dependent acid resistance system alleviate deleterious effects of YidC depletion in Escherichia coli. J Bacteriol 2011; 193:1308-16. [PMID: 21216990 DOI: 10.1128/jb.01209-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of the essential inner membrane protein (IMP) YidC in Escherichia coli has been studied for a limited number of model IMPs and primarily using targeted approaches. These studies suggested that YidC acts at the level of insertion, folding, and quality control of IMPs, both in the context of the Sec translocon and as a separate entity. To further our understanding of YidC's role in IMP biogenesis, we screened a random overexpression library for factors that rescued the growth of cells upon YidC depletion. We found that the overexpression of the GadX and GadY regulators of the glutamate-dependent acid resistance system complemented the growth defect of YidC-depleted cells. Evidence is presented that GadXY overexpression counteracts the deleterious effects of YidC depletion on at least two fronts. First, GadXY prepares the cells for the decrease in respiratory capacity upon the depletion of YidC. Most likely, GadXY-regulated processes reduce the drop in proton-motive force that impairs the fitness of YidC-depleted cells. Second, in GadXY-overproducing cells increased levels of the general chaperone GroEL cofractionate with the inner membranes, which may help to keep newly synthesized inner membrane proteins in an insertion-competent state when YidC levels are limiting.
Collapse
|
39
|
Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 2011; 58:81-139. [PMID: 21722792 DOI: 10.1016/b978-0-12-381043-4.00003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive studies have revealed that large-scale, high-cell density bioreactor cultivations have significant impact on metabolic networks of oxygen-requiring production organisms. Oxygen transfer problems associated with fluid dynamics and inefficient mixing efficiencies result in oxygen gradients, which lead to reduced performance of the bioprocess, decreased product yields, and increased production costs. These problems can be partially alleviated by improving bioreactor configuration and setting, but significant improvements have been achieved by metabolic engineering methods, especially by heterologously expressing Vitreoscilla hemoglobin (VHb). Vast numbers of studies have been accumulating during the past 20 years showing the applicability of VHb to improve growth and product yields in a variety of industrially significant prokaryotic and eukaryotic hosts. The global view on the metabolism of globin-expressing Escherichia coli cells depicts increased energy generation, higher oxygen uptake rates, and a decrease in fermentative by-product excretion. Transcriptome and metabolic flux analysis clearly demonstrate the multidimensional influence of heterologous VHb on the expression of stationary phase-specific genes and on the regulation of cellular metabolic networks. The exact biochemical mechanisms by which VHb is able to improve the oxygen-limited growth remain poorly understood. The suggested mechanisms propose either the delivery of oxygen to the respiratory chain or the detoxification of reactive nitrogen species for the protection of cytochrome activity. The expression of VHb in E. coli bioreactor cultures is likely to assist bacterial growth through providing an increase in available intracellular oxygen, although to fully understand the exact role of VHb in vivo, further analysis will be required.
Collapse
|
40
|
Abstract
Vibrio fischeri is a bioluminescent bacterium that enters into a symbiosis with the bobtail squid Euprymna scolopes. The bacterium colonizes a specialized light organ, in which it generates light that might help the squid to hide its silhouette from animals beneath it. Previous studies have shown that the host nitric oxide (NO) synthase is active during colonization, suggesting that V. fischeri symbionts are exposed to NO. Thus, NO might play a role in regulating the symbiosis, a role possibly analogous to that of NO in the interaction between some pathogens and their hosts. One possibility is that NO helps to exclude other species from the light organ, in which case, the response of V. fischeri to NO is of considerable interest. In this issue of Molecular Microbiology, Dunn et al. report that V. fischeri produces an NO-inducible and NO-resistant alternative oxidase (Aox) that allows respiration to continue in the presence of NO concentrations that are inhibitory to the conventional respiratory oxidases. This is an important step towards a better understanding of the role that NO plays in the Vibrio-squid symbiosis, and provides the first indication of a physiological function for a bacterial homologue of the plant Aox.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|