1
|
Abe K. Dynamic activity changes in transcription factors: Unlocking the mechanisms regulating physiological changes in the brain. Neurosci Res 2025; 214:16-22. [PMID: 39134224 DOI: 10.1016/j.neures.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Transcription factors (TFs) regulate the establishment and modulation of the transcriptome within cells, thereby playing a crucial role in various aspects of cellular physiology throughout the body. Quantitative measurement of TF activity during the development, function, and dysfunction of the brain is essential for gaining a deeper understanding of the regulatory mechanisms governing gene expression during these processes. Due to their role as regulators of gene expression, assessing and modulating detailed TF activity contributes to the development of practical methods to intervene in these processes, potentially offering more efficient treatments for diseases. Recent methodologies have revealed that TF activity is dynamically regulated within cells and organisms, including the adult brain. This review summarizes the regulatory mechanisms of TF activities and the methodologies used to assess them, emphasizing their importance in both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Kentaro Abe
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
2
|
Brenna A, Borsa M, Saro G, Ripperger JA, Glauser DA, Yang Z, Adamantidis A, Albrecht U. Cyclin-dependent kinase 5 (Cdk5) activity is modulated by light and gates rapid phase shifts of the circadian clock. eLife 2025; 13:RP97029. [PMID: 39937180 PMCID: PMC11820109 DOI: 10.7554/elife.97029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The circadian clock enables organisms to synchronize biochemical and physiological processes over a 24 hr period. Natural changes in lighting conditions, as well as artificial disruptions like jet lag or shift work, can advance or delay the clock phase to align physiology with the environment. Within the suprachiasmatic nucleus (SCN) of the hypothalamus, circadian timekeeping and resetting rely on both membrane depolarization and intracellular second-messenger signaling. Voltage-gated calcium channels (VGCCs) facilitate calcium influx in both processes, activating intracellular signaling pathways that trigger Period (Per) gene expression. However, the precise mechanism by which these processes are concertedly gated remains unknown. Our study in mice demonstrates that cyclin-dependent kinase 5 (Cdk5) activity is modulated by light and regulates phase shifts of the circadian clock. We observed that knocking down Cdk5 in the SCN of mice affects phase delays but not phase advances. This is linked to uncontrolled calcium influx into SCN neurons and an unregulated protein kinase A (PKA)-calcium/calmodulin-dependent kinase (CaMK)-cAMP response element-binding protein (CREB) signaling pathway. Consequently, genes such as Per1 are not induced by light in the SCN of Cdk5 knock-down mice. Our experiments identified Cdk5 as a crucial light-modulated kinase that influences rapid clock phase adaptation. This finding elucidates how light responsiveness and clock phase coordination adapt activity onset to seasonal changes, jet lag, and shift work.
Collapse
Affiliation(s)
- Andrea Brenna
- Department of Biology, University of FribourgFribourgSwitzerland
- Department of Endocrinology, Metabolism, and Cardiovascular System, Section of Medicine, University of FribourgFribourgSwitzerland
| | - Micaela Borsa
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital, Bern University Hospital, University of BernBernSwitzerland
- Department of Biomedical Research, University of BernBernSwitzerland
| | - Gabriella Saro
- Department of Biology, University of FribourgFribourgSwitzerland
| | | | | | - Zhihong Yang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Section of Medicine, University of FribourgFribourgSwitzerland
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital, Bern University Hospital, University of BernBernSwitzerland
- Department of Biomedical Research, University of BernBernSwitzerland
| | - Urs Albrecht
- Department of Biology, University of FribourgFribourgSwitzerland
| |
Collapse
|
3
|
Brenna A, Ripperger JA, Saro G, Glauser DA, Yang Z, Albrecht U. PER2 mediates CREB-dependent light induction of the clock gene Per1. Sci Rep 2021; 11:21766. [PMID: 34741086 PMCID: PMC8571357 DOI: 10.1038/s41598-021-01178-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Light affects many physiological processes in mammals such as entrainment of the circadian clock, regulation of mood, and relaxation of blood vessels. At the molecular level, a stimulus such as light initiates a cascade of kinases that phosphorylate CREB at various sites, including serine 133 (S133). This modification leads CREB to recruit the co-factor CRCT1 and the histone acetyltransferase CBP to stimulate the transcription of genes containing a CRE element in their promoters, such as Period 1 (Per1). However, the details of this pathway are poorly understood. Here we provide evidence that PER2 acts as a co-factor of CREB to facilitate the formation of a transactivation complex on the CRE element of the Per1 gene regulatory region in response to light or forskolin. Using in vitro and in vivo approaches, we show that PER2 modulates the interaction between CREB and its co-regulator CRTC1 to support complex formation only after a light or forskolin stimulus. Furthermore, the absence of PER2 abolished the interaction between the histone acetyltransferase CBP and CREB. This process was accompanied by a reduction of histone H3 acetylation and decreased recruitment of RNA Pol II to the Per1 gene. Collectively, our data show that PER2 supports the stimulus-dependent induction of the Per1 gene via modulation of the CREB/CRTC1/CBP complex.
Collapse
Affiliation(s)
- Andrea Brenna
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Saro
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dominique A Glauser
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
4
|
Olesen ETB, Fenton RA. Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nat Rev Nephrol 2021; 17:765-781. [PMID: 34211154 DOI: 10.1038/s41581-021-00447-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Targeting the collecting duct water channel aquaporin 2 (AQP2) to the plasma membrane is essential for the maintenance of mammalian water homeostasis. The vasopressin V2 receptor (V2R), which is a GS protein-coupled receptor that increases intracellular cAMP levels, has a major role in this targeting process. Although a rise in cAMP levels and activation of protein kinase A are involved in facilitating the actions of V2R, studies in knockout mice and cell models have suggested that cAMP signalling pathways are not an absolute requirement for V2R-mediated AQP2 trafficking to the plasma membrane. In addition, although AQP2 phosphorylation is a known prerequisite for V2R-mediated plasma membrane targeting, none of the known AQP2 phosphorylation events appears to be rate-limiting in this process, which suggests the involvement of other factors; cytoskeletal remodelling has also been implicated. Notably, several regulatory processes and signalling pathways involved in AQP2 trafficking also have a role in the pathophysiology of autosomal dominant polycystic kidney disease, although the role of AQP2 in cyst progression is unknown. Here, we highlight advances in the field of AQP2 regulation that might be exploited for the treatment of water balance disorders and provide a rationale for targeting these pathways in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Emma T B Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Endocrinology and Nephrology, North Zealand Hospital, Hillerød, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Lee H, Yu D, Park JS, Lee H, Kim J, Kim HL, Koo S, Lee J, Lee S, Ko Y. Prominin-1-Radixin axis controls hepatic gluconeogenesis by regulating PKA activity. EMBO Rep 2020; 21:e49416. [PMID: 33030802 PMCID: PMC7645247 DOI: 10.15252/embr.201949416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Prominin-1 (Prom1) is a major cell surface marker of cancer stem cells, but its physiological functions in the liver have not been elucidated. We analyzed the levels of mRNA transcripts in serum-starved primary WT (Prom1+/+ ) and KO (Prom1-/- ) mouse hepatocytes using RNA sequencing (RNA-seq) data, and found that CREB target genes were downregulated. This initial observation led us to determine that Prom1 deficiency inhibited cAMP response element-binding protein (CREB) activation and gluconeogenesis, but not cyclic AMP (cAMP) accumulation, in glucagon-, epinephrine-, or forskolin-treated liver tissues and primary hepatocytes, and mitigated glucagon-induced hyperglycemia. Because Prom1 interacted with radixin, Prom1 deficiency prevented radixin from localizing to the plasma membrane. Moreover, systemic adenoviral knockdown of radixin inhibited CREB activation and gluconeogenesis in glucagon-treated liver tissues and primary hepatocytes, and mitigated glucagon-elicited hyperglycemia. Based on these results, we conclude that Prom1 regulates hepatic PKA signaling via radixin functioning as an A kinase-anchored protein (AKAP).
Collapse
Affiliation(s)
- Hyun Lee
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Dong‐Min Yu
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Jun Sub Park
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Hwayeon Lee
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Jun‐Seok Kim
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Hong Lim Kim
- Laboratory of Electron MicroscopeIntegrative Research Support CenterCollege of MedicineThe Catholic University of KoreaSeoulKorea
| | - Seung‐Hoi Koo
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Jae‐Seon Lee
- Department of Molecular MedicineInha University College of MedicineIncheonKorea
- Hypoxia‐related Disease Research CenterInha University College of MedicineIncheonKorea
| | - Sungsoo Lee
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Young‐Gyu Ko
- Tunneling Nanotube Research CenterKorea UniversitySeoulKorea
- Division of Life SciencesKorea UniversitySeoulKorea
| |
Collapse
|
6
|
In Vivo Imaging of the Coupling between Neuronal and CREB Activity in the Mouse Brain. Neuron 2019; 105:799-812.e5. [PMID: 31883788 DOI: 10.1016/j.neuron.2019.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023]
Abstract
Sensory experiences cause long-term modifications of neuronal circuits by modulating activity-dependent transcription programs that are vital for regulation of long-term synaptic plasticity and memory. However, it has not been possible to precisely determine the interaction between neuronal activity patterns and transcription factor activity. Here we present a technique using two-photon fluorescence lifetime imaging (2pFLIM) with new FRET biosensors to chronically image in vivo signaling of CREB, an activity-dependent transcription factor important for synaptic plasticity, at single-cell resolution. Simultaneous imaging of the red-shifted CREB sensor and GCaMP permitted exploration of how experience shapes the interplay between CREB and neuronal activity in the neocortex of awake mice. Dark rearing increased the sensitivity of CREB activity to Ca2+ elevations and prolonged the duration of CREB activation to more than 24 h in the visual cortex. This technique will allow researchers to unravel the transcriptional dynamics underlying experience-dependent plasticity in the brain.
Collapse
|
7
|
Noda N, Ishimoto T, Mori H, Ozawa T. Enhanced bioluminescent sensor for longitudinal detection of CREB activation in living cells. Photochem Photobiol Sci 2019; 18:2740-2747. [PMID: 31573014 DOI: 10.1039/c9pp00249a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is associated with memory formation and controls cell survival and proliferation via regulation of downstream gene expression in tumorigenesis. As a transcription factor, CREB binds to cAMP response elements. Phosphorylation of CREB triggers transcriptional activation of CREB downstream genes following the interaction of the kinase-inducible domain (KID) of CREB with the KID interaction domain (KIX) of CREB-binding protein. Nevertheless, because of the lack of single-cell analytical techniques, little is known about spatiotemporal regulation of CREB phosphorylation. To analyze CREB activation in single living cells, we developed genetically encoded bioluminescent sensors using luciferase-fragment complementation: the sensors are designed based on KID-KIX interaction with a single-molecule format. The luminescence intensity of the sensor, designated as CREX (a sensor of CREB activation based on KID(CREB)-KIX interaction), increased by phosphorylation of CREB. Moreover, the luminescence intensity of CREX was sufficient to detect CREB activation in live-cell bioluminescence imaging for single-cell analysis because of the higher sensitivity. CREX sensor is expected to contribute to elucidation of the spatiotemporal regulation of CREB phosphorylation by applying single-cell analysis.
Collapse
Affiliation(s)
- Natsumi Noda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tetsuya Ishimoto
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Abstract
Mg2+ is an essential ion for the cell but whether it can act as a bona fide second messenger has long been questioned. A recent study supports this hypothesis and shows a signalling role for Mg2+ in GABA-mediated neuronal maturation.
Collapse
|
9
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
10
|
GABA-Induced Intracellular Mg2+ Mobilization Integrates and Coordinates Cellular Information Processing for the Maturation of Neural Networks. Curr Biol 2018; 28:3984-3991.e5. [DOI: 10.1016/j.cub.2018.10.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023]
|
11
|
Yapo C, Nair AG, Hellgren Kotaleski J, Vincent P, Castro LRV. Switch-like PKA responses in the nucleus of striatal neurons. J Cell Sci 2018; 131:jcs.216556. [DOI: 10.1242/jcs.216556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Although it is known that Protein Kinase A (PKA) in the nucleus regulates gene expression, the specificities of nuclear PKA signaling remain poorly understood. Here, we combined computational modeling and live-cell imaging of PKA-dependent phosphorylation in mouse brain slices to investigate how transient dopamine signals are translated into nuclear PKA activity in cortical pyramidal neurons and striatal medium spiny neurons. We observed that the nuclear PKA signal in striatal neurons featured an ultrasensitive responsiveness, associated with fast, all or none responses, which is not consistent with the commonly accepted theory of a slow and passive diffusion of catalytic PKA in the nucleus. Our numerical model suggests that a positive feed-forward mechanism inhibiting nuclear phosphatase activity - possibly mediated by DARPP-32 - could be responsible for this non-linear pattern of nuclear PKA response, allowing for a better detection of the transient dopamine signals that are often associated with reward-mediated learning.
Collapse
Affiliation(s)
- Cédric Yapo
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, 17177, Sweden
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Liliana R. V. Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| |
Collapse
|
12
|
Castro L, Yapo C, Vincent P. [Physiopathology of cAMP/PKA signaling in neurons]. Biol Aujourdhui 2017; 210:191-203. [PMID: 28327278 DOI: 10.1051/jbio/2017005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases.
Collapse
|
13
|
In vivo imaging of CREB phosphorylation in awake-mouse brain. Sci Rep 2015; 5:9757. [PMID: 26044058 PMCID: PMC4456726 DOI: 10.1038/srep09757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/17/2015] [Indexed: 12/28/2022] Open
Abstract
The cyclic adenosine monophosphate response element binding protein (CREB) is a phosphorylation-dependent transcription factor that plays important roles in memory consolidation and several neuropsychological disorders. Although analyzing the spatiotemporal pattern of CREB phosphorylation is required for elucidating the mechanism of memory consolidation, imaging of phosphorylation of a particular protein in the brain of live animals is impossible at present. Here, we developed a method for visualizing the CREB phosphorylation in the cerebral cortex of an awake mouse using a split luciferase technique. Using this technique, we demonstrated the correlation between the change in CREB phosphorylation at a particular region in the brain and behavioral consequences induced by the administration of reserpine, a psychotropic agent.
Collapse
|
14
|
Heinick A, Husser X, Himmler K, Kirchhefer U, Nunes F, Schulte JS, Seidl MD, Rolfes C, Dedman JR, Kaetzel MA, Gerke V, Schmitz W, Müller FU. Annexin A4 is a novel direct regulator of adenylyl cyclase type 5. FASEB J 2015; 29:3773-87. [PMID: 26023182 DOI: 10.1096/fj.14-269837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Abstract
Annexin A4 (AnxA4), a Ca(2+)- and phospholipid-binding protein, is up-regulated in the human failing heart. In this study, we examined the impact of AnxA4 on β-adrenoceptor (β-AR)/cAMP-dependent signal transduction. Expression of murine AnxA4 in human embryonic kidney (HEK)293 cells dose-dependently inhibited cAMP levels after direct stimulation of adenylyl cyclases (ACs) with forskolin (FSK), as determined with an exchange protein activated by cAMP-Förster resonance energy transfer (EPAC-FRET) sensor and an ELISA (control vs. +AnxA4: 1956 ± 162 vs. 1304 ± 185 fmol/µg protein; n = 8). Disruption of the anxA4 gene led to a consistent increase in intracellular cAMP levels in isolated adult mouse cardiomyocytes, with heart-directed expression of the EPAC-FRET sensor, stimulated with FSK, and as determined by ELISA, also in mouse cardiomyocytes stimulated with the β-AR agonist isoproterenol (ISO) (anxA4a(+/+) vs. anxA4a(-/-): 5.1 ± 0.3 vs. 6.7 ± 0.6 fmol/µg protein) or FSK (anxA4a(+/+) vs. anxA4a(-/-): 1891 ± 238 vs. 2796 ± 343 fmol/µg protein; n = 9-10). Coimmunoprecipitation experiments in HEK293 cells revealed a direct interaction of murine AnxA4 with human membrane-bound AC type 5 (AC5). As a functional consequence of AnxA4-mediated AC inhibition, AnxA4 inhibited the FSK-induced transcriptional activation mediated by the cAMP response element (CRE) in reporter gene studies (10-fold vs. control; n = 4 transfections) and reduced the FSK-induced phosphorylation of the CRE-binding protein (CREB) measured on Western blots (control vs. +AnxA4: 150 ± 17% vs. 105 ± 10%; n = 6) and by the use of the indicator of CREB activation caused by phosphorylation (ICAP)-FRET sensor, indicating CREB phosphorylation. Inactivation of AnxA4 in anxA4a(-/-) mice was associated with an increased cardiac response to β-AR stimulation. Together, these results suggest that AnxA4 is a novel direct negative regulator of AC5, adding a new facet to the functions of annexins.
Collapse
Affiliation(s)
- Alexander Heinick
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Xenia Husser
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Kirsten Himmler
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Uwe Kirchhefer
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Frank Nunes
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Jan S Schulte
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Matthias D Seidl
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Christina Rolfes
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - John R Dedman
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Marcia A Kaetzel
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Volker Gerke
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Wilhelm Schmitz
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Frank U Müller
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Chen J, Roberts JD. cGMP-dependent protein kinase I gamma encodes a nuclear localization signal that regulates nuclear compartmentation and function. Cell Signal 2014; 26:2633-44. [PMID: 25172423 PMCID: PMC4254301 DOI: 10.1016/j.cellsig.2014.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
cGMP-dependent protein kinase I (PKGI) plays an important role in regulating how cGMP specifies vascular smooth muscle cell (SMC) phenotype. Although studies indicate that PKGI nuclear localization controls how cGMP regulates gene expression in SMC, information about the mechanisms that regulate PKGI nuclear compartmentation and its role in directly regulating cell phenotype is limited. Here we characterize a nuclear localization signal sequence (NLS) in PKGIγ, a proteolytically cleaved PKGI kinase fragment that translocates to the nucleus of SMC. Immuno-localization studies using cells expressing native and NLS-mutant PKGIγ, and treated with a small molecule nuclear transport inhibitor, indicated that PKGIγ encodes a constitutively active NLS that requires importin α and β for regulation of its compartmentation. Moreover, studies utilizing a genetically encoded nuclear phospho-CREB biosensor probe and fluorescence lifetime imaging microscopy demonstrated that this NLS controls PKGIγ nuclear function. In addition, although cytosolic PKGIγ-activity was observed to stimulate MAPK/ERK-mediated nuclear CREB signaling in SMC, NLS-mediated PKGIγ nuclear activity alone was determined to increase the expression of differentiation marker proteins in these cells. These results indicate that NLS-mediated nuclear PKGIγ localization plays an important role in how PKGI regulates vascular SMC phenotype.
Collapse
Affiliation(s)
- Jingsi Chen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA
| | - Jesse D Roberts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA; Departments of Anesthesia, Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Anti-apoptotic NF-κB and "gain of function" mutp53 in concert act pro-apoptotic in response to UVB+IL-1 via enhanced TNF production. J Invest Dermatol 2014; 135:851-860. [PMID: 25380350 PMCID: PMC4340977 DOI: 10.1038/jid.2014.481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022]
Abstract
In response to genotoxic stress, including UVB radiation, transcription factors NF-κB and p53 inevitably influence the cellular fate. Loss of p53 function has been attributed to malignant transformation and interferes with therapeutic interventions, whereas “gain of function” mutants even enhance tumor promotion. Constitutive NF-κB activation is linked to tumor maintenance and resistance against chemotherapy. The cross talk between p53 and NF-κB, however, is still under debate. Using the non-transformed keratinocyte cell line HaCaT, we shed light on the interplay between p53 and NF-κB by providing clear evidence that chronically activated NF-κB together with designated “gain of function” mutp53 promotes apoptosis via cooperative tumor necrosis factor (TNF) production in response to UVB+IL-1. Performing chromatin immunoprecipitation analysis we demonstrate that both transcription factors bind to the TNF promoter, whereas UVB-induced inhibition of Ser-Thr-phosphatase protein phosphatase 2A facilitates prolonged phosphorylation of NF-κB and the transcriptional cofactor cAMP response element–binding protein, both being required for extended TNF transcription. Thus, two major anti-apoptotic factors, NF-κB and mutp53, in concert may generate pro-apoptotic responses. As human skin is constantly exposed to UVB, causing IL-1 production as well, we hypothesize that the remarkable amount of hotspot p53 mutations within the epidermis (4%) may serve a protective function to eliminate precancerous cells at an early stage.
Collapse
|
17
|
Wang Y, Ho TG, Bertinetti D, Neddermann M, Franz E, Mo GCH, Schendowich LP, Sukhu A, Spelts RC, Zhang J, Herberg FW, Kennedy EJ. Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem Biol 2014; 9:635-42. [PMID: 24422448 PMCID: PMC3985448 DOI: 10.1021/cb400900r] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
A-kinase
anchoring proteins (AKAPs) play an important role in the
spatial and temporal regulation of protein kinase A (PKA) by scaffolding
critical intracellular signaling complexes. Here we report the design
of conformationally constrained peptides that disrupt interactions
between PKA and AKAPs in an isoform-selective manner. Peptides derived
from the A Kinase Binding (AKB) domain of several AKAPs were chemically
modified to contain an all-hydrocarbon staple and target the docking/dimerization
domain of PKA-R, thereby occluding AKAP interactions. The peptides
are cell-permeable against diverse human cell lines, are highly isoform-selective
for PKA-RII, and can effectively inhibit interactions between AKAPs
and PKA-RII in intact cells. These peptides can be applied as useful
reagents in cell-based studies to selectively disrupt AKAP-localized
PKA-RII activity and block AKAP signaling complexes. In summary, the
novel hydrocarbon-stapled peptides developed in this study represent
a new class of AKAP disruptors to study compartmentalized RII-regulated
PKA signaling in cells.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | | | - Eugen Franz
- Department
of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | - Gary C. H. Mo
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lewis P. Schendowich
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Avinash Sukhu
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Raybun C. Spelts
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Jin Zhang
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | | | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Castro LRV, Guiot E, Polito M, Paupardin-Tritsch D, Vincent P. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors. Biotechnol J 2014; 9:192-202. [PMID: 24478276 DOI: 10.1002/biot.201300202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/02/2013] [Accepted: 01/08/2014] [Indexed: 11/11/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Liliana R V Castro
- CNRS UMR7102, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR7102, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Martić S, Kraatz HB. Chemical biology toolkit for exploring protein kinase catalyzed phosphorylation reactions. Chem Sci 2013. [DOI: 10.1039/c2sc20846f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Ishimoto T, Mano H, Ozawa T, Mori H. Measuring CREB activation using bioluminescent probes that detect KID-KIX interaction in living cells. Bioconjug Chem 2012; 23:923-32. [PMID: 22506514 DOI: 10.1021/bc200491j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cyclic adenosine monophosphate response element-binding protein (CREB) is a transcription factor that contributes to memory formation. The transcriptional activity of CREB is induced by its phosphorylation at Ser-133 and subsequent interaction with the CREB-binding protein (CBP)/p300. We designed and optimized firefly split luciferase probe proteins that detect the interaction of the kinase-inducible domain (KID) of CREB and the KIX domain of CBP/p300. The increase in the light intensity of the probe proteins results from the phosphorylation of the responsible serine corresponding to Ser-133 of CREB. Because these proteins have a high signal-to-noise ratio and are nontoxic, it has become possible for the first time to carry out long-term measurement of KID-KIX interaction in living cells. Furthermore, we examined the usefulness of the probe proteins for future high-throughput cell-based drug screening and found several herbal extracts that activated CREB.
Collapse
Affiliation(s)
- Tetsuya Ishimoto
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | | | | | | |
Collapse
|
21
|
Sasaki K, Ito A, Yoshida M. Development of live-cell imaging probes for monitoring histone modifications. Bioorg Med Chem 2012; 20:1887-92. [PMID: 22316554 DOI: 10.1016/j.bmc.2012.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 01/25/2023]
Abstract
The combination of histone posttranslational modifications occurring in nucleosomal histones determines the epigenetic code. Histone modifications such as acetylation are dynamically controlled in response to a variety of signals during the cell cycle and differentiation, but they are paradoxically maintained through cell division to impart tissue specific gene expression patterns to progeny. The dynamics of histone modifications in living cells are poorly understood, because of the lack of experimental tools to monitor them in a real-time fashion. Recently, FRET-based imaging probes for histone H4 acetylation have been developed, which enabled monitoring of changes in histone acetylation during the cell cycle and drug treatment. Further development of this type of fluorescent probes for other modifications will make it possible to visualize complicated epigenetic regulation in living cells.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | | | | |
Collapse
|
22
|
Abstract
A neuron is able to seamlessly respond to a number of signals, in a timely and specific manner. This process, of integrating multiple inputs, relays on the orchestration of intracellular events by signaling networks. The inherent complexity of signaling networks has made computational modeling a useful approach to understand their underlying regulatory principles. Recent advances in imaging techniques have highlighted the nonhomogeneous nature of intracellular signaling and its significant contribution to the maintenance of signal specificity. Computational modeling can provide mechanistic insight into the origins of these inhomogeneous distributions of signaling components and their role in the integrative capabilities of the neuron.
Collapse
Affiliation(s)
- Wendy C Wenderski
- Department of Pharmacology and System Therapeutics, Friedman Brain Institute, Systems Biology Center of New York, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
23
|
Zhou X, Herbst-Robinson KJ, Zhang J. Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol 2012; 504:317-40. [PMID: 22264542 PMCID: PMC4384881 DOI: 10.1016/b978-0-12-391857-4.00016-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Living cells respond to various environmental cues and process them into a series of spatially and temporally regulated signaling events, which can be tracked in real time with an expanding repertoire of genetically encodable FRET-based biosensors. A series of these biosensors, designed to track dynamic activities of signaling enzymes such as protein kinases and small GTPases, have yielded invaluable information regarding the spatiotemporal regulation of these enzymes, shedding light on the orchestration of signaling pathways within the native cellular context. In this chapter, we first review the generalizable modular designs of FRET-based biosensors, followed by a detailed discussion about biosensors for reporting protein kinase activities and GTPase activation. Two general designs, uni- and bimolecular reporters, will be discussed with an analysis of their strengths and limitations. Finally, an example of using both uni- and bimolecular kinase activity reporters to visualize PKA activity in living cells will be presented to provide practical tips for using these biosensors to explore specific biological systems.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
24
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|