1
|
Li L, Zhu X, Xu W, Dai M, Liu Z, Li Y, Fang Y, Li J, Chen W. A prospective self-controlled study on the alterations of the ocular surface and conjunctival transcriptomic profile associated with prolonged exposure to video display terminals. Ocul Surf 2025; 36:94-105. [PMID: 39828134 DOI: 10.1016/j.jtos.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE To assess the impact of prolonged and intense exposure to video display terminals (VDTs) on ocular surface homeostasis. METHODS 30 subjects limited daily VDT usage to less than 3 h for one week, then extended usage to more than 8 h/day for the next three weeks. Ocular symptoms and signs were evaluated weekly using the Ocular Surface Disease Index (OSDI) questionnaire and clinical examinations. Eyelid margins and meibomian glands were examined, and ocular surface samples were collected for transcriptomic analysis. RESULTS Average daily VDT time increased from 2.55 ± 0.46 h initially to 11.17 ± 2.45, 11.75 ± 2.63, and 10.89 ± 2.41 h over three weeks. The dry eye diagnosis rate rose from 6.67 % to 51.67 %. Total OSDI score (P = 0.008), symptoms score (P = 0.014), and visual function score (P = 0.002) significantly increased. Mean fluorescein break-up time (FBUT) decreased from 6.46s to 3.08s. Corneal fluorescein staining (CFS) score (P < 0.001) and lissamine green conjunctival staining (LCjs) score (P = 0.036) worsened. Ocular redness index (RI) increased at 1 week and 3 weeks (P = 0.007, P = 0.001). Telangiectasia scores of both upper and lower eyelid margins increased at 3 weeks (P = 0.002, P < 0.001). Meibomian gland orifice blockage worsened (P = 0.014, P = 0.002). Transcriptomic analysis revealed dynamic alterations in ocular surface gene expression, including inflammatory and hormonal responses. MUC5AC and TFF1 genes showed negative correlations with OSDI and conjunctival staining score, respectively. CONCLUSION Prolonged VDT exposure deteriorates ocular surface symptoms and signs, with significant inflammatory responses and hormonal activity indicating an imbalance in ocular surface homeostasis.
Collapse
Affiliation(s)
- Ling Li
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, 315042, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinhao Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weihao Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mali Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zihao Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanxiao Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yiting Fang
- Hangzhou Lin'an Traditional Chinese Medicine Hospital, Hangzhou, 311300, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 32400, Zhejiang Province, China.
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, 315040, China.
| |
Collapse
|
2
|
Bulliard M, Pinjusic K, Iacobucci L, Schmuziger C, Fournier N, Constam DB. Kallikrein-8 mediates furin-independent Activin-A precursor processing to stimulate tumor growth in melanoma. Nat Commun 2025; 16:2354. [PMID: 40064965 PMCID: PMC11893775 DOI: 10.1038/s41467-025-57661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Receptor binding of TGF-β and related ligands such as Activin-A requires cleavage of a furin site in their dimeric precursor proteins. Melanoma cells cleave one Activin-A subunit independently of furin and related proprotein convertases, raising questions of how this half-processed intermediate is generated and whether it influences tumor growth. Here, an siRNA library screen for proteases mediating this furin-independent "hemicleavage" identifies kallikrein (Klk)-8. While a KLK8 cleavage site in proActivin-A overlaps with the furin recognition sequence, its exposure is limited and requires prior transient acidification. Therefore, only furin efficiently converts proActivin-A to fully mature form both in tumor cells and in cell-free cleavage assays. Moreover, knockdown of Klk8 in syngeneic melanoma grafts suppresses Activin-A induced tumor growth, demonstrating that cleavage by only furin is not sufficient. Besides elucidating how Activin-A processing is regulated, our findings show that KLK8 holds promise as a target to mitigate Activin-A induced tumor growth.
Collapse
Affiliation(s)
- Manon Bulliard
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Katarina Pinjusic
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Laura Iacobucci
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Céline Schmuziger
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Nadine Fournier
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
- Translational Data Science (TDS) facility, Agora Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1015, Lausanne, Switzerland
| | - Daniel B Constam
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics (Basel) 2024; 14:1. [PMID: 39858288 PMCID: PMC11762488 DOI: 10.3390/antibiotics14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.
Collapse
Affiliation(s)
- Lenka Dzurová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic; (E.H.); (H.P.); (J.F.)
| | | | | | | | | |
Collapse
|
4
|
Donaghy C, Javellana JG, Hong YJ, Djoko K, Angeles-Boza AM. The Synergy between Zinc and Antimicrobial Peptides: An Insight into Unique Bioinorganic Interactions. Molecules 2023; 28:2156. [PMID: 36903402 PMCID: PMC10004757 DOI: 10.3390/molecules28052156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of innate immunity across all species. AMPs have become the focus of attention in recent years, as scientists are addressing antibiotic resistance, a public health crisis that has reached epidemic proportions. This family of peptides represents a promising alternative to current antibiotics due to their broad-spectrum antimicrobial activity and tendency to avoid resistance development. A subfamily of AMPs interacts with metal ions to potentiate antimicrobial effectiveness, and, as such, they have been termed metalloAMPs. In this work, we review the scientific literature on metalloAMPs that enhance their antimicrobial efficacy when combined with the essential metal ion zinc(II). Beyond the role played by Zn(II) as a cofactor in different systems, it is well-known that this metal ion plays an important role in innate immunity. Here, we classify the different types of synergistic interactions between AMPs and Zn(II) into three distinct classes. By better understanding how each class of metalloAMPs uses Zn(II) to potentiate its activity, researchers can begin to exploit these interactions in the development of new antimicrobial agents and accelerate their use as therapeutics.
Collapse
Affiliation(s)
- Caroline Donaghy
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | - Young-Jin Hong
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Karrera Djoko
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Fleischer MI, Röhrig N, Raker VK, Springer J, Becker D, Ritz S, Bros M, Stege H, Haist M, Grabbe S, Haub J, Becker C, Reyda S, Disse J, Schmidt T, Mahnke K, Weiler H, Ruf W, Steinbrink K. Protease- and cell type-specific activation of protease-activated receptor 2 in cutaneous inflammation. J Thromb Haemost 2022; 20:2823-2836. [PMID: 36161697 DOI: 10.1111/jth.15894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Protease-activated receptor 2 (PAR2) signaling controls skin barrier function and inflammation, but the roles of immune cells and PAR2-activating proteases in cutaneous diseases are poorly understood. OBJECTIVE To dissect PAR2 signaling contributions to skin inflammation with new genetic and pharmacological tools. METHODS/RESULTS We found markedly increased numbers of PAR2+ infiltrating myeloid cells in skin lesions of allergic contact dermatitis (ACD) patients and in the skin of contact hypersensitivity (CHS) in mice, a murine ACD model for T cell-mediated allergic skin inflammation. Cell type-specific deletion of PAR2 in myeloid immune cells as well as mutation-induced complete PAR2 cleavage insensitivity significantly reduced skin inflammation and hapten-specific Tc1/Th1 cell response. Pharmacological approaches identified individual proteases involved in PAR2 cleavage and demonstrated a pivotal role of tissue factor (TF) and coagulation factor Xa (FXa) as upstream activators of PAR2 in both the induction and effector phase of CHS. PAR2 mutant mouse strains with differential cleavage sensitivity for FXa versus skin epithelial cell-expressed proteases furthermore uncovered a time-dependent regulation of CHS development with an important function of FXa-induced PAR2 activation during the late phase of skin inflammation. CONCLUSIONS Myeloid cells and the TF-FXa-PAR2 axis are key mediators and potential therapeutic targets in inflammatory skin diseases.
Collapse
Affiliation(s)
- Maria Isabel Fleischer
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Verena K Raker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Juliane Springer
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Detlef Becker
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Sandra Ritz
- Institute of Molecular Biology Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University of Mainz, Mainz, Germany
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Maximilian Haist
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University of Mainz, Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Christian Becker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Disse
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Talkea Schmidt
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Karsten Mahnke
- Department of Dermatology, University of Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Hartmut Weiler
- Versity Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Center, University of Muenster, Muenster, Germany
| |
Collapse
|
6
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
7
|
Morizane S, Sunagawa K, Nomura H, Ouchida M. Aberrant serine protease activities in atopic dermatitis. J Dermatol Sci 2022; 107:2-7. [PMID: 35817663 DOI: 10.1016/j.jdermsci.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease; the three major factors responsible for AD, i.e., epidermal barrier dysfunction, allergic inflammation, and itching, interact with each other to form a pathological condition. Excessive protease activities are characteristic abnormalities that affect the epidermal barrier in patients with AD. In normal skin, epidermal serine protease activities are controlled by kallikrein-related peptidases (KLKs) and their inhibitors, including lympho-epithelial Kazal-type-related inhibitor (LEKTI). In AD lesions, KLKs are excessively expressed, which results in the enhancement of epidermal serine protease activities and facilitates the invasion by allergens and microorganisms. In addition, some KLKs can activate protease-activated receptor 2 (PAR2) in epidermal keratinocytes and peripheral nerves, resulting in the induction of inflammation and itching. Furthermore, in AD patients with single nucleotide polymorphism (SNP) such as E420K and D386N of SPINK5 which encodes LEKTI, LEKTI function is attenuated, resulting in the activation of KLKs and easy invasion by allergens and microorganisms. Further analysis is needed to elucidate the detailed mechanism underlying the control of serine protease activities, which may lead to the development of new therapeutic and prophylactic agents for AD.
Collapse
Affiliation(s)
- Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | - Ko Sunagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hayato Nomura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Mamoru Ouchida
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
8
|
Sotiropoulou G, Zingkou E, Pampalakis G. Reconstructing the epidermal proteolytic cascades in health and disease. J Pathol 2022; 257:545-560. [PMID: 35218558 DOI: 10.1002/path.5888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
Abstract
The epidermis is the outer stratified epithelium of the skin, forming the physical barrier that is indispensable for homeostasis. Epidermal proteolysis, mainly but not exclusively executed by kallikrein-related peptidases (KLKs), is tightly regulated to ensure maintenance of physiological skin renewal and an intact skin barrier. Perturbation of epidermal proteolytic networks is implicated in a wide array of rare and common skin pathologies of diverse genetic backgrounds. Recent studies of monogenic human skin diseases and newly developed animal models have revealed new mechanisms of regulation of proteolytic pathways in epidermal physiology and in disease states. These new data have challenged some accepted views, for example the role of matriptase in epidermal desquamation, which turned out to be restricted to mouse skin. The significance of PAR2 signaling in skin inflammation should also be reconsidered in the face of recent findings. Cumulatively, recent studies necessitate a sophisticated redefinition of the proteolytic and signaling pathways that operate in human skin. We elaborate how epidermal proteolysis is finely regulated at multiple levels, and in a spatial manner that was not taken into consideration so far, in which specific proteases are confined to distinct epidermal sublayers. Of interest, transglutaminases have emerged as regulators of epidermal proteolysis and desquamation by spatially fixing endogenous protease inhibitors, constituting regulatory factors that were not recognized before. Furthermore, new evidence suggests a link between proteolysis and lipid metabolism. By synthesis of established notions and recent discoveries, we provide an up-to-date critical parathesis of current knowledge and the extended complexity of proteolysis regulation and signaling pathways in skin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece
| | - Georgios Pampalakis
- Department of Pharmacology-Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
| |
Collapse
|
9
|
Rasmont V, Valois A, Gueniche A, Sore G, Kerob D, Nielsen M, Berardesca E. Vichy volcanic mineralizing water has unique properties to strengthen the skin barrier and skin defenses against exposome aggressions. J Eur Acad Dermatol Venereol 2022; 36 Suppl 2:5-15. [PMID: 34979589 DOI: 10.1111/jdv.17784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
Exposome aggressions are known to weaken certain skin functions, such as skin barrier and skin defense functions. Vichy volcanic mineralizing water (VVMW) percolates through volcanic and magmatic rocks in the Auvergne region in France to create a pure, highly mineralized water containing 15 minerals for a total mineral concentration of 5.2 g/L. Here, we provide an overview of the main results of in vitro and ex vivo studies (keratinocyte cultures, 3D reconstructed skin model, skin explants) and clinical studies to evaluate the effect of VVMW on key skin functions to help elucidate how it counteracts exposome aggressions on the skin. Properties to strengthen the skin barrier: VVMW stimulated the synthesis of tight junction proteins and keratinocyte differentiation markers in vitro. In clinical studies, VVMW accelerated cell turnover and improved skin hydration. Properties to strengthen skin antioxidant defense: VVMW stimulated the expression of antioxidant defense markers and had a higher stimulatory effect than a competitor thermal water on the expression of superoxide dismutase, catalase, and glutathione peroxidase in keratinocytes in vitro. In vivo, VVMW restored endogenous catalase activity after exposure to UVA radiation. Anti-inflammatory action: VVMW reduced substance P-induced inflammation ex vivo and lactic acid-induced stinging in vivo. Topical application of VVMW in subjects with sensitive skin showed soothing and decongestant effects by reducing skin dryness and erythema. After sodium lauryl sulfate -induced skin barrier disruption, recovery from redness and erythema was faster following application of VVMW compared to a competitor water or untreated skin. These studies illustrate that VVMW has unique properties to repair and regenerate the skin barrier, as well as to strengthen antioxidant and immune defenses, which help protect the skin against exposome aggressions.
Collapse
Affiliation(s)
- V Rasmont
- Laboratoires Vichy, Levallois Perret, France
| | - A Valois
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - A Gueniche
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - G Sore
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - D Kerob
- Laboratoires Vichy, Levallois Perret, France
| | - M Nielsen
- Laboratoires Vichy, Levallois Perret, France
| | - E Berardesca
- Phillip Frost Department of Dermatology, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Hua Q, Sun Z, Liu Y, Shen X, Zhao W, Zhu X, Xu P. KLK8 promotes the proliferation and metastasis of colorectal cancer via the activation of EMT associated with PAR1. Cell Death Dis 2021; 12:860. [PMID: 34552064 PMCID: PMC8458432 DOI: 10.1038/s41419-021-04149-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Kallikrein-related peptidase 8 (KLK8) acts as an oncogene or anti-oncogene in various tumours, and the abnormal expression of KLK8 is involved in the carcinogenesis of several tumours. However, the role of KLK8 in colorectal cancer (CRC) and the underlying mechanism remain largely unclear. In this study, the carcinogenic effect of KLK8 was determined via CCK-8 and colony formation assays in vitro and a xenograft model in nude mice in vivo. The metastasis-promoting effect of KLK8 was investigated with transwell migration and invasion assays and wound-healing assay in vitro and a metastasis model in nude mice in vivo. Bioinformatics analyses and mechanistic experiments were conducted to elucidate the molecular mechanism. Herein, we reported that KLK8 had a promotive effect on the proliferation, migration and invasion of RKO and SW480 cells. Epithelial-mesenchymal transition (EMT) played an important role in the promotive effects of KLK8 on CRC. In addition, protease-activated receptor-1 (PAR-1) antagonist SCH79797 but not protease-activated receptor-2 (PAR-2) antagonist FSLLRY-NH2 attenuated the proliferation, migration and invasion of KLK8-upregulated RKO and SW480 cells. PAR-1 antagonist SCH79797 reduced the tumour volume of xenograft model and decreased the metastatic nodules in the livers of metastasis model. Furthermore, SCH79797 could reverse the positive impact of KLK8 on the EMT process in CRC both in vitro and in vivo. Taken together, these findings demonstrated for the first time that KLK8 promoted EMT and CRC progression, and this effect might be, at least partly mediated by PAR1-dependent pathway.
Collapse
Affiliation(s)
- Qing Hua
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhirong Sun
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
| | - Yi Liu
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
| | - Xuefang Shen
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, 200433, Shanghai, China.
| | - Pingbo Xu
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, 200032, Shanghai, China.
| |
Collapse
|
11
|
Hua Q, Li T, Liu Y, Shen X, Zhu X, Xu P. Upregulation of KLK8 Predicts Poor Prognosis in Pancreatic Cancer. Front Oncol 2021; 11:624837. [PMID: 34395235 PMCID: PMC8362328 DOI: 10.3389/fonc.2021.624837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a growing cause of cancer-related mortality worldwide. Kallikrein-related peptidase 8 (KLK8) has potential clinical values in many cancers. However, the clinicopathological significances of KLK8 in PDAC remain unknown. We explored the relationship of KLK8 to clinicopathological features of PDAC based on public databases. KLK8 expression was examined in human PDAC tissues. Cell proliferation and apoptosis were evaluated in KLK8-overexpressed human pancreatic cancer cell lines Mia-paca-2 and Panc-1. The related signaling pathways of KLK8 involved in pancreatic cancer progression were analyzed by gene set enrichment analysis (GSEA) and further verified in in vitro studies. We found that KLK8 was up-regulated in tumor tissues in the TCGA-PAAD cohort, and was an independent prognostic factor for both overall survival and disease-free survival of PDAC. KLK8 mRNA and protein expressions were increased in PDAC tissues compared with para-cancerous pancreas. KLK8 overexpression exerted pro-proliferation and anti-apoptotic functions in Mia-paca-2 and Panc-1 cells. GSEA analysis showed that KLK8 was positively associated with PI3K-Akt-mTOR and Notch pathways. KLK8-induced pro-proliferation and anti-apoptotic effects in Mia-paca-2 and Panc-1 cells were attenuated by inhibitors for PI3K, Akt, and mTOR, but not by inhibitor for Notch. Furthermore, overexpression of KLK8 in Mia-paca-2 and Panc-1 cells significantly increased epidermal growth factor (EGF) levels in the culture media. EGF receptor (EGFR) inhibitor could block KLK8-induced activation of PI3K/Akt/mTOR pathway and attenuate pro-proliferation and anti-apoptotic of KLK8 in Mia-paca-2 and Panc-1 cells. In conclusion, KLK8 overexpression exerts pro-proliferation and anti-apoptotic functions in pancreatic cancer cells via EGF signaling-dependent activation of PI3K/Akt/mTOR pathway. Upregulated KLK8 in PDAC predicts poor prognosis and may be a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Qing Hua
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianjiao Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Fudan University Shanghai, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yixuan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Clinical Laboratory, Shanghai Cancer Centre, Fudan University, Shanghai, China
| | - Xuefang Shen
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Pingbo Xu
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
13
|
Feoktistova M, Makarov R, Leverkus M, Yazdi AS, Panayotova-Dimitrova D. TNF Is Partially Required for Cell-Death-Triggered Skin Inflammation upon Acute Loss of cFLIP. Int J Mol Sci 2020; 21:ijms21228859. [PMID: 33238518 PMCID: PMC7700656 DOI: 10.3390/ijms21228859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
cFLIP is required for epidermal integrity and skin inflammation silencing via protection from TNF-induced keratinocyte apoptosis. Here, we generated and analyzed cFLIP epidermal KO mice with additional TNF deficiency. Intriguingly, the ablation of TNF rescued the pathological phenotype of epidermal cFLIP KO from characteristic weight loss and increased mortality. Moreover, the lack of TNF in these animals strongly reduced and delayed the epidermal hyperkeratosis and the increased apoptosis in keratinocytes. Our data demonstrate that TNF signaling in cFLIP-deficient keratinocytes is the critical factor for the regulation of skin inflammation via modulated cytokine and chemokine expression and, thus, the attraction of immune cells. Our data suggest that autocrine TNF loop activation upon cFLIP deletion is dispensable for T cells, but is critical for neutrophil attraction. Our findings provide evidence for a negative regulatory role of cFLIP for TNF-dependent apoptosis and partially for epidermal inflammation. However, alternative signaling pathways may contribute to the development of the dramatic skin disease upon cFLIP deletion. Our data warrant future studies of the regulatory mechanism controlling the development of skin disease upon cFLIP deficiency and the role of cFLIP/TNF in a number of inflammatory skin diseases, including toxic epidermal necrolysis (TEN).
Collapse
|
14
|
EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis 2020; 11:826. [PMID: 33011750 PMCID: PMC7532974 DOI: 10.1038/s41419-020-03028-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Psoriasis is characterized by keratinocyte hyperproliferation. While significant progress has been made in understanding the molecular mechanism regulating the proliferation of keratinocytes, little is known about the epigenetic factors that control this process. EZH2 and EZH2 mediated trimethylation of histone H3 lysine 27 (H3K27me3) was previously shown ectopically expressed in carcinoma and mediated proliferation, thereby we sought to clarify the role of EZH2–H3K27me3 in the proliferation of psoriatic keratinocyte. Interestingly, we found that EZH2 and H3K27me3 were both overexpressed in the epidermis of psoriatic lesional skin compared to normal skin. In vitro, the expression of EZH2 and H3K27me3 was stimulated in human keratinocytes treated with mixture of psoriasis-related cytokines pool (TNF-α, IFN-γ, IL-17A, and IL-22). Knockdown of EZH2 significantly reduced keratinocyte proliferative activity. Results from mRNA microarray analysis suggested that Kallikrein-8 (KLK8) might be the target gene of EZH2 in psoriatic keratinocytes. Overexpression or knockdown KLK8 could partially reverse the abnormal proliferation of keratinocytes caused by knockdown or overexpression of EZH2. In vivo, the inhibitor of EZH2, GSK126 could ameliorate the imiquimod-induced psoriasiform lesion. These results suggest that EZH2 might be a therapeutic target for the treatment of psoriasis.
Collapse
|
15
|
Di Paolo CT, Diamandis EP, Prassas I. The role of kallikreins in inflammatory skin disorders and their potential as therapeutic targets. Crit Rev Clin Lab Sci 2020; 58:1-16. [PMID: 32568598 DOI: 10.1080/10408363.2020.1775171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is a vital organ of the human body, serving numerous protective and functional roles that are essential for survival. Residing in the epidermis are various epidermal proteases responsible for the establishment and regulation of barrier function. The human tissue kallikrein-related peptidase family conserves homeostasis of the skin barrier through their roles in desquamation, antimicrobial defense, innate immune response, and barrier maintenance. The activity of kallikreins is tightly regulated and dysregulation of kallikrein activity is seen to contribute to the formation of several inflammatory skin disorders. This review highlights the roles of kallikreins in skin homeostasis and pathologies. Due to their part in these skin disorders, inhibitors of the skin kallikreins have become attractive therapeutics. Over the past few years, both natural and synthetic inhibitors of several kallikreins have been identified and are undergoing further development as treatments to restore compromised barrier function. This review summarizes the kallikrein inhibitors under development for this purpose. These inhibitors remain promising therapeutics in cases of severe skin inflammation not well managed by current therapies.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
16
|
Chung C, Silwal P, Kim I, Modlin RL, Jo EK. Vitamin D-Cathelicidin Axis: at the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Netw 2020; 20:e12. [PMID: 32395364 PMCID: PMC7192829 DOI: 10.4110/in.2020.20.e12] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D signaling plays an essential role in innate defense against intracellular microorganisms via the generation of the antimicrobial protein cathelicidin. In addition to directly binding to and killing a range of pathogens, cathelicidin acts as a secondary messenger driving vitamin D-mediated inflammation during infection. Recent studies have elucidated the biological and clinical functions of cathelicidin in the context of vitamin D signaling. The vitamin D-cathelicidin axis is involved in the activation of autophagy, which enhances antimicrobial effects against diverse pathogens. Vitamin D studies have also revealed positive and negative regulatory effects of cathelicidin on inflammatory responses to pathogenic stimuli. Diverse innate and adaptive immune signals crosstalk with functional vitamin D receptor signals to enhance the role of cathelicidin action in cell-autonomous effector systems. In this review, we discuss recent findings that demonstrate how the vitamin D-cathelicidin pathway regulates autophagy machinery, protective immune defenses, and inflammation, and contributes to immune cooperation between innate and adaptive immunity. Understanding how the vitamin D-cathelicidin axis operates in the host response to infection will create opportunities for the development of new therapeutic approaches against a variety of infectious diseases.
Collapse
Affiliation(s)
- Chaeuk Chung
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Insoo Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
17
|
Katoh N, Ohya Y, Ikeda M, Ebihara T, Katayama I, Saeki H, Shimojo N, Tanaka A, Nakahara T, Nagao M, Hide M, Fujita Y, Fujisawa T, Futamura M, Masuda K, Murota H, Yamamoto-Hanada K. Clinical practice guidelines for the management of atopic dermatitis 2018. J Dermatol 2019; 46:1053-1101. [PMID: 31599013 DOI: 10.1111/1346-8138.15090] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a disease characterized by relapsing eczema with pruritus as a primary lesion. The current strategies to treat AD in Japan from the perspective of evidence-based medicine consist of three primary measures: (i) the use of topical corticosteroids and tacrolimus ointment as the main treatment for the inflammation; (ii) topical application of emollients to treat the cutaneous barrier dysfunction; and (iii) avoidance of apparent exacerbating factors, psychological counseling and advice about daily life. The guidelines present recommendations to review clinical research articles, evaluate the balance between the advantages and disadvantages of medical activities, and optimize medical activity-related patient outcomes with respect to several important points requiring decision-making in clinical practice.
Collapse
Affiliation(s)
- Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masanori Ikeda
- Department of Pediatric Acute Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmacuetical Sciences, Okayama, Japan
| | - Tamotsu Ebihara
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ichiro Katayama
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Graduate School of Medicine, Nihon Medical School, Tokyo, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of medicine, Chiba University, Chiba, Japan
| | - Akio Tanaka
- Department of Dermatology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Takeshi Nakahara
- Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mizuho Nagao
- Division of, Clinical Research, National Hospital Organization Mie National Hospital, Tsu, Japan
| | - Michihiro Hide
- Department of Dermatology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yuji Fujita
- Department of Pediatrics, Graduate School of medicine, Chiba University, Chiba, Japan
| | - Takao Fujisawa
- Division of, Allergy, National Hospital Organization Mie National Hospital, Tsu, Japan
| | - Masaki Futamura
- Division of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koji Masuda
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
18
|
Nauroy P, Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol Plus 2019; 6-7:100019. [PMID: 33543017 PMCID: PMC7852331 DOI: 10.1016/j.mbplus.2019.100019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies. Regulation of the microenvironment even in an extracellular matrix-poor tissue can heavily impact organ function. Extracellular activities of kallikreins maintain skin homeostasis by regulating desquamation and inflammation. The activation of skin epidermal-specific kallikrein family of proteases is regulated by an intricate proteolytic cascade. Kallikreins are emerging as players during skin wound healing. Dysregulated kallikrein expression and activity occur in cancers and inflammatory skin diseases.
Collapse
Key Words
- AD, atopic dermatitis
- CDSN, corneodesmosin
- DSC1, desmocollin 1
- DSG1, desmoglein 1
- Diseases
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- Epidermal microenvironment
- Epidermis
- Inflammation
- KLKs, kallikreins
- Kallikrein
- LEKTI, lympho-epithelial Kazal-type inhibitor
- NS, Netherton syndrome
- PAR1/2, protease activated-receptor 1/2
- SCC, squamous cell carcinoma
- Wound healing
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Pauline Nauroy
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Huang M, Du J, Wang Y, Ma S, Hu T, Shang J, Yu Q, Zhu X, Zhang G, Cong B. Tissue kallikrein-related peptidase8 protects rat heart against acute ischemia reperfusion injury. Int J Biol Macromol 2019; 140:1126-1133. [PMID: 31449861 DOI: 10.1016/j.ijbiomac.2019.08.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
Abstract
Tissue kallikrein-related peptidases (KLKs) play important roles in acute cardiac injury and cardiac remodeling. However, the exact cardiac actions of KLK8 have not been determined. Transgenic rat overexpressing KLK8 was established to examine the role of KLK8 in the heart. Cardiac injury was induced by ischemia/reperfusion (I/R) and examined by infarct size measurement and TUNEL staining. The molecular mechanisms were investigated in cultured neonatal rat cardiomyocytes (CMs). Western blot analysis was used to determine the protein levels. KLK8 protein level was significantly increased in the cardiac ischemic risk area. KLK8 overexpression mitigated I/R-induced cardiac injury, as evidenced by decreased infarct size and apoptosis in cardiac ischemic risk area in vivo. Via in vitro studies, it was found that KLK8 overexpression attenuated the Hypoxia/Reoxygenation (H/R) injury in CMs; both B2R and PAR2 antagonist significantly attenuated KLK8-induced protective actions under H/R injury. Moreover, KLK8 overexpressed CMs showed significant higher phosphorylation levels of Akt, ERK1/2 and PKA under H/R stimulation; B2R antagonist attenuated the phosphorylation levels of Akt and ERK1/2, while PAR2 antagonist attenuated the phosphorylation levels of PKA and ERK1/2. KLK8 protects the heart against I/R-induced cardiac injury, which may represent a new therapeutic target in cardiac medicine.
Collapse
Affiliation(s)
- Meineng Huang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Jiankui Du
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Yifei Wang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Shiyu Ma
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Ting Hu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Jing Shang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Qing Yu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Guanxin Zhang
- Department of Cardiothoracic Surgery, Changhai Hospital, Shanghai 200433, China.
| | - Binhai Cong
- Department of Physiology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
20
|
Kishibe M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. J Dermatol Sci 2019; 95:50-55. [DOI: 10.1016/j.jdermsci.2019.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
|
21
|
Raza S, Ranaghan KE, van der Kamp MW, Woods CJ, Mulholland AJ, Azam SS. Visualizing protein-ligand binding with chemical energy-wise decomposition (CHEWD): application to ligand binding in the kallikrein-8 S1 Site. J Comput Aided Mol Des 2019; 33:461-475. [PMID: 30989572 DOI: 10.1007/s10822-019-00200-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Kallikrein-8, a serine protease, is a target for structure-based drug design due to its therapeutic potential in treating Alzheimer's disease and is also useful as a biomarker in ovarian cancer. We present a binding assessment of ligands to kallikrein-8 using a residue-wise decomposition of the binding energy. Binding of four putative inhibitors of kallikrein-8 is investigated through molecular dynamics simulation and ligand binding energy evaluation with two methods (MM/PBSA and WaterSwap). For visualization of the residue-wise decomposition of binding energies, chemical energy-wise decomposition or CHEWD is introduced as a plugin to UCSF Chimera and Pymol. CHEWD allows easy comparison between ligands using individual residue contributions to the binding energy. Molecular dynamics simulations indicate one ligand binds stably to the kallikrein-8 S1 binding site. Comparison with other members of the kallikrein family shows that residues responsible for binding are specific to kallikrein-8. Thus, ZINC02927490 is a promising lead for development of novel kallikrein-8 inhibitors.
Collapse
Affiliation(s)
- Saad Raza
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Christopher J Woods
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan.
| |
Collapse
|
22
|
Kang SD, Chatterjee S, Alam S, Salzberg AC, Milici J, van der Burg SH, Meyers C. Effect of Productive Human Papillomavirus 16 Infection on Global Gene Expression in Cervical Epithelium. J Virol 2018; 92:e01261-18. [PMID: 30045992 PMCID: PMC6158420 DOI: 10.1128/jvi.01261-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022] Open
Abstract
Human papillomavirus (HPV) infection is the world's most common sexually transmitted infection and is responsible for most cases of cervical cancer. Previous studies of global gene expression changes induced by HPV infection have focused on the cancerous stages of infection, and therefore, not much is known about global gene expression changes at early preneoplastic stages of infection. We show for the first time the global gene expression changes during early-stage HPV16 infection in cervical tissue using 3-dimensional organotypic raft cultures, which produce high levels of progeny virions. cDNA microarray analysis showed that a total of 594 genes were upregulated and 651 genes were downregulated at least 1.5-fold with HPV16 infection. Gene ontology analysis showed that biological processes including cell cycle progression and DNA metabolism were upregulated, while skin development, immune response, and cell death were downregulated with HPV16 infection in cervical keratinocytes. Individual genes were selected for validation at the transcriptional and translational levels, including UBC, which was central to the protein association network of immune response genes, and top downregulated genes RPTN, SERPINB4, KRT23, and KLK8 In particular, KLK8 and SERPINB4 were shown to be upregulated in cancer, which contrasts with the gene regulation during the productive replication stage. Organotypic raft cultures, which allow full progression of the HPV life cycle, allowed us to identify novel gene modulations and potential therapeutic targets of early-stage HPV infection in cervical tissue. Additionally, our results suggest that early-stage productive infection and cancerous stages of infection are distinct disease states expressing different host transcriptomes.IMPORTANCE Persistent HPV infection is responsible for most cases of cervical cancer. The transition from precancerous to cancerous stages of HPV infection is marked by a significant reduction in virus production. Most global gene expression studies of HPV infection have focused on the cancerous stages. Therefore, little is known about global gene expression changes at precancerous stages. For the first time, we measured global gene expression changes at the precancerous stages of HPV16 infection in human cervical tissue producing high levels of virus. We identified a group of genes that are typically overexpressed in cancerous stages to be significantly downregulated at the precancerous stage. Moreover, we identified significantly modulated genes that have not yet been studied in the context of HPV infection. Studying the role of these genes in HPV infection will help us understand what drives the transition from precancerous to cancerous stages and may lead to the development of new therapeutic targets.
Collapse
Affiliation(s)
- Sa Do Kang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sreejata Chatterjee
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Samina Alam
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Anna C Salzberg
- Bioinformatics Core, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Janice Milici
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Craig Meyers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
23
|
De Vita E, Schüler P, Lovell S, Lohbeck J, Kullmann S, Rabinovich E, Sananes A, Heßling B, Hamon V, Papo N, Hess J, Tate EW, Gunkel N, Miller AK. Depsipeptides Featuring a Neutral P1 Are Potent Inhibitors of Kallikrein-Related Peptidase 6 with On-Target Cellular Activity. J Med Chem 2018; 61:8859-8874. [DOI: 10.1021/acs.jmedchem.8b01106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elena De Vita
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Biosciences Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Peter Schüler
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Scott Lovell
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Jasmin Lohbeck
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sven Kullmann
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Eitan Rabinovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amiram Sananes
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bernd Heßling
- Center for Molecular Biology, University of Heidelberg, Heidelberg 69120, Germany
| | - Veronique Hamon
- European Screening Centre, Biocity Scotland, University of Dundee, Newhouse ML1 5UH, U.K
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Nikolas Gunkel
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Aubry K. Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| |
Collapse
|
24
|
Tacheau C, Weisgerber F, Fagot D, Bastien P, Verdier MP, Liboutet M, Sore G, Bernard BA. Vichy Thermal Spring Water (VTSW), a cosmetic ingredient of potential interest in the frame of skin ageing exposome: anin vitrostudy. Int J Cosmet Sci 2018; 40:377-387. [DOI: 10.1111/ics.12470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - D. Fagot
- L'Oréal R&I; Aulnay-sous-Bois; France
| | | | | | | | | | | |
Collapse
|
25
|
Filippou PS, Ren AH, Bala S, Papaioannou MD, Brinc D, Prassas I, Karakosta T, Diamandis EP. Biochemical characterization of human tissue kallikrein 15 and examination of its potential role in cancer. Clin Biochem 2018; 58:108-115. [PMID: 29928903 DOI: 10.1016/j.clinbiochem.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Human tissue kallikrein 15 (KLK15) is the last cloned member of the KLK-related gene family. Despite being implicated in multiple cancers, its pathophysiological role remains unknown. We aimed to biochemically characterize KLK15 and preliminarily study its role in cancer. DESIGN & METHODS Recombinant KLK15 protein was produced, purified to homogeneity and quantified by mass spectrometry (parallel reaction monitoring analysis). We profiled the enzymatic activity of KLK15 using fluorogenic peptide substrates, and performed kinetic analysis to discover the cleavage sites. As KLK15 has mainly been associated with prostate cancer, we used a degradomic approach and subsequent KEGG pathway analysis to identify a number of putative protein substrates in the KLK15-treated prostate cancer cell line PC3. RESULTS We discovered trypsin-like activity in KLK15, finding that it cleaves preferentially after arginine (R). The enzymatic activity of KLK15 was regulated by different factors such as pH, cations and serine protease inhibitors. Notably, we revealed that KLK15 most likely interacts with the extracellular matrix (ECM) receptor group. CONCLUSION To our knowledge, this is the first study that experimentally verifies the trypsin-like activity of KLK15. We show here for the first time that KLK15 may be able to cleave many ECM components, similar to several members of the KLK family. Thus the protease could potentially be linked to tumorigenesis by promoting metastasis via this mechanism.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Sudarshan Bala
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Davor Brinc
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Theano Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
26
|
The Human Cathelicidin Antimicrobial Peptide LL-37 Promotes the Growth of the Pulmonary Pathogen Aspergillus fumigatus. Infect Immun 2018; 86:IAI.00097-18. [PMID: 29712727 DOI: 10.1128/iai.00097-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
The pulmonary mucus of cystic fibrosis (CF) patients displays elevated levels of the cathelicidin antimicrobial peptide LL-37, and the aim of this work was to assess the effect of LL-37 on the growth of Aspergillus fumigatus, a common pathogen of CF patients. Exposure of A. fumigatus to LL-37 and its derived fragment RK-31 (1.95 μg/ml) for 24 h had a positive effect on growth (199.94% ± 6.172% [P < 0.05] and 218.20% ± 4.63% [P < 0.05], respectively), whereas scrambled LL-37 peptide did not (85.12% ± 2.92%). Exposure of mycelium (preformed for 24 h) to 5 μg/ml intact LL-37 for 48 h increased hyphal wet weight (4.37 ± 0.23 g, P < 0.001) compared to the control (2.67 ± 0.05 g) and scrambled LL-37 (2.23 ± 0.09 g) treatments. Gliotoxin secretion from LL-37 exposed hyphae (169.1 ± 6.36 ng/mg hyphae, P < 0.05) was increased at 24 h compared to the results seen with the control treatment (102 ± 18.81 ng/mg hyphae) and the scrambled LL-37 treatment (96.09 ± 15.15 ng/mg hyphae). Shotgun proteomic analysis of 24-h LL-37-treated hyphae revealed an increase in the abundance of proteins associated with growth (eukaryotic translation initiation factor 5A [eIF-5A] [16.3-fold increased]), tissue degradation (aspartic endopeptidase [4.7-fold increased]), and allergic reactions (Asp F13 [10-fold increased]). By 48 h, there was an increase in protein levels indicative of cellular stress (glutathione peroxidase [9-fold increased]), growth (eIF-5A [6-fold increased]), and virulence (RNase mitogillin [3.7-fold increased]). These results indicate that LL-37 stimulates A. fumigatus growth and that this stimulation can result in increased fungal growth and secretion of toxins in the lungs of CF patients.
Collapse
|
27
|
Hecker N, Sharma V, Hiller M. Transition to an Aquatic Habitat Permitted the Repeated Loss of the Pleiotropic KLK8 Gene in Mammals. Genome Biol Evol 2018; 9:3179-3188. [PMID: 29145610 PMCID: PMC5716171 DOI: 10.1093/gbe/evx239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 01/15/2023] Open
Abstract
Kallikrein related peptidase 8 (KLK8; also called neuropsin) is a serine protease that plays distinct roles in the skin and hippocampus. In the skin, KLK8 influences keratinocyte proliferation and desquamation, and activates antimicrobial peptides in sweat. In the hippocampus, KLK8 affects memory acquisition. Here, we examined the evolution of KLK8 in mammals and discovered that, out of 70 placental mammals, KLK8 is exclusively lost in three independent fully-aquatic lineages, comprising dolphin, killer whale, minke whale, and manatee. In addition, while the sperm whale has an intact KLK8 reading frame, the gene evolves neutrally in this species. We suggest that the distinct functions of KLK8 likely became obsolete in the aquatic environment, leading to the subsequent loss of KLK8 in several fully-aquatic mammalian lineages. First, the cetacean and manatee skin lacks sweat glands as an adaptation to the aquatic environment, which likely made the epidermal function of KLK8 obsolete. Second, cetaceans and manatees exhibit a proportionally small hippocampus, which may have rendered the hippocampal functions of KLK8 obsolete. Together, our results shed light on the genomic changes that correlate with skin and neuroanatomical differences of aquatic mammals, and show that even pleiotropic genes can be lost during evolution if an environmental change nullifies the need for the different functions of such genes.
Collapse
Affiliation(s)
- Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
28
|
Melero JL, Andrades S, Arola L, Romeu A. Deciphering psoriasis. A bioinformatic approach. J Dermatol Sci 2017; 89:120-126. [PMID: 29239787 DOI: 10.1016/j.jdermsci.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psoriasis is an immune-mediated, inflammatory and hyperproliferative disease of the skin and joints. The cause of psoriasis is still unknown. The fundamental feature of the disease is the hyperproliferation of keratinocytes and the recruitment of cells from the immune system in the region of the affected skin, which leads to deregulation of many well-known gene expressions. OBJECTIVE Based on data mining and bioinformatic scripting, here we show a new dimension of the effect of psoriasis at the genomic level. METHODS Using our own pipeline of scripts in Perl and MySql and based on the freely available NCBI Gene Expression Omnibus (GEO) database: DataSet Record GDS4602 (Series GSE13355), we explore the extent of the effect of psoriasis on gene expression in the affected tissue. RESULTS We give greater insight into the effects of psoriasis on the up-regulation of some genes in the cell cycle (CCNB1, CCNA2, CCNE2, CDK1) or the dynamin system (GBPs, MXs, MFN1), as well as the down-regulation of typical antioxidant genes (catalase, CAT; superoxide dismutases, SOD1-3; and glutathione reductase, GSR). We also provide a complete list of the human genes and how they respond in a state of psoriasis. CONCLUSION Our results show that psoriasis affects all chromosomes and many biological functions. If we further consider the stable and mitotically inheritable character of the psoriasis phenotype, and the influence of environmental factors, then it seems that psoriasis has an epigenetic origin. This fit well with the strong hereditary character of the disease as well as its complex genetic background.
Collapse
Affiliation(s)
- Juan L Melero
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Sergi Andrades
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Lluís Arola
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Antoni Romeu
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain.
| |
Collapse
|
29
|
Fischer J, Meyer-Hoffert U. Regulation of kallikrein-related peptidases in the skin – from physiology to diseases to therapeutic options. Thromb Haemost 2017; 110:442-9. [DOI: 10.1160/th12-11-0836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/25/2013] [Indexed: 12/21/2022]
Abstract
SummaryKallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases, which show a tissue-specific expression profile. This made them valuable tumour expression markers. It became evident that KLKs are involved in many physiological processes like semen liquefaction and skin desquamation. More recently, we have learnt that they are involved in many pathophysiological conditions and diseases making them promising target of therapeutic intervention. Therefore, regulation of KLKs raised the interest of numerous reports. Herein, we summarise the current knowledge on KLKs regulation with an emphasis on skin-relevant KLKs regulation processes. Regulation of KLKs takes place on the level of transcription, on protease activation and on protease inactivation. A variety of protease inhibitors has been described to interact with KLKs including the irreversible serine protease inhibitors (SERPINs) and the reversible serine protease inhibitors of Kazal-type (SPINKs). In an attempt to integrate current knowledge, we propose that KLK regulation has credentials as targets for therapeutic intervention.
Collapse
|
30
|
Biochemical and functional characterization of the human tissue kallikrein 9. Biochem J 2017; 474:2417-2433. [DOI: 10.1042/bcj20170174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
Human tissue kallikrein 9 (KLK9) is a member of the kallikrein-related family of proteases. Despite its known expression profile, much less is known about the functional roles of this protease and its implications in normal physiology and disease. We present here the first data on the biochemical characterization of KLK9, investigate parameters that affect its enzymatic activity (such as inhibitors) and provide preliminary insights into its putative substrates. We show that mature KLK9 is a glycosylated chymotrypsin-like enzyme with strong preference for tyrosine over phenylalanine at the P1 cleavage position. The enzyme activity is enhanced by Mg2+ and Ca2+, but is reversibly attenuated by Zn2+. KLK9 is inhibited in vitro by many naturally occurring or synthetic protease inhibitors. Using a combination of degradomic and substrate specificity assays, we identified candidate KLK9 substrates in two different epithelial cell lines [the non-tumorigenic human keratinocyte cells (HaCaT) and the tumorigenic tongue squamous carcinoma cells (SCC9)]. Two potential KLK9 substrates [KLK10 and midkine (MDK)] were subjected to further validation. Taken together, our data delineate some functional and biochemical properties of KLK9 for future elucidation of the role of this enzyme in health and disease.
Collapse
|
31
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|
32
|
Yu Y, Prassas I, Muytjens CM, Diamandis EP. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J Proteomics 2017; 155:40-48. [DOI: 10.1016/j.jprot.2017.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
33
|
Kur-Piotrowska A, Kopcewicz M, Kozak LP, Sachadyn P, Grabowska A, Gawronska-Kozak B. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing. BMC Genomics 2017; 18:56. [PMID: 28068897 PMCID: PMC5223329 DOI: 10.1186/s12864-016-3401-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Results Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. Conclusions In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny among mammals. The resemblance of gene expression profiles in the skin of both nude and E14 mice are direct or indirect consequences of the Foxn1 deficiency. Foxn1 appears to regulate the balance between cell proliferation and differentiation and its inactivity creates a pro-regenerative environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3401-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Pawel Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Anna Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
34
|
de Veer SJ, Swedberg JE, Brattsand M, Clements JA, Harris JM. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors. Biol Chem 2016; 397:1237-1249. [DOI: 10.1515/hsz-2016-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Abstract
Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2′ led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.
Collapse
|
35
|
Murakami M, Kameda K, Tsumoto H, Tsuda T, Masuda K, Utsunomiya R, Mori H, Miura Y, Sayama K. TLN-58, an Additional hCAP18 Processing Form, Found in the Lesion Vesicle of Palmoplantar Pustulosis in the Skin. J Invest Dermatol 2016; 137:322-331. [PMID: 27771329 DOI: 10.1016/j.jid.2016.07.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/27/2016] [Accepted: 07/20/2016] [Indexed: 10/20/2022]
Abstract
We previously reported that the early vesicle of the palmoplantar pustulosis (PPP) vesicle originated from eccrine sweat in the acrosyringium and that the PPP vesicle contains the antimicrobial peptide human cathelicidin-18/LL-37. The concentration of LL-37 was sufficient to induce the subsequent inflammation in lesions and human keratinocytes, and the PPP vesicles contained additional small fragments of human cathelicidin-18, of approximately 7 kDa, which have not been identified. The aim of the present study was to clarify the additional processed forms found in PPP vesicles and their physiological effects on normal keratinocytes and sweat gland cells. Lesional PPP vesicles were collected from PPP patients, and endogenous human cathelicidin-18/LL-37 was depleted using a LL-37 antibody affinity column. A designed recombinant human cathelicidin-18 peptide was prepared and incubated with the depleted PPP vesicle fluid to confirm the additional processed form. In-gel digestion analysis and protein sequencing confirmed the additional form as TLN-58. TLN-58 up-regulated IL-17C, IL-8, IL-23, IL-1α, and IL-1β mRNA and protein expression in normal human keratinocytes and also showed antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, and group A Streptococcus species, similar to LL-37. This additional form could be involved in the continued inflammation in PPP lesions.
Collapse
Affiliation(s)
- Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Kenji Kameda
- Advanced Research Support Center, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroki Tsumoto
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kana Masuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryo Utsunomiya
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuri Miura
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
36
|
de Veer SJ, Furio L, Swedberg JE, Munro CA, Brattsand M, Clements JA, Hovnanian A, Harris JM. Selective Substrates and Inhibitors for Kallikrein-Related Peptidase 7 (KLK7) Shed Light on KLK Proteolytic Activity in the Stratum Corneum. J Invest Dermatol 2016; 137:430-439. [PMID: 27697464 DOI: 10.1016/j.jid.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023]
Abstract
Proteases have pivotal roles in the skin's outermost layer, the epidermis. In the stratum corneum, serine proteases from the kallikrein-related peptidase (KLK) family have been implicated in several key homeostatic processes, including desquamation. However, the precise contribution of specific KLKs to each process remains unclear. To address this, we used a chemical biology approach and designed selective substrates and inhibitors for KLK7, the most abundant KLK protease in the stratum corneum. The resulting KLK7 inhibitor is the most potent inhibitor of this protease reported to date (Ki = 140 pM), and displays at least 1,000-fold selectivity over several proteases that are related by function (KLK5 and KLK14) or specificity (chymotrypsin). We then used substrates and inhibitors for KLK5, KLK7, and KLK14 to explore the activity of each protease in the stratum corneum using casein zymography and an ex vivo desquamation assay. These experiments provide the most detailed assessment of each KLK's contribution to corneocyte shedding in the plantar stratum corneum, revealing that inhibition of KLK7 alone is sufficient to block shedding, whereas KLK5 is also a major contributor. Collectively, these findings unveil chemical tools for studying KLK activity and demonstrate their potential for characterizing KLK biological functions in epidermal homeostasis.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Laboratory of Genetic Skin Diseases, INSERM UMR 1163 and Imagine Institute of Genetic Diseases, Paris, France; Université Paris V Descartes-Sorbonne Paris Cité, Paris, France
| | - Laetitia Furio
- Laboratory of Genetic Skin Diseases, INSERM UMR 1163 and Imagine Institute of Genetic Diseases, Paris, France; Université Paris V Descartes-Sorbonne Paris Cité, Paris, France
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher A Munro
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Judith A Clements
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australian Prostate Cancer Research Centre, Translational Research Institute, Brisbane, Queensland, Australia
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, INSERM UMR 1163 and Imagine Institute of Genetic Diseases, Paris, France; Université Paris V Descartes-Sorbonne Paris Cité, Paris, France; Department of Genetics, Necker Hospital for Sick Children, Paris, France
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
37
|
Abstract
Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.
Collapse
|
38
|
Tiryakioğlu NO, Önal Z, Saygili SK, Önal H, Ersoy Tunali N. Treatment of ichthyosis and hypernatremia in a patient with Netherton syndrome with a SPINK5 c.153delT mutation using kallikrein inhibiting ointment. Int J Dermatol 2016; 56:106-108. [DOI: 10.1111/ijd.13248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/23/2015] [Accepted: 11/08/2015] [Indexed: 11/28/2022]
Affiliation(s)
| | - Zerrin Önal
- Department of Pediatric Gastroenterology; T.R. Ministry of Health Bakırköy Sadi Konuk Training and Research Hospital; Istanbul Turkey
| | - Seha K. Saygili
- Department of Pediatrics; Istanbul Medical Faculty, Istanbul University; Istanbul Turkey
| | - Hasan Önal
- Department of Pediatric Endocrinology and Metabolism; Kanuni Sultan Süleyman Training and Research Hospital; Istanbul Turkey
| | | |
Collapse
|
39
|
Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy. Sci Rep 2016; 7:20024. [PMID: 26823023 PMCID: PMC4731818 DOI: 10.1038/srep20024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling.
Collapse
|
40
|
Redelfs L, Fischer J, Weber C, Wu Z, Meyer-Hoffert U. The serine protease inhibitor of Kazal-type 9 (SPINK9) is expressed in lichen simplex chronicus, actinic keratosis and squamous cell carcinoma. Arch Dermatol Res 2016; 308:133-7. [DOI: 10.1007/s00403-015-1616-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/21/2015] [Accepted: 12/30/2015] [Indexed: 11/28/2022]
|
41
|
Kallikreins - The melting pot of activity and function. Biochimie 2015; 122:270-82. [PMID: 26408415 DOI: 10.1016/j.biochi.2015.09.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Abstract
The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered.
Collapse
|
42
|
Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P. Unique features of human cathelicidin LL-37. Biofactors 2015; 41:289-300. [PMID: 26434733 DOI: 10.1002/biof.1225] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023]
Abstract
Cathelicidins are antimicrobial peptides produced by humans and animals in response to various pathogenic microbes. This review intends to provide a brief overview of the expression, structure, properties and function of human cathelicidin LL-37 which may be a therapeutic agent against a variety of bacterial and viral diseases, cancers, and hard-to-heal wounds. Cathelicidins act as a primary defense against bacteria and other pathogens in the case of inflammation. They are able to kill bacteria and fungi, inhibit and destroy bacterial biofilms, and possess antiviral and antiparasitics properties. They can also play a role in angiogenesis, wound healing, and the regulation of apoptosis. The host defense peptide LL-37 has emerged as a novel modulator of tumor growth and metastasis in carcinogenesis of various types of cancers. LL-37 is an antimicrobial peptide able of inducing various effects. It acts as an anti- and pro- inflammatory factor. Cathelicidins are able to directly and selectively destroy membranes of various microbes and cancer cells, but they do not attack normal cells. The role of cathelicidins in cancer is double-sided. They play an important role in killing cancer cells and may provide a new possibility for the development of cancer therapeutics. However, they also can participate in carcinogenesis. Due to its activity spectrum LL-37 could be applied in pharmacotherapy. Cathelicidin peptides could serve as a template for the development of modern anti-microbial and anti-viral drugs. LL-37 is an excellent candidate to develop into therapeutics for infected wounds.
Collapse
Affiliation(s)
- Katarzyna Bandurska
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Agnieszka Berdowska
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | | | - Piotr Krupa
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| |
Collapse
|
43
|
Yu Y, Prassas I, Dimitromanolakis A, Diamandis EP. Novel Biological Substrates of Human Kallikrein 7 Identified through Degradomics. J Biol Chem 2015; 290:17762-17775. [PMID: 26032414 DOI: 10.1074/jbc.m115.643551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/03/2023] Open
Abstract
Kallikrein-related peptidases (KLKs) are a group of serine proteases widely expressed in various tissues and involved in a wide range of physiological and pathological processes. Although our understanding of the pathophysiological roles of most KLKs has blossomed in recent years, identification of the direct endogenous substrates of human KLKs remains an unmet objective. In this study we employed a degradomics approach to systemically investigate the endogenous substrates of KLK7 in an effort to understand the molecular pathways underlying KLK7 action in skin. We identified several previously known as well as novel protein substrates. Our most promising candidates were further validated with the use of targeted quantitative proteomics (selected reaction monitoring methods) and in vitro recombinant protein digestion assays. Our study revealed midkine, CYR61, and tenascin-C as endogenous substrates for KLK7. Interestingly, some of these substrates (e.g. midkine) were prone to proteolytic cleavage only by KLK7 (and not by other skin-associated KLKs), whereas others (e.g. CYR61 and tenascin-C) could be digested by several KLKs. Furthermore, using melanoma cell line, we show that KLK7-mediated cleavage of midkine results in an overall reduction in the pro-proliferative and pro-migratory effect of midkine. An inverse relation between KLK7 and midkine is also observed in human melanoma tissues. In summary, our degradomics approach revealed three novel endogenous substrates for KLK7, which may shed more light on the pathobiological roles of KLK7 in human skin. Similar substrate screening approaches could be applied for the discovery of biological substrates of other protease.
Collapse
Affiliation(s)
- Yijing Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | | | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
44
|
Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells. J Virol 2015; 89:7038-52. [PMID: 25926655 DOI: 10.1128/jvi.00234-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures.
Collapse
|
45
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Fuhrman-Luck RA, Silva ML, Dong Y, Irving-Rodgers H, Stoll T, Hastie ML, Loessner D, Gorman JJ, Clements JA. Proteomic and other analyses to determine the functional consequences of deregulated kallikrein-related peptidase (KLK) expression in prostate and ovarian cancer. Proteomics Clin Appl 2014; 8:403-15. [PMID: 24535680 DOI: 10.1002/prca.201300098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/23/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023]
Abstract
Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. MS-driven proteomics uniquely allows for the detection, identification, and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review, we describe applications of this technology in KLK biomarker discovery and elucidate MS-based techniques that have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis, and therapies.
Collapse
Affiliation(s)
- Ruth Anna Fuhrman-Luck
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eissa A, Cretu D, Soosaipillai A, Thavaneswaran A, Pellett F, Diamandis A, Cevikbas F, Steinhoff M, Diamandis EP, Gladman D, Chandran V. Serum kallikrein-8 correlates with skin activity, but not psoriatic arthritis, in patients with psoriatic disease. Clin Chem Lab Med 2014; 51:317-25. [PMID: 23096109 DOI: 10.1515/cclm-2012-0251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/15/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND About 30% of cutaneous psoriasis (PsC) patients develop psoriatic arthritis (PsA) in the joint, which is under-recognized by dermatologists. Biomarkers for PsA are needed so that early referral to a rheumatologist is made. Kallikreins (KLKs) are secreted serine proteases implicated in skin desquamation and inflammation. This study examined KLK potential as serum biomarkers of PsA in cutaneous psoriasis patients. METHODS KLKs were measured by ELISAs in synovial fluids of three PsA patients and three control early osteoarthritis (OA) patients, as well as in a cohort of 152 serum samples collected from age- and sex-matched PsC patients, with (n=76) or without PsA (n=76). KLK expression in psoriatic plaques was examined by immunohistochemistry. Univariate and multivariate logistic regression analyses were conducted to analyze the association between serum KLK levels and disease class (PsC, PsA). Serum KLKs that associated with PsA were correlated with clinical parameters of skin and joint activity. RESULTS Among the seven KLKs tested, KLK6 and KLK8 were elevated in both PsA synovial fluids and psoriatic plaques, but only serum KLK8 levels were associated with psoriatic disease (odds ratio=2.56, p=0.03). Although significantly elevated in PsC and PsA sera compared to healthy controls, KLK8 did not discriminate PsA from PsC patients. KLK8 correlated positively with the psoriasis area and severity index (PASI) (r=0.43, p=0.001) independent of age, sex and psoriasis duration ( β=1.153, p=0.0003) and exhibited no correlations with tender or swollen joint counts. CONCLUSIONS Increased KLK8 serum level in PsA patients reflects disease activity in the skin but not in the joints. Serum KLK levels are not useful for screening psoriasis patients for PsA.
Collapse
Affiliation(s)
- Azza Eissa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Roby KD, Nardo AD. Innate immunity and the role of the antimicrobial peptide cathelicidin in inflammatory skin disease. ACTA ACUST UNITED AC 2013; 10:e79-e82. [PMID: 24489580 DOI: 10.1016/j.ddmec.2013.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cathelicidin antimicrobial peptide is an important mediator of the innate immune response. In addition to its potent antimicrobial activity, cathelicidin has been shown to have chemoattractant and angiogenic properties. Recent research has demonstrated that, in addition to its aforementioned functions, cathelicidin plays an important role in the complex pathogenesis of several chronic inflammatory skin diseases. This review will present a concise overview of the role of cathelicidin in infection and in the development of atopic dermatitis, psoriasis, and rosacea. This understanding will direct future research efforts to identify therapeutic approaches that use cathelicidin as a novel drug itself, or aim to modify its expression and regulation.
Collapse
Affiliation(s)
- Keith D Roby
- Department of Medicine, Division of Dermatology University of California, San Diego 9500 Gilman Drive # 0869 La Jolla, CA 92093-0869
| | - Anna Di Nardo
- Department of Medicine, Division of Dermatology University of California, San Diego 9500 Gilman Drive # 0869 La Jolla, CA 92093-0869
| |
Collapse
|
49
|
Characterization of Spink6 in mouse skin: the conserved inhibitor of kallikrein-related peptidases is reduced by barrier injury. J Invest Dermatol 2013; 134:1305-1312. [PMID: 24352040 DOI: 10.1038/jid.2013.502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/14/2013] [Accepted: 10/25/2013] [Indexed: 11/08/2022]
Abstract
The proteolytic regulation of the desquamation process by kallikrein-related peptidases (KLKs) is crucial for epidermal barrier function, and elevated KLK levels have been reported in atopic dermatitis. KLKs are controlled by specific inhibitors of the serine protease inhibitor of Kazal-type (Spink) family. Recently, SPINK6 was shown to be present in human stratum corneum. In order to investigate its role in epidermal barrier function, we studied mouse Spink6. Sequence alignment revealed that the Kazal domain of Spink6 is highly conserved in animals. Recombinant Spink6 efficiently inhibited mouse Klk5 and human KLK2, KLK4, KLK5, KLK6, KLK7, KLK12, KLK13, and KLK14, whereas human KLK1 and KLK8 were not inhibited. Spink6 was expressed in mouse epidermis mainly in the stratum granulosum, and the inner root sheath of hair follicles. Stimulation with flagellin, EGF, and IL-1β did not alter Spink6 expression, whereas stimulation with tumor necrosis factor-α (TNFα)/IFNγ and all-trans retinoic acid resulted in a significant downregulation of Spink6 expression in cultured primary mouse keratinocytes. Mechanically and metabolically induced skin barrier dysfunction resulted both in a downregulation of Spink6 expression. Our study indicates that Spink6 is a potent inhibitor of KLKs and involved in skin barrier function.
Collapse
|
50
|
Kryza T, Achard C, Parent C, Marchand-Adam S, Guillon-Munos A, Iochmann S, Korkmaz B, Respaud R, Courty Y, Heuzé-Vourc'h N. Angiogenesis stimulated by human kallikrein-related peptidase 12 acting via a platelet-derived growth factor B-dependent paracrine pathway. FASEB J 2013; 28:740-51. [PMID: 24225148 DOI: 10.1096/fj.13-237503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
KLK12, a kallikrein peptidase, is thought to take part in the control of angiogenesis. Our analysis of the secretome of endothelial cells (ECs) that had been treated with KLK12 showed that KLK12 converts the extracellular matrix- or membrane-bound precursor of platelet-derived growth factor B (PDGF-B) into a soluble form. Both PDGF-B and vascular endothelial growth factor A (VEGF-A) take part in the induction of angiogenesis by KLK12 in a coculture model of angiogenesis that mimics endothelial tubule formation. We used a cellular approach to analyze the interplay between KLK12, PDGF-B, and VEGF-A and showed that release of PDGF-B by KLK12 leads to the fibroblast-mediated secretion of VEGF-A. This then stimulates EC differentiation and the formation of capillary tube-like structures. Thus, KLK12 favors the interaction of ECs and stromal cells. The released PDGF-B acts as a paracrine factor that modulates VEGF-A secretion by stromal cells, which ultimately leads to angiogenesis. Moreover, the genes encoding KLK12 and PDGFB are both expressed in ECs and up-regulated in tumor cells kept under hypoxic conditions, which is consistent with the physiological involvement of KLK12 in PDGF-B maturation.
Collapse
Affiliation(s)
- Thomas Kryza
- 2CEPR INSERM U1100/EA 6305, Faculté de Médecine, 10 Blvd. Tonnellé, F-37032 Tours cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|