1
|
Richardson L, Bagunu K, Doughty K, Concilio L, Jaime S, Westcott A, Graham JK. Exploring Alternate Targets for Respiratory Resuscitation in Patients With Sepsis and Septic Shock. Crit Care Nurs Q 2025; 48:93-99. [PMID: 40009856 DOI: 10.1097/cnq.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Despite limited evidence to support it, resuscitation in sepsis has primarily targeted aggressive fluid administration and liberal administration of oxygen. In 2024, new thought paradigms emerged to suggest that dysregulation of aerobic metabolism are essential underpinnings of sepsis, and that in fact, aggressive resuscitation with fluids liberal oxygen could potentially aggravate oxidative stress and organ failure in sepsis. As sepsis continues to be shaped and molded by the latest research; therapies targeting sepsis and septic shock management warrant similar scrutiny. METHODS We searched literature pertaining to what is known about metabolic dysregulation in sepsis, to consider approaches to identifying new targets for resuscitation and management in sepsis. RESULTS Therapeutic hypoxemic targets of 88-92% have been shown to have some benefit in sepsis resuscitation in a limited number of studies. The benefit is believed to result from protection from excessive accumulation of harmful reactive oxygen species. CONCLUSION Limited supporting evidence exists in the literature to recommend targeted hypoxemia or hypercapnia in patients with sepsis. Mixed results have been observed in the literature, including minimal benefit to mortality. New research designs with consideration to the dysregulated metabolic sequelae in sepsis could improve the meaningfulness of these therapies in sepsis.
Collapse
Affiliation(s)
- Lindsay Richardson
- Author Affiliations: School of Nursing, San Diego State University, San Diego, California(Capt Richardson, Mr Bagunu, Ms Doughty,Dr Consilio, Ms Westcott, and Dr Graham); and Sharp Healthcare, San Diego, California (Dr Jaime)
| | | | | | | | | | | | | |
Collapse
|
2
|
Hongoeb J, Tantimongcolwat T, Ayimbila F, Ruankham W, Phopin K. Herbicide-related health risks: key mechanisms and a guide to mitigation strategies. J Occup Med Toxicol 2025; 20:6. [PMID: 40001182 PMCID: PMC11863480 DOI: 10.1186/s12995-025-00448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Herbicides are a group of substances used to control undesired vegetation in both agricultural and non-agricultural settings. They are recorded as the most consumed class among other pesticides, reaching nearly two million tons worldwide. Despite their effectiveness in weed control, the extensive utilization of herbicides has raised concerns regarding adverse effects on human health. However, comprehensive reviews addressing herbicide-related human health risks remain limited. This work aims to compile scientific evidence and possible underlying mechanisms to emphasize the hazards that need to be acknowledged, as well as to explore novel strategies for minimizing the impact on human health. METHOD Scientific data on herbicide-related human health risks, including human-related data and non-human experimental research, were retrieved from databases such as PubMed, Scopus, and Google Scholar. Pre-determined eligibility criteria were applied to select the final studies. RESULT A narrative summary of evidence-based human incidence and laboratory experiments is presented to organize and highlight key findings. This indicates the life-threatening nature of herbicide exposure in humans, ranging from acute toxicity to the development of chronic diseases at any stage of life. CONCLUSION Herbicidal chemicals can harm individuals through various pathways, especially by inducing oxidative stress or directly disrupting molecular and cellular processes. Despite some conflicting findings, effective mitigation strategies are urgently needed to promote a safer society and protect human well-being.
Collapse
Affiliation(s)
- Juthamas Hongoeb
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Francis Ayimbila
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Toyoshima Y, Nakamura K, Taguchi Y, Tokita R, Takeuchi S, Osawa H, Teramoto N, Sugihara H, Yoshizawa F, Yamanouchi K, Minami S. Deletion of IRS-1 leads to growth failure and insulin resistance with downregulation of liver and muscle insulin signaling in rats. Sci Rep 2025; 15:649. [PMID: 39779784 PMCID: PMC11711447 DOI: 10.1038/s41598-024-84234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2. Here, we created IRS-1 knockout (KO) rats to elucidate the physiological roles of IRS-1 in rats. The body weight of IRS-1 KO rats at birth was lower than that of wild-type (WT) littermates, and postnatal growth of IRS-1 KO rats was severely impaired. Compared with WT rats, IRS-1 KO rats displayed insulin resistance but maintained euglycemia because of compensatory hyperinsulinemia. In addition, despite the increased activity of insulin-stimulated IRS-2-associated phosphatidylinositol-3 kinase (PI3K), insulin-induced phosphorylation of the kinases downstream of PI3K was suppressed in the liver and skeletal muscle of IRS-1 KO rats. Taken together, these results indicate that in rats, IRS-1 is essential for normal growth and the glucose-lowering effects of insulin. IRS-1 appears to be more important than IRS-2 for insulin functions in rats.
Collapse
Affiliation(s)
- Yuka Toyoshima
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan.
| | - Katsuyuki Nakamura
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biomolecular Science, Biomolecular Science Course, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yusuke Taguchi
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Reiko Tokita
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Shiho Takeuchi
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hayato Osawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naomi Teramoto
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Sugihara
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Keitaro Yamanouchi
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| |
Collapse
|
4
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Herrerías-González F, Yeramian A, Baena-Fustegueras JA, Bueno M, Fleitas C, de la Fuente M, Serrano JCE, Granado-Serrano A, Santamaría M, Yeramian N, Zorzano-Martínez M, Mora C, Lecube A. PKN1 Kinase: A Key Player in Adipocyte Differentiation and Glucose Metabolism. Nutrients 2023; 15:nu15102414. [PMID: 37242297 DOI: 10.3390/nu15102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Adipocyte dysfunction is the driver of obesity and correlates with insulin resistance and the onset of type 2 diabetes. Protein kinase N1 (PKN1) is a serine/threonine kinase that has been shown to contribute to Glut4 translocation to the membrane and glucose transport. Here, we evaluated the role of PKN1 in glucose metabolism under insulin-resistant conditions in primary visceral adipose tissue (VAT) from 31 patients with obesity and in murine 3T3-L1 adipocytes. In addition, in vitro studies in human VAT samples and mouse adipocytes were conducted to investigate the role of PKN1 in the adipogenic maturation process and glucose homeostasis control. We show that insulin-resistant adipocytes present a decrease in PKN1 activation levels compared to nondiabetic control counterparts. We further show that PKN1 controls the adipogenesis process and glucose metabolism. PKN1-silenced adipocytes present a decrease in both differentiation process and glucose uptake, with a concomitant decrease in the expression levels of adipogenic markers, such as PPARγ, FABP4, adiponectin and CEBPα. Altogether, these results point to PKN1 as a regulator of key signaling pathways involved in adipocyte differentiation and as an emerging player of adipocyte insulin responsiveness. These findings may provide new therapeutic approaches for the management of insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Fernando Herrerías-González
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - Andrée Yeramian
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Juan Antonio Baena-Fustegueras
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - Marta Bueno
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
| | - Catherine Fleitas
- Biobank Unit, Hospital Universitari Arnau de Vilanova, IRB-Lleida, 25198 Lleida, Spain
| | - Maricruz de la Fuente
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - José C E Serrano
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Ana Granado-Serrano
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Maite Santamaría
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - Nadine Yeramian
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, 09001 Burgos, Spain
| | - Marta Zorzano-Martínez
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
| | - Conchi Mora
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, 25716 Lleida, Spain
| | - Albert Lecube
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
| |
Collapse
|
6
|
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel) 2023; 12:antiox12020517. [PMID: 36830075 PMCID: PMC9952099 DOI: 10.3390/antiox12020517] [Citation(s) in RCA: 220] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative disorders constitute a substantial proportion of neurological diseases with significant public health importance. The pathophysiology of neurodegenerative diseases is characterized by a complex interplay of various general and disease-specific factors that lead to the end point of neuronal degeneration and loss, and the eventual clinical manifestations. Oxidative stress is the result of an imbalance between pro-oxidant species and antioxidant systems, characterized by an elevation in the levels of reactive oxygen and reactive nitrogen species, and a reduction in the levels of endogenous antioxidants. Recent studies have increasingly highlighted oxidative stress and associated mitochondrial dysfunction to be important players in the pathophysiologic processes involved in neurodegenerative conditions. In this article, we review the current knowledge of the general effects of oxidative stress on the central nervous system, the different specific routes by which oxidative stress influences the pathophysiologic processes involved in Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis and Huntington's disease, and how oxidative stress may be therapeutically reversed/mitigated in order to stall the pathological progression of these neurodegenerative disorders to bring about clinical benefits.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 5116, PMB, Nigeria
| | - Michelle B. Gerke-Duncan
- Education Innovation, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
7
|
Jin W, Li C, Yang S, Song S, Hou W, Song Y, Du Q. Hypolipidemic effect and molecular mechanism of ginsenosides: a review based on oxidative stress. Front Pharmacol 2023; 14:1166898. [PMID: 37188264 PMCID: PMC10175615 DOI: 10.3389/fphar.2023.1166898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperlipidemia is considered a risk factor for cardiovascular and endocrine diseases. However, effective approaches for treating this common metabolic disorder remain limited. Ginseng has traditionally been used as a natural medicine for invigorating energy or "Qi" and has been demonstrated to possess antioxidative, anti-apoptotic, and anti-inflammatory properties. A large number of studies have shown that ginsenosides, the main active ingredient of ginseng, have lipid-lowering effects. However, there remains a lack of systematic reviews detailing the molecular mechanisms by which ginsenosides reduce blood lipid levels, especially in relation to oxidative stress. For this article, research studies detailing the molecular mechanisms through which ginsenosides regulate oxidative stress and lower blood lipids in the treatment of hyperlipidemia and its related diseases (diabetes, nonalcoholic fatty liver disease, and atherosclerosis) were comprehensively reviewed. The relevant papers were search on seven literature databases. According to the studies reviewed, ginsenosides Rb1, Rb2, Rb3, Re, Rg1, Rg3, Rh2, Rh4, and F2 inhibit oxidative stress by increasing the activity of antioxidant enzymes, promoting fatty acid β-oxidation and autophagy, and regulating the intestinal flora to alleviate high blood pressure and improve the body's lipid status. These effects are related to the regulation of various signaling pathways, such as those of PPARα, Nrf2, mitogen-activated protein kinases, SIRT3/FOXO3/SOD, and AMPK/SIRT1. These findings suggest that ginseng is a natural medicine with lipid-lowering effects.
Collapse
Affiliation(s)
- Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunrun Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shihui Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shiyi Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Weiwei Hou
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
8
|
Abascal M, Sanjuan J, Moyano P, Sola E, Flores A, Garcia JM, Garcia J, Frejo MT, del Pino J. Insulin Signaling Disruption and INF-γ Upregulation Induce Aβ 1-42 and Hyperphosphorylated-Tau Proteins Synthesis and Cell Death after Paraquat Treatment of Primary Hippocampal Cells. Chem Res Toxicol 2022; 35:2214-2218. [PMID: 36394833 PMCID: PMC9768806 DOI: 10.1021/acs.chemrestox.2c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute and long-term paraquat (PQ) exposure produces hippocampal neurodegeneration and cognition decline. Although some mechanisms involved in these effects were found, the rest are unknown. PQ treatment, for 1 and 14 days, upregulated interferon-gamma signaling, which reduced insulin levels and downregulated the insulin pathway through phosphorylated-c-Jun N-terminal-kinase upregulation, increasing glucose levels and the production of Aβ1-42 and phosphorylated-tau, by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) overexpression and phosphorylated-GSK3β (p-GSK3β; ser9) level reduction, respectively, which induced primary hippocampal neuronal loss. This novel information on the PQ mechanisms leading to hippocampal neurodegeneration could help reveal the PQ actions that lead to cognition dysfunction.
Collapse
Affiliation(s)
| | - Javier Sanjuan
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paula Moyano
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain,Phone: +34-913943836;
| | - Emma Sola
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain,Phone: +34-913943836;
| | - Andrea Flores
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel Garcia
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena Garcia
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Teresa Frejo
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier del Pino
- Department
of Pharmacology and Toxicology, Veterinary
School, Complutense University of Madrid, 28040 Madrid, Spain,Phone: +34-913943836;
| |
Collapse
|
9
|
Qi M, Liao S, Wang J, Deng Y, Zha A, Shao Y, Cui Z, Song T, Tang Y, Tan B, Yin Y. MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism. J Cachexia Sarcopenia Muscle 2022; 13:677-695. [PMID: 34811946 PMCID: PMC8818611 DOI: 10.1002/jcsm.12858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gut health plays a vital role in the overall health and disease control of human and animals. Intestinal oxidative stress is a critical player in the induction and progression of cachexia which is conventionally diagnosed and classified by weight loss. Therefore, reduction of intestinal oxidative injury is a common and highly effective strategy for the maintenance of human and animal health. Here we identify intestinal myeloid differentiation primary response gene 88 (MyD88) as a novel target for intestinal oxidative stress using canonical oxidative stress model induced by paraquat (PQ) in vitro and in vivo. METHODS Intestinal oxidative stress was induced by administration of PQ in intestinal epithelial cells (IECs) and mouse model. Cell proliferation, apoptosis, DNA damage, mitochondrial function, oxidative status, and autophagy process were measured in wild-type and MyD88-deficient IECs during PQ exposure. Autophagy inhibitor (3-methyladenine) and activator (rapamycin) were employed to assess the role of autophagy in MyD88-deficient IECs during PQ exposure. MyD88 specific inhibitor, ST2825, was used to verify function of MyD88 during PQ exposure in mouse model. RESULTS MyD88 protein levels and apoptotic rate of IECs are increased in response to PQ exposure (P < 0.001). Intestinal deletion of MyD88 blocks PQ-induced apoptosis (~42% reduction) and DNA damage (~86% reduction), and improves mitochondrial fission (~37% reduction) and function including mitochondrial membrane potential (~23% increment) and respiratory metabolism capacity (~26% increment) (P < 0.01). Notably, there is a marked decrease in reactive oxygen species in MyD88-deficient IECs during PQ exposure (~70% reduction), which are consistent with high activity of antioxidative enzymes (~83% increment) (P < 0.001). Intestinal ablation of MyD88 inhibits mTOR signalling, and further phosphorylates p53 proteins during PQ exposure, which eventually promotes intestinal autophagy (~74% increment) (P < 0.01). Activation of autophagy (rapamycin) promotes IECs growth as compared with 3-methyladenine-treatment during PQ exposure (~173% increment), while inhibition of autophagy (3-methyladenine) exacerbates oxidative stress in MyD88-deficient IECs (P < 0.001). In mouse model, inhibition of MyD88 using specific inhibitor ST2825 followed by PQ treatment effectively ameliorates weight loss (~4% increment), decreased food intake (~92% increment), gastrocnemius and soleus loss (~24% and ~20% increment, respectively), and intestinal oxidative stress in an autophagy dependent manner (P < 0.01). CONCLUSIONS MyD88 modulates intestinal oxidative stress in an autophagy-dependent mechanism, which suggests that reducing MyD88 level may constitute a putative therapeutic target for intestinal oxidative injury-induced weight loss.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijuan Cui
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Hussain T, Murtaza G, Metwally E, Kalhoro DH, Kalhoro MS, Rahu BA, Sahito RGA, Yin Y, Yang H, Chughtai MI, Tan B. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm 2021; 2021:9962860. [PMID: 34616234 PMCID: PMC8490076 DOI: 10.1155/2021/9962860] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
It has been widely known that oxidative stress disrupts the balance between reactive oxygen species (ROS) and the antioxidant system in the body. During pregnancy, the physiological generation of ROS is involved in a variety of developmental processes ranging from oocyte maturation to luteolysis and embryo implantation. While abnormal overproduction of ROS disrupts these processes resulting in reproductive failure. In addition, excessive oxidative stress impairs maternal and placental functions and eventually results in fetal loss, IUGR, and gestational diabetes mellitus. Although some oxidative stress is inevitable during pregnancy, a balancing act between oxidant and antioxidant production is necessary at different stages of the pregnancy. The review aims to highlight the importance of maintaining oxidative and antioxidant balance throughout pregnancy. Furthermore, we highlight the role of oxidative stress in pregnancy-related diseases.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Baban Ali Rahu
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | | | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
11
|
Hsu YJ, Lin CW, Cho SL, Yang WS, Yang CM, Yang CH. Protective Effect of Fenofibrate on Oxidative Stress-Induced Apoptosis in Retinal-Choroidal Vascular Endothelial Cells: Implication for Diabetic Retinopathy Treatment. Antioxidants (Basel) 2020; 9:antiox9080712. [PMID: 32764528 PMCID: PMC7464418 DOI: 10.3390/antiox9080712] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes and one of the leading causes of blindness in developed countries. Two large clinical studies showed that fenofibrate, a peroxisome proliferator-activated receptor type α (PPAR-α) agonist, reduces DR progression. We evaluated the protective effects of fenofibrate on retinal/choroidal vascular endothelial cells under oxidative stress and investigated the underlying mechanisms using RF/6A cells as the model system and paraquat (PQ) to induce oxidative stress. Pretreatment with fenofibrate suppressed reactive oxygen species (ROS) production, decreased cellular apoptosis, diminished the changes in the mitochondrial membrane potential, increased the mRNA levels of peroxiredoxin (Prx), thioredoxins (Trxs), B-cell lymphoma 2 (Bcl-2), and Bcl-xl, and reduced the level of B-cell lymphoma 2-associated X protein (Bax) in PQ-stimulated RF/6A cells. Western blot analysis revealed that fenofibrate repressed apoptosis through cytosolic and mitochondrial apoptosis signal-regulated kinase-1 (Ask)-Trx-related signaling pathways, including c-Jun amino-terminal kinase (JNK) phosphorylation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage. These protective effects of fenofibrate on RF/6A cells may be attributable to its anti-oxidative ability. Our research suggests that fenofibrate could serve as an effective adjunct therapy for ocular oxidative stress-related disorders, such as DR.
Collapse
Affiliation(s)
- Ying-Jung Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
| | - Chao-Wen Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Sheng-Li Cho
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100, Taiwan; (Y.-J.H.); (C.-W.L.); (W.-S.Y.)
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
- Correspondence: ; Tel.: +886-2-23123456 (ext. 63193)
| |
Collapse
|
12
|
Toyoshima Y, Nakamura K, Tokita R, Teramoto N, Sugihara H, Kato H, Yamanouchi K, Minami S. Disruption of insulin receptor substrate-2 impairs growth but not insulin function in rats. J Biol Chem 2020; 295:11914-11927. [PMID: 32631952 DOI: 10.1074/jbc.ra120.013095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/01/2020] [Indexed: 11/06/2022] Open
Abstract
Insulin receptor substrate (IRS)-2, along with IRS-1, is a key signaling molecule that mediates the action of insulin and insulin-like growth factor (IGF)-I. The activated insulin and IGF-I receptors phosphorylate IRSs on tyrosine residues, leading to the activation of downstream signaling pathways and the induction of various physiological functions of insulin and IGF-I. Studies using IRS-2 knockout (KO) mice showed that the deletion of IRS-2 causes type 2 diabetes due to peripheral insulin resistance and impaired β-cell function. However, little is known about the roles of IRS-2 in other animal models. Here, we created IRS-2 KO rats to elucidate the physiological functions of IRS-2 in rats. The body weights of IRS-2 KO rats at birth were lower compared with those of their WT littermates. The postnatal growth of both male and female IRS-2 KO rats was also suppressed. Compared with male WT rats, the glucose and insulin tolerance of male IRS-2 KO rats were slightly enhanced, whereas a similar difference was not observed between female WT and IRS-2 KO rats. Besides the modestly increased insulin sensitivity, male IRS-2 KO rats displayed the enhanced insulin-induced activation of the mTOR complex 1 pathway in the liver compared with WT rats. Taken together, these results indicate that in rats, IRS-2 plays important roles in the regulation of growth but is not essential for the glucose-lowering effects of insulin.
Collapse
Affiliation(s)
- Yuka Toyoshima
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-machi, Nakahara-ku, Kawasaki, Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Reiko Tokita
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-machi, Nakahara-ku, Kawasaki, Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hisanori Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-machi, Nakahara-ku, Kawasaki, Japan
| |
Collapse
|
13
|
Fan Y, Xiong W, Li J, Hu A, He Z, Zhang J, Zhou G, Yin Q. Mechanism of TangGanJian on nonalcoholic fatty liver disease with type 2 diabetes mellitus. PHARMACEUTICAL BIOLOGY 2018; 56:567-572. [PMID: 30460863 PMCID: PMC6249541 DOI: 10.1080/13880209.2018.1504972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/11/2018] [Accepted: 07/22/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT TangGanJian (TGJ) has a curative effect in the clinical treatment of nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes mellitus (T2DM), while the mechanism involved in the treatment process remains unclear. OBJECTIVE This study details the mechanism of TGJ on the treatment of NAFLD with T2DM. MATERIALS AND METHODS NAFLD was induced in T2DM rat model. Male Wistar rats were assigned into six groups: Group I (control), Group II (model), Group III (pioglitazone, 0.5 mg/kg), Group IV (high dose of TGJ, 24.8 g/kg), Group V (middle dose of TGJ, 12.4 g/kg) and Group VI (low dose of TGJ, 6.2 g/kg). All rats in each group were treated with the corresponding drugs by gavage for 8 weeks. Haematoxylin and eosin analysis was conducted. The indicators of inflammatory and oxidative stress were analysed utilizing one-way ANOVA. RESULTS The contents of TNF-α (15.794 ± 3.302 pg/mL), IL-6 (76.801 ± 8.491 pg/mL), IL-1β (100.101 ± 13.150 pg/mL), CRP (1.052 ± 0.079 pg/mL) and MDA (3.972 ± 0.159 pg/mL) were obviously elevated in NAFLD with T2DM rats compared to controls. Except for the IL-6, the levels of other markers declined in a dose-dependent manner after treatment with TGJ. The SOD (14.139 ± 1.479 U/mgprot) and GSH-PX (81.511 ± 5.276 U/mgprot) levels significantly decreased in NAFLD with T2DM rats, while the levels of these indicators increased after treatment with TGJ. CONCLUSIONS TGJ may be a therapy for the NAFLD with T2DM rats by modulating the inflammatory response and the oxidative stress capacity.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- C-Reactive Protein/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Drugs, Chinese Herbal/pharmacology
- Insulin/blood
- Interleukin-1beta
- Interleukin-6/blood
- Liver/drug effects
- Male
- Non-alcoholic Fatty Liver Disease/complications
- Non-alcoholic Fatty Liver Disease/drug therapy
- Non-alcoholic Fatty Liver Disease/metabolism
- Oxidative Stress/drug effects
- Pioglitazone/pharmacology
- Rats
- Rats, Wistar
- Tumor Necrosis Factor-alpha/blood
Collapse
Affiliation(s)
- Yanbo Fan
- Science and Education Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
- Post-Doctoral Research Center of Mayinglong Pharmaceutical Group Co., Ltd., Wuhan, PR China
| | - Wei Xiong
- Vascular Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, PR China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Aimin Hu
- Endocrinology Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Zhiwei He
- Department of Pharmacy, Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, Hubei, PR China
| | - Jiawen Zhang
- Department of Pharmacy, Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, Hubei, PR China
| | - Guoyun Zhou
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Qiang Yin
- Department of Management, Xinjiang Uygur Pharmaceutical Co., Ltd., Wulumuqi, PR China
| |
Collapse
|
14
|
Grossini E, Farruggio S, Raina G, Mary D, Deiro G, Gentilli S. Effects of Genistein on Differentiation and Viability of Human Visceral Adipocytes. Nutrients 2018; 10:E978. [PMID: 30060502 PMCID: PMC6115928 DOI: 10.3390/nu10080978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023] Open
Abstract
Obesity can lead to pathological growth of adipocytes by inducing inflammation and oxidative stress. Genistein could be a potential candidate for the treatment of obesity due to its antioxidant properties. Specific kits were used to examine the effects of genistein vs adiponectin on human visceral pre-adipocytes differentiation, cell viability, mitochondrial membrane potential, and oxidative stress in pre-adipocytes and in white/brown adipocytes. Western Blot was performed to examine changes in protein activation/expression. Genistein increased human visceral pre-adipocytes differentiation and browning, and caused a dose-related improvement of cell viability and mitochondrial membrane potential. Similar effects were observed in brown adipocytes and in white adipocytes, although in white cells the increase of cell viability was inversely related to the dose. Moreover, genistein potentiated AMP-activated protein kinase (AMPK)/mitofusin2 activation/expression in pre-adipocytes and white/brown adipocytes and protected them from the effects of hydrogen peroxide. The effects caused by genistein were similar to those of adiponectin. The results obtained showed that genistein increases human visceral pre-adipocytes differentiation and browning, protected against oxidative stress in pre-adipocytes and white/brown adipocytes through mechanisms related to AMPK-signalling and the keeping of mitochondrial function.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- Experimental Surgery, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Serena Farruggio
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Raina
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - David Mary
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Giacomo Deiro
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Sergio Gentilli
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
15
|
Yan M, Dou T, Lv W, Wang X, Zhao L, Chang X, Zhou Z. Integrated analysis of paraquat-induced microRNAs-mRNAs changes in human neural progenitor cells. Toxicol In Vitro 2017; 44:196-205. [DOI: 10.1016/j.tiv.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/30/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
|
16
|
Nagami M, Ito Y, Nagasawa T. Phenethyl isothiocyanate protects against H 2O 2-induced insulin resistance in 3T3-L1 adipocytes. Biosci Biotechnol Biochem 2017; 81:2195-2203. [PMID: 28899227 DOI: 10.1080/09168451.2017.1372181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Obesity is associated with systemic oxidative stress and leads to insulin resistance. Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, has been shown to have beneficial effects in improving cellular defense activities against oxidative stress through activation of nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. However, little evidence exists if the antioxidative activity has beneficial effects on glucose metabolism. Here, we tested the preventive potential of PEITC for impaired insulin-induced glucose uptake by oxidative stress in 3T3-L1 adipocytes. Treatment with PEITC increased the expression of antioxidative enzymes regulated by Nrf2 such as γ-glutamylcysteine-synthetase, heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1 and glutathione S-transferase, and reduced oxidative stress induced by H2O2. Furthermore, PEITC restored impaired insulin-stimulated glucose uptake, translocation of glucose transporter 4 and insulin signaling by H2O2. These results indicate that PEITC protected insulin-regulated glucose metabolism impaired by oxidative stress through the antioxidative activity in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Moe Nagami
- a Department of Biological Chemistry and Food Science, Graduate School of Agriculture , Iwate University , Morioka , Japan
| | - Yoshiaki Ito
- a Department of Biological Chemistry and Food Science, Graduate School of Agriculture , Iwate University , Morioka , Japan
| | - Takashi Nagasawa
- a Department of Biological Chemistry and Food Science, Graduate School of Agriculture , Iwate University , Morioka , Japan
| |
Collapse
|
17
|
Servillo L, D'Onofrio N, Casale R, Cautela D, Giovane A, Castaldo D, Balestrieri ML. Ergothioneine products derived by superoxide oxidation in endothelial cells exposed to high-glucose. Free Radic Biol Med 2017; 108:8-18. [PMID: 28300670 DOI: 10.1016/j.freeradbiomed.2017.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 11/24/2022]
Abstract
Ergothioneine (Egt), 2-mercapto-L-histidine betaine (ESH), is a dietary component acting as antioxidant and cytoprotectant. In vitro studies demonstrated that Egt, a powerful scavenger of hydroxyl radicals, superoxide anion, hypochlorous acid and peroxynitrite, protects vascular function against oxidative damages, thus preventing endothelial dysfunction. In order to delve the peculiar oxidative behavior of Egt, firstly identified in cell free-systems, experiments were designed to identify the Egt oxidation products when endothelial cells (EC) benefit of its protection against high-glucose (hGluc). HPLC-ESI-MS/MS analyses revealed a decrease in the intracellular GSH levels and an increase in the ophthalmic acid (OPH) levels during hGluc treatment. Interestingly, in the presence of Egt, the decrease of the GSH levels was lower than in cells treated with hGluc alone, and this effect was paralleled by lower OPH levels. Egt was also effective in reducing the cytotoxicity of H2O2 and paraquat (PQT), an inducer of superoxide anion production, showing a similar time-dependent pattern of GSH and OPH levels, although with peaks occurring at different times. Importantly, Egt oxidation generated not only hercynine (EH) but also the sulfonic acid derivative (ESO3H) whose amounts were dependent on the oxidative stress employed. Furthermore, cell-free experiments confirmed the formation of both EH and ESO3H when Egt was reacted with superoxide anion. In summary, these data, by identifying the EH and ESO3H formation in EC exposed to hGluc, highlight the cellular antioxidant properties of Egt, whose peculiar redox behavior makes it an attractive candidate for the prevention of oxidative stress-associated endothelial dysfunction during hyperglycemia.
Collapse
Affiliation(s)
- Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosario Casale
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi, Azienda Speciale della Camera di Commercio di Reggio Calabria, Reggio Calabria, Italy
| | - Alfonso Giovane
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi, Azienda Speciale della Camera di Commercio di Reggio Calabria, Reggio Calabria, Italy; Ministero dello Sviluppo Economico, MiSE, Roma, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
18
|
Wang S, Zhu X, Xiong L, Ren J. Ablation of Akt2 prevents paraquat-induced myocardial mitochondrial injury and contractile dysfunction: Role of Nrf2. Toxicol Lett 2017; 269:1-14. [DOI: 10.1016/j.toxlet.2017.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/30/2016] [Accepted: 01/15/2017] [Indexed: 12/19/2022]
|
19
|
Rojas Mora A, Firth A, Blareau S, Vallat A, Helfenstein F. Oxidative stress affects sperm performance and ejaculate redox status in subordinate House Sparrows. J Exp Biol 2017; 220:2577-2588. [DOI: 10.1242/jeb.154799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
Oxidative stress (OS) is the result of random cellular damage caused by reactive oxygen species that leads to cell death, ageing, or illness. Most physiological processes can result in OS, which in turn has been identified as a major cause of infertility. In promiscuous species, the fertilizing ability of the ejaculate partly determines the male reproductive success. When dominance determines access to fertile females, theory predicts that lower ranking males should increase resource investment into enhancing ejaculate quality. We hypothesized that subordinate males should thus prioritize antioxidant protection of their ejaculates to protect them from OS. We put this hypothesis to the test, by chronically dosing wild House Sparrows with diquat (∼1mg/kg), an herbicide that increases pro-oxidant generation. We found that, although they increased their antioxidant levels in the ejaculate, diquat-treated males produced sperm with reduced velocity. Importantly, and contrary to our hypothesis, males at the bottom of the hierarchy suffered the largest reduction in sperm velocity. We suggest that resource access hinders individuals' ability to cope with environmental hazards. Our results point at OS as a likely physiological mechanism mediating ejaculate quality, while individual ability to access resources may play a role in constraining the extent to which such resources can be allocated into the ejaculate.
Collapse
Affiliation(s)
- Alfonso Rojas Mora
- Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Alexandra Firth
- Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Sophie Blareau
- Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Armelle Vallat
- Neuchatel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchatel, Neuchatel, Switzerland
| | - Fabrice Helfenstein
- Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
20
|
Sengupta A, Manna K, Datta S, Das U, Biswas S, Chakrabarti N, Dey S. Herbicide exposure induces apoptosis, inflammation, immune modulation and suppression of cell survival mechanism in murine model. RSC Adv 2017. [DOI: 10.1039/c6ra27883c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study demonstrates paraquat induced cellular toxicity in spleen and associated ROS generation, mitochondria dependent cellular apoptosis, inflammation and splenomegaly inSwiss Albinomice.
Collapse
Affiliation(s)
- Aaveri Sengupta
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Krishnendu Manna
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Siddhartha Datta
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Ujjal Das
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Sushobhan Biswas
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Nilkanta Chakrabarti
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Sanjit Dey
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| |
Collapse
|
21
|
Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Zhou J, Zhang W, Ren R, Zhang W, Li Y, Yang J, Hao Y, Yuan T, Yuan G, Wang H, Ju Z, Mao Z, Li J, Qu J, Tang F, Liu GH. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 2016; 26:190-205. [PMID: 26768768 PMCID: PMC4746611 DOI: 10.1038/cr.2016.4] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/15/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
SIRT6 belongs to the mammalian homologs of Sir2 histone NAD(+)-dependent deacylase family. In rodents, SIRT6 deficiency leads to aging-associated degeneration of mesodermal tissues. It remains unknown whether human SIRT6 has a direct role in maintaining the homeostasis of mesodermal tissues. To this end, we generated SIRT6 knockout human mesenchymal stem cells (hMSCs) by targeted gene editing. SIRT6-deficient hMSCs exhibited accelerated functional decay, a feature distinct from typical premature cellular senescence. Rather than compromised chromosomal stability, SIRT6-null hMSCs were predominately characterized by dysregulated redox metabolism and increased sensitivity to the oxidative stress. In addition, we found SIRT6 in a protein complex with both nuclear factor erythroid 2-related factor 2 (NRF2) and RNA polymerase II, which was required for the transactivation of NRF2-regulated antioxidant genes, including heme oxygenase 1 (HO-1). Overexpression of HO-1 in SIRT6-null hMSCs rescued premature cellular attrition. Our study uncovers a novel function of SIRT6 in maintaining hMSC homeostasis by serving as a NRF2 coactivator, which represents a new layer of regulation of oxidative stress-associated stem cell decay.
Collapse
Affiliation(s)
- Huize Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Guan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomeng Liu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingyi Li
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lixia Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- FSU-CAS Innovation Institute, Foshan University, Foshan, Guangdong 528000, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Junzhi Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- FSU-CAS Innovation Institute, Foshan University, Foshan, Guangdong 528000, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- FSU-CAS Innovation Institute, Foshan University, Foshan, Guangdong 528000, China
| | - Ying Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiping Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Hao
- FSU-CAS Innovation Institute, Foshan University, Foshan, Guangdong 528000, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hu Wang
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 310036, China
| | - Zhenyu Ju
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 310036, China
| | - Zhiyong Mao
- School of life sciences and technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Center for Molecular and Translational Medicine, CMTM, Beijing 100101, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- FSU-CAS Innovation Institute, Foshan University, Foshan, Guangdong 528000, China
- Center for Molecular and Translational Medicine, CMTM, Beijing 100101, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
22
|
Zhang M, Qin ZY, Dai YM, Wang YM, Zhu GZ, Zhao YP, Ji CB, Zhu JG, Shi CM, Qiu J, Cao XG, Guo XR. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes. Cell Biochem Biophys 2015; 70:667-75. [PMID: 24771405 DOI: 10.1007/s12013-014-9971-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 µM FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing, 210004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pereira AC, Martel F. Oxidative stress in pregnancy and fertility pathologies. Cell Biol Toxicol 2014; 30:301-12. [PMID: 25030657 DOI: 10.1007/s10565-014-9285-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023]
Abstract
Oxidative stress designates the state of imbalance between reactive oxygen species (ROS) production and antioxidant levels. In a healthy placenta, there is an increase in ROS production, due to formation of new tissues and inherent metabolism, but this is balanced by higher levels of antioxidants. However, this balance is lost in some situations, with a consequent increase in oxidative stress levels. Oxidative stress has been implicated in several placental disorders and pregnancy pathologies. The present review intends to summarize what is known about the relationship between oxidative stress and well-known pregnancy disorders.
Collapse
Affiliation(s)
- Ana C Pereira
- Unit of Molecular Mechanisms of Disease (CISA) and Chemical and Biomolecular Sciences, School of Allied Health Sciences, Polytechnic Institute of Porto (ESTSP-IPP), Porto, Portugal
| | | |
Collapse
|
24
|
Qin ZY, Zhang M, Dai YM, Wang YM, Zhu GZ, Zhao YP, Ji CB, Qiu J, Cao XG, Guo XR. Metformin prevents LYRM1-induced insulin resistance in 3T3-L1 adipocytes via a mitochondrial-dependent mechanism. Exp Biol Med (Maywood) 2014; 239:1567-74. [PMID: 24903160 DOI: 10.1177/1535370214537746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously proposed that LYR motif containing 1 (LYRM1)-induced mitochondrial reactive oxygen species (ROS) production contributes to obesity-related insulin resistance. Metformin inhibits ROS production and promotes mitochondrial biogenesis in specific tissues. We assessed the effects of metformin on insulin resistance in LYRM1-over-expressing 3T3-L1 adipocytes. Metformin enhanced basal and insulin-stimulated glucose uptake and GLUT4 translocation, reduced IRS-1 and Akt phosphorylation and ROS levels, and affected the expression of regulators of mitochondrial biogenesis in LYRM1-over-expressing adipocytes. Metformin may ameliorate LYRM1-induced insulin resistance and mitochondrial dysfunction in part via a direct antioxidant effect and in part by activating the adenosine monophosphate-activated protein kinase (AMPK)-PGC1/NRFs pathway.
Collapse
Affiliation(s)
- Zhen-Ying Qin
- The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Min Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Yong-mei Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Yu-Mei Wang
- Department of Child Health, Huai'an Maternity and Child Health Hospital, Huai'an 223002, China
| | - Guan-zhong Zhu
- Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Ya-Ping Zhao
- The 82nd Hospital of the People's Liberation Army, Huai'an 223001, China
| | - Chen-Bo Ji
- State Key Laboratory of Reproductive Medicine, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Jie Qiu
- State Key Laboratory of Reproductive Medicine, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Xin-Guo Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Xi-Rong Guo
- Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
25
|
Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, Li M, Pappa A, Martinez-Fong D, Del Razo LM, Quintanilla-Vega B, Franco R. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther 2014; 142:206-30. [PMID: 24333264 PMCID: PMC3959583 DOI: 10.1016/j.pharmthera.2013.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Fang Wang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Maciej Skotak
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Namas Chandra
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
26
|
Xu L, Xu J, Wang Z. Molecular mechanisms of paraquat-induced acute lung injury: a current review. Drug Chem Toxicol 2014; 37:130-4. [PMID: 24392656 DOI: 10.3109/01480545.2013.834361] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paraquat is an organic heterocyclic herbicide that is widely used in agriculture, especially in Asian countries. The prevalence of paraquat poisonings has increased dramatically in the past two decades in China. Nearly all paraquat poisonings resulted from intentional or accidental oral administration leading to acute lung injury and, ultimately, acute respiratory distress syndrome. The mortality rate has been reported to be greater than 90%. However, the exact toxic mechanism remains unclear. Herein, we reviewed and summarized the most recent publications related to the molecular mechanisms of paraquat-induced acute lung injury.
Collapse
Affiliation(s)
- Lingjie Xu
- Department of Emergency Medicine, Peking Union Medical Collage Hospital, Peking Union Medical Collage , Beijing , China and
| | | | | |
Collapse
|
27
|
Baltazar MT, Dinis-Oliveira RJ, Bastos MDL, Duarte JA, Carvalho F. Lysine acetylsalicylate improves the safety of paraquat formulation in rats by increasing its elimination and preventing lung and kidney injury. Toxicol Res (Camb) 2014; 3:266. [DOI: 10.1039/c3tx50102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
28
|
Than A, Zhang X, Leow MKS, Poh CL, Chong SK, Chen P. Apelin attenuates oxidative stress in human adipocytes. J Biol Chem 2013; 289:3763-74. [PMID: 24362107 DOI: 10.1074/jbc.m113.526210] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It has been recently recognized that the increased oxidative stress (ROS overproduction) in obese condition is a key contributor to the pathogenesis of obesity-associated metabolic diseases. Apelin is an adipocytokine secreted by adipocytes, and known for its anti-obesity and anti-diabetic properties. In obesity, both oxidative stress and plasma level of apelin are increased. However, the regulatory roles of apelin on oxidative stress in adipocytes remain unknown. In the present study, we provide evidence that apelin, through its interaction with apelin receptor (APJ), suppresses production and release of reactive oxygen species (ROS) in adipocytes. This is further supported by the observations that apelin promotes the expression of anti-oxidant enzymes via MAPK kinase/ERK and AMPK pathways, and suppresses the expression of pro-oxidant enzyme via AMPK pathway. We further demonstrate that apelin is able to relieve oxidative stress-induced dysregulations of the expression of anti- and pro-oxidant enzymes, mitochondrial biogenesis and function, as well as release of pro- and anti-inflammatory adipocytokines. This study, for the first time, reveals the antioxidant properties of apelin in adipocytes, and suggests its potential as a novel therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Aung Than
- From the Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | | | | | | | |
Collapse
|
29
|
Dasuri K, Ebenezer P, Fernandez-Kim SO, Zhang L, Gao Z, Bruce-Keller AJ, Freeman LR, Keller JN. Role of physiological levels of 4-hydroxynonenal on adipocyte biology: implications for obesity and metabolic syndrome. Free Radic Res 2012; 47:8-19. [PMID: 23025469 DOI: 10.3109/10715762.2012.733003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center , Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kashyap MP, Singh AK, Kumar V, Yadav DK, Khan F, Jahan S, Khanna VK, Yadav S, Pant AB. Pkb/Akt1 mediates Wnt/GSK3β/β-catenin signaling-induced apoptosis in human cord blood stem cells exposed to organophosphate pesticide monocrotophos. Stem Cells Dev 2012; 22:224-38. [PMID: 22897592 DOI: 10.1089/scd.2012.0220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhibition mechanisms of protein kinase B (Pkb)/Akt and its consequences on related cell signaling were investigated in human umbilical cord blood stem cells (hUCBSCs) exposed to monocrotophos (MCP, an organophosphate pesticide). In silico data reveal that MCP interacts with kinase and c-terminal regulatory domains of Akt1, resulting into a total docking score of 5.2748 and also forms H-bond between its N-H and Thr-291 residue of Akt1, in addition to possessing several hydrophobic interactions. The main cause of Akt inhibition is considered to be the strong hydrogen bond between N-H and Thr-291, and hydrophobic interactions at Glu-234, and Asp-292 in the vicinity, which is usually occupied by the ribose of ATP, and interaction with residue Phe-161, thus leading to a significant conformational change in that particular portion of the protein. In silico data on Akt inhibition were confirmed by examining the downregulation of phosphorylated (Thr308/Ser493) Akt1 in MCP-exposed hUCBSCs. MCP-mediated altered levels of pAkt downstream targets viz., downregulated pGSK3β (Ser9), unchanged GSK3αβ, and upregulated levels of Bad, P(53), and caspase-9 further confirm the inhibition of pAkt. The cellular fate of such pAkt inhibition was confirmed by increased terminal deoxynucleotide transferase dUTP nick-end labeling positive cells, reduced mitochondrial membrane potential, and the activation of various MAPKs, proapoptotic markers-Bax, and caspases-9/3. Our data demonstrate that Akt1 plays a key role in MCP-induced apoptosis in hUCBSCs. We also identified that such cellular responses of human cord blood stem cells against MCP were due to strong binding and inhibition of kinase and AGC-Kinase-C terminal regulatory domains of Akt1.
Collapse
Affiliation(s)
- Mahendra P Kashyap
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Council of Scientific & Industrial Research, Lucknow, India
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
α-Lipoic acid ameliorates impaired glucose uptake in LYRM1 overexpressing 3T3-L1 adipocytes through the IRS-1/Akt signaling pathway. J Bioenerg Biomembr 2012; 44:579-86. [DOI: 10.1007/s10863-012-9460-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
32
|
Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem Int 2012; 60:415-24. [PMID: 22306778 DOI: 10.1016/j.neuint.2012.01.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 12/13/2022]
Abstract
TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 and accumulation of the protein in the cytosol as ubiquitinated protein aggregates. These protein aggregates may have an important role in subsequent neuronal degeneration in motor neuron disease, frontotemporal dementia and potentially other neurodegenerative diseases. Although the cellular mechanisms driving the abnormal accumulation of TDP-43 are not understood, recent studies have shown that an early change to TDP-43 metabolism in disease may be accumulation in cytosolic RNA stress granules (SGs). However, it is unclear whether the TDP-43 in these SGs progresses to become irreversible protein aggregates as observed in patients. We have shown recently that paraquat-treated cells are a useful model for examining TDP-43 SG localization. In this study, we used the paraquat model to examine if endogenous TDP-43 in SGs can progress to more stable protein aggregates. We found that after treatment of HeLa cells overnight with paraquat, TDP-43 co-localized to SGs together with the ubiquitous SG marker, human antigen R (HuR). However, after a further incubation in paraquat-free, conditioned medium for 6h, HuR-positive SGs were rarely detected yet TDP-43 positive aggregates remained present. The majority of these TDP-43 aggregates were positive for ubiquitin. Further evidence for persistence of TDP-43 aggregates was obtained by treating cultures with cycloheximide after paraquat treatment. Cycloheximide abolished nearly all cytosolic HuR aggregation (SGs) but large TDP-43-positive aggregates remained. Finally, we showed that addition of ERK and JNK inhibitors together with paraquat blocked TDP-43-positive SG formation, while treatment with inhibitors after 24h paraquat exposure failed to reverse the TDP-43 accumulation. This failure was most likely due to the addition of inhibitors after maximal activation of the kinases at 4h post-paraquat treatment. These findings provide strong evidence that once endogenous TDP-43 accumulates in SGs, it has the potential to progress to stable protein aggregates as observed in neurons in TDP-43 proteinopathies. This may provide a therapeutic opportunity to inhibit the transition of TDP-43 from SG protein to aggregate.
Collapse
|
33
|
Toonen EJM, Fleuren WWM, Nässander U, van Lierop MJC, Bauerschmidt S, Dokter WHA, Alkema W. Prednisolone-induced changes in gene-expression profiles in healthy volunteers. Pharmacogenomics 2011; 12:985-98. [DOI: 10.2217/pgs.11.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive drugs. However, prolonged use at a medium or high dose is hampered by side effects of which the metabolic side effects are most evident. Relatively little is known about their effect on gene-expression in vivo, the effect on cell subpopulations and the relation to the efficacy and side effects of GCs. Aim: To identify and compare prednisolone-induced gene signatures in CD4+ T lymphocytes and CD14+ monocytes derived from healthy volunteers and to link these signatures to underlying biological pathways involved in metabolic adverse effects. Materials & methods: Whole-genome expression profiling was performed on CD4+ T lymphocytes and CD14+ monocytes derived from healthy volunteers treated with prednisolone. Text-mining analyses was used to link genes to pathways involved in metabolic adverse events. Results: Induction of gene-expression was much stronger in CD4+ T lymphocytes than in CD14+ monocytes with respect to fold changes, but the number of truly cell-specific genes where a strong prednisolone effect in one cell type was accompanied by a total lack of prednisolone effect in the other cell type, was relatively low. Subsequently, a large set of genes was identified with a strong link to metabolic processes, for some of which the association with GCs is novel. Conclusion: The identified gene signatures provide new starting points for further study into GC-induced transcriptional regulation in vivo and the mechanisms underlying GC-mediated metabolic side effects. Original submitted 5 January 2011; Revision submitted 24 February 2011
Collapse
Affiliation(s)
| | - Wilco WM Fleuren
- Computational Drug Discovery (CDD), CMBI, NCMLS, Radboud University Nijmegen Medical Centre, The Netherlands
- Netherlands Bioinformatics Centre (NBIC) 5, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|