1
|
Farahani A, Farahani A, Kashfi K, Ghasemi A. Inhibition of hepatic gluconeogenesis in type 2 diabetes by metformin: complementary role of nitric oxide. Med Gas Res 2025; 15:507-519. [PMID: 40300886 DOI: 10.4103/mgr.medgasres-d-24-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/21/2025] [Indexed: 05/01/2025] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with decreased nitric oxide bioavailability, which has significant metabolic implications, including enhanced insulin secretion and peripheral glucose utilization. Similar to metformin, nitric oxide also inhibits hepatic glucose production, mainly by suppressing gluconeogenesis. This review explores the combined effects of metformin and nitric oxide on hepatic gluconeogenesis and proposes the potential of a hybrid metformin-nitric oxide drug for managing type 2 diabetes mellitus. Both metformin and nitric oxide inhibit gluconeogenesis through overlapping and distinct mechanisms. In hepatic gluconeogenesis, mitochondrial oxaloacetate is exported to the cytoplasm via various pathways, including the malate, direct, aspartate, and fumarate pathways. The effects of nitric oxide and metformin on the exportation of oxaloacetate are complementary; nitric oxide primarily inhibits the malate pathway, while metformin strongly inhibits the fumarate and aspartate pathways. Furthermore, metformin effectively blocks gluconeogenesis from lactate, glycerol, and glutamine, whereas nitric oxide mainly inhibits alanine-induced gluconeogenesis. Additionally, nitric oxide contributes to the adenosine monophosphate-activated protein kinase-dependent inhibition of gluconeogenesis induced by metformin. The combined use of metformin and nitric oxide offers the potential to mitigate common side effects. For example, lactic acidosis, a known side effect of metformin, is linked to nitric oxide deficiency, while the oxidative and nitrosative stress caused by nitric oxide could be counterbalanced by metformin's enhancement of glutathione. Metformin also amplifies nitric oxide -induced activation of adenosine monophosphate-activated protein kinase. In conclusion, a metformin-nitric oxide hybrid drug can benefit patients with type 2 diabetes mellitus by enhancing the inhibition of hepatic gluconeogenesis, decreasing the required dose of metformin for maintaining optimal glycemia, and lowering the incidence of metformin-associated lactic acidosis.
Collapse
Affiliation(s)
- Arman Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
3
|
Wu F, Lu F, Dong H, Hu M, Xu L, Wang D. Oxyberberine Inhibits Hepatic Gluconeogenesis via AMPK-Mediated Suppression of FoxO1 and CRTC2 Signaling Axes. Phytother Res 2024. [PMID: 39522954 DOI: 10.1002/ptr.8381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Oxyberberine (OBB), a natural metabolite of berberine, has been shown to exhibit inhibitory effects on gluconeogenesis in our previous work. This work was designed to investigate the potential effects and underlying mechanisms of OBB on hepatic gluconeogenesis. Our work found that OBB significantly inhibited the expressions of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), and decreased the glucose production in palmitic acid-induced HepG2 cells. Then, AMPK/Akt/FoxO1 and AMPK/CRTC2 signaling pathways were confirmed by transcriptomics and network pharmacology analyses. It was shown that AMPK activation may phosphorylate and promote nuclear exclusion of FoxO1 and CRTC2, two key regulators of hepatic gluconeogenesis transcriptional pathways, resulting in the inhibition of gluconeogenesis under OBB administration. Afterwards, AMPK/Akt/FoxO1, AMPK/CRTC2 signaling pathways were evidenced by western blot, immunoprecipitation and confocal immunofluorescence, and the targeted inhibitor (Compound C) and siRNA of AMPK were applied for further mechanism verification. Moreover, it was found that OBB treatment activated AMPK/Akt/FoxO1 and AMPK/CRTC2 signaling pathways to decrease hepatic gluconeogenesis in db/db mice. Similarly, the in vivo inhibitory effects of OBB on gluconeogenesis were also diminished by AMPK inhibition. Our work demonstrated that OBB can inhibit hepatic gluconeogenesis in vitro and in vivo, and its underlying mechanisms were associated with AMPK-mediated suppression of FoxO1 and CRTC2 signaling axes.
Collapse
Affiliation(s)
- Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Duan H, Song S, Li R, Hu S, Zhuang S, Liu S, Li X, Gao W. Strategy for treating MAFLD: Electroacupuncture alleviates hepatic steatosis and fibrosis by enhancing AMPK mediated glycolipid metabolism and autophagy in T2DM rats. Diabetol Metab Syndr 2024; 16:218. [PMID: 39261952 PMCID: PMC11389443 DOI: 10.1186/s13098-024-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Recent studies have highlighted type 2 diabetes (T2DM) as a significant risk factor for the development of metabolic dysfunction-associated fatty liver disease (MAFLD). This investigation aimed to assess electroacupuncture's (EA) impact on liver morphology and function in T2DM rats, furnishing experimental substantiation for its potential to stall MAFLD progression in T2DM. METHODS T2DM rats were induced by a high-fat diet and a single intraperitoneal injection of streptozotocin, and then randomly assigned to five groups: the T2DM group, the electroacupuncture group, the metformin group, combination group of electroacupuncture and metformin, combination group of electroacupuncture and Compound C. The control group received a standard diet alongside intraperitoneal citric acid - sodium citrate solution injections. After a 6-week intervention, the effects of each group on fasting blood glucose, lipids, liver function, morphology, lipid droplet infiltration, and fibrosis were evaluated. Techniques including Western blotting, qPCR, immunohistochemistry, and immunofluorescence were employed to gauge the expression of key molecules in AMPK-associated glycolipid metabolism, insulin signaling, autophagy, and fibrosis pathways. Additionally, transmission electron microscopy facilitated the observation of liver autophagy, lipid droplets, and fibrosis. RESULTS Our studies indicated that hyperglycemia, hyperlipidemia and IR promoted lipid accumulation, pathological and functional damage, and resulting in hepatic steatosis and fibrosis. Meanwhile, EA enhanced the activation of AMPK, which in turn improved glycolipid metabolism and autophagy through promoting the expression of PPARα/CPT1A and AMPK/mTOR pathway, inhibiting the expression of SREBP1c, PGC-1α/PCK2 and TGFβ1/Smad2/3 signaling pathway, ultimately exerting its effect on ameliorating hepatic steatosis and fibrosis in T2DM rats. The above effects of EA were consistent with metformin. The combination of EA and metformin had significant advantages in increasing hepatic AMPK expression, improving liver morphology, lipid droplet infiltration, fibrosis, and reducing serum ALT levels. In addition, the ameliorating effects of EA on the progression of MAFLD in T2DM rats were partly disrupted by Compound C, an inhibitor of AMPK. CONCLUSIONS EA upregulated hepatic AMPK expression, curtailing gluconeogenesis and lipogenesis while boosting fatty acid oxidation and autophagy levels. Consequently, it mitigated blood glucose, lipids, and insulin resistance in T2DM rats, thus impeding liver steatosis and fibrosis progression and retarding MAFLD advancement.
Collapse
Affiliation(s)
- Haoru Duan
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, Chaoyang District Traditional Chinese Medicine Hospital, Beijing, 100026, China
| | - Shanshan Song
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, China- Japan Friendship Hospital, Beijing, 100029, China
| | - Rui Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Suqin Hu
- Department of Gastroenterology, Henan Province Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Henan, 450002, China
| | - Shuting Zhuang
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shaoyang Liu
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolu Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Gao
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
5
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
6
|
Amengual-Cladera E, Morla-Barcelo PM, Morán-Costoya A, Sastre-Serra J, Pons DG, Valle A, Roca P, Nadal-Serrano M. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. BIOLOGY 2024; 13:302. [PMID: 38785784 PMCID: PMC11117706 DOI: 10.3390/biology13050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has garnered attention for its potential in cancer management, particularly in breast and colorectal cancer. It is established that metformin reduces mitochondrial respiration, but its specific molecular targets within mitochondria vary. Proposed mechanisms include inhibiting mitochondrial respiratory chain Complex I and/or Complex IV, and mitochondrial glycerophosphate dehydrogenase, among others. These actions lead to cellular energy deficits, redox state changes, and several molecular changes that reduce hyperglycemia in type 2 diabetic patients. Clinical evidence supports metformin's role in cancer prevention in type 2 diabetes mellitus patients. Moreover, in these patients with breast and colorectal cancer, metformin consumption leads to an improvement in survival outcomes and prognosis. The synergistic effects of metformin with chemotherapy and immunotherapy highlights its potential as an adjunctive therapy for breast and colorectal cancer. However, nuanced findings underscore the need for further research and stratification by molecular subtype, particularly for breast cancer. This comprehensive review integrates metformin-related findings from epidemiological, clinical, and preclinical studies in breast and colorectal cancer. Here, we discuss current research addressed to define metformin's bioavailability and efficacy, exploring novel metformin-based compounds and drug delivery systems, including derivatives targeting mitochondria, combination therapies, and novel nanoformulations, showing enhanced anticancer effects.
Collapse
Affiliation(s)
- Emilia Amengual-Cladera
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Pere Miquel Morla-Barcelo
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Andrea Morán-Costoya
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Jorge Sastre-Serra
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Gabriel Pons
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Adamo Valle
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Roca
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| |
Collapse
|
7
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
8
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
9
|
Zheng HY, Wang YX, Zhou K, Xie HL, Ren Z, Liu HT, Ou YS, Zhou ZX, Jiang ZS. Biological functions of CRTC2 and its role in metabolism-related diseases. J Cell Commun Signal 2023; 17:495-506. [PMID: 36856929 PMCID: PMC10409973 DOI: 10.1007/s12079-023-00730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
CREB-regulated transcription coactivator2 (CRTC2 or TORC2) is a transcriptional coactivator of CREB(cAMP response element binding protein), which affects human energy metabolism through cyclic adenosine phosphate pathway, Mammalian target of rapamycin (mTOR) pathway, Sterol regulatory element binding protein 1(SREBP1), Sterol regulatory element binding protein 2 (SREBP2) and other substances Current studies on CRTC2 mainly focus on glucose and lipid metabolism, relevant studies show that CRTC2 can participate in the occurrence and development of related diseases by affecting metabolic homeostasis. It has been found that Crtc2 acts as a signaling regulator for cAMP and Ca2 + signaling pathways in many cell types, and phosphorylation at ser171 and ser275 can regulate downstream biological functions by controlling CRTC2 shuttling between cytoplasm and nucleus.
Collapse
Affiliation(s)
- Hong-Yu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yan-Xia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hai-Lin Xie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yang-Shao Ou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
An S, Nedumaran B, Koh H, Joo DJ, Lee H, Park CS, Harris RA, Shin KS, Djalilian AR, Kim YD. Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway. Exp Mol Med 2023; 55:1556-1569. [PMID: 37488285 PMCID: PMC10393991 DOI: 10.1038/s12276-023-01040-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 07/26/2023] Open
Abstract
Melatonin is involved in the regulation of various biological functions. Here, we explored a novel molecular mechanism by which the melatonin-induced sestrin2 (SESN2)-small heterodimer partner (SHP) signaling pathway protects against fasting- and diabetes-mediated hepatic glucose metabolism. Various key gene expression analyses were performed and multiple metabolic changes were assessed in liver specimens and primary hepatocytes of mice and human participants. The expression of the hepatic cereblon (CRBN) and b-cell translocation gene 2 (BTG2) genes was significantly increased in fasting mice, diabetic mice, and patients with diabetes. Overexpression of Crbn and Btg2 increased hepatic gluconeogenesis by enhancing cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH), whereas this phenomenon was prominently ablated in Crbn null mice and Btg2-silenced mice. Interestingly, melatonin-induced SESN2 and SHP markedly reduced hepatic glucose metabolism in diabetic mice and primary hepatocytes, and this protective effect of melatonin was strikingly reversed by silencing Sesn2 and Shp. Finally, the melatonin-induced SESN2-SHP signaling pathway inhibited CRBN- and BTG2-mediated hepatic gluconeogenic gene transcription via the competition of BTG2 and the interaction of CREBH. Mitigation of the CRBN-BTG2-CREBH axis by the melatonin-SESN2-SHP signaling network may provide a novel therapeutic strategy to treat metabolic dysfunction due to diabetes.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Balachandar Nedumaran
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hong Koh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children's Hospital, Severance Pediatric Liver Disease Research Group, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyungjo Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chul-Seung Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute Science and Technology, Gwangju, 61005, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Keong Sub Shin
- DUKSAN Institute of Biomedical and Life Science, Gwangmyeong, 14348, Republic of Korea
- Young Sciences, Inc., Bucheon, 14449, Republic of Korea
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yong Deuk Kim
- DUKSAN Institute of Biomedical and Life Science, Gwangmyeong, 14348, Republic of Korea.
- Young Sciences, Inc., Bucheon, 14449, Republic of Korea.
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
11
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
12
|
Zhang SY, Gao H, Askar A, Li XP, Zhang GC, Jing TZ, Zou H, Guan H, Zhao YH, Zou CS. Steroid hormone 20-hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae. INSECT SCIENCE 2023; 30:771-788. [PMID: 36342157 DOI: 10.1111/1744-7917.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/15/2023]
Abstract
The steroid hormone 20-hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E-induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E-treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β-oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate-limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β-oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.
Collapse
Affiliation(s)
- Sheng-Yu Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Han Gao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Ankarjan Askar
- School of Forestry, Northeast Forestry University, Harbin, China
| | | | - Guo-Cai Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Tian-Zhong Jing
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Hao Guan
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yun-He Zhao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Chuan-Shan Zou
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
13
|
Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:ijms24032907. [PMID: 36769229 PMCID: PMC9917820 DOI: 10.3390/ijms24032907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
|
14
|
Sadasivam N, Radhakrishnan K, Choi HS, Kim DK. Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:2907. [DOI: https:/doi.org/10.3390/ijms24032907 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Centre, Department of Microbiology, Combinatorial Tumour Immunotheraphy MRC, Medical School, Chonnam National University, Gwangju 58128, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
15
|
The Synergistic Action of Metformin and Glycyrrhiza uralensis Fischer Extract Alleviates Metabolic Disorders in Mice with Diet-Induced Obesity. Int J Mol Sci 2023; 24:ijms24020936. [PMID: 36674447 PMCID: PMC9862386 DOI: 10.3390/ijms24020936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Metformin, an antidiabetic drug, and Glycyrrhiza uralensis Fischer (GU), an oriental medicinal herb, have been reported to exert anti-obesity effects. This study investigated the synergistic action of metformin and GU in improving diet-induced obesity. Mice were fed a normal diet, a high-fat diet (HFD), or HFD + 0.015% GU water extract for 8 weeks. The HFD and GU groups were then randomly divided into two groups and fed the following diets for the next 8 weeks: HFD with 50 mg/kg metformin (HFDM) and GU with 50 mg/kg metformin (GUM). GUM prevented hepatic steatosis and adiposity by suppressing expression of mRNAs and enzyme activities related to lipogenesis in the liver and upregulating the expression of adipocyte mRNAs associated with fatty acid oxidation and lipolysis, and as a result, improved dyslipidemia. Moreover, GUM improved glucose homeostasis by inducing glucose uptake in tissues and upregulating mRNA expressions associated with glycolysis in the liver and muscle through AMP-activated protein kinase activation. GUM also improved inflammation by increasing antioxidant activity in the liver and erythrocytes and decreasing inflammatory cytokine productions. Here, we demonstrate that GU and metformin exert synergistic action in the prevention of obesity and its complications.
Collapse
|
16
|
Onyango AN. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae. Heliyon 2022; 8:e12294. [PMID: 36582692 PMCID: PMC9792795 DOI: 10.1016/j.heliyon.2022.e12294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Paradoxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeogenesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
Collapse
|
17
|
A blast from the past: To tame time with metformin. Mech Ageing Dev 2022; 208:111743. [PMID: 36279989 DOI: 10.1016/j.mad.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The strong evidence of metformin use in subjects affected by type 2 diabetes (T2DM) on health outcomes, together with data from pre-clinical studies, has led the gerontological research to study the therapeutic potential of such a drug as a slow-aging strategy. However, despite clinical use for over fifty years as an anti-diabetic drug, the mechanisms of action beyond glycemic control remain unclear. In this review, we have deeply examined the literature, doing a narrative review from the metformin story, through mechanisms of action to slow down aging potential, from lower organisms to humans. Based on the available evidence, we conclude that metformin, as shown in lower organisms and mice, may be effective in humans' longevity. A complete analysis and follow-up of ongoing clinical trials may provide more definitive answers as to whether metformin should be promoted beyond its use to treat T2DM as a drug that enhances both healthspan and lifespan.
Collapse
|
18
|
Dugbartey GJ, Alornyo KK, Adams I, Atule S, Obeng-Kyeremeh R, Amoah D, Adjei S. Targeting hepatic sulfane sulfur/hydrogen sulfide signaling pathway with α-lipoic acid to prevent diabetes-induced liver injury via upregulating hepatic CSE/3-MST expression. Diabetol Metab Syndr 2022; 14:148. [PMID: 36229864 PMCID: PMC9558364 DOI: 10.1186/s13098-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Diabetes-induced liver injury is a complication of diabetes mellitus of which there are no approved drugs for effective treatment or prevention. This study investigates possible hepatoprotective effect of alpha-lipoic acid (ALA), and sulfane sulfur/hydrogen sulfide pathway as a novel protective mechanism in a rat model of type 2 diabetes-induced liver injury. METHODS Thirty Sprague-Dawley rats underwent fasting for 12 h after which fasting blood glucose was measured and rats were randomly assigned to diabetic and non-diabetic groups. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). Diabetic rats were treated daily with ALA (60 mg/kg/day p.o.) or 40 mg/kg/day DL-propargylglycine (PPG, an inhibitor of endogenous hydrogen sulfide production) for 6 weeks and then sacrificed. Liver, pancreas and blood samples were collected for analysis. Untreated T2DM rats received distilled water. RESULTS Hypoinsulinemia, hyperglycemia, hepatomegaly and reduced hepatic glycogen content were observed in untreated T2DM rats compared to healthy control group (p < 0.001). Also, the pancreas of untreated T2DM rats showed severely damaged pancreatic islets while liver damage was characterized by markedly increased hepatocellular vacuolation, sinusoidal enlargement, abnormal intrahepatic lipid accumulation, severe transaminitis, hyperbilirubinemia, and impaired hepatic antioxidant status and inflammation compared to healthy control rats (p < 0.01). While pharmacological inhibition of hepatic sulfane sulfur/hydrogen sulfide with PPG administration aggravated these pathological changes (p < 0.05), ALA strongly prevented these changes. ALA also significantly increased hepatic expression of hydrogen sulfide-producing enzymes (cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase) as well as hepatic sulfane sulfur and hydrogen sulfide levels compared to all groups (p < 0.01). CONCLUSIONS To the best of our knowledge, this is the first experimental evidence showing that ALA prevents diabetes-induced liver injury by activating hepatic sulfane sulfur/hydrogen sulfide pathway via upregulation of hepatic cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase expressions. Therefore, ALA could serve as a novel pharmacological agent for the treatment and prevention of diabetes-induced liver injury, with hepatic sulfane sulfur/hydrogen sulfide as a novel therapeutic target.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Richard Obeng-Kyeremeh
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amoah
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
19
|
Li S, Xu B, Fan S, Kang B, Deng L, Chen D, Yang B, Tang F, He Z, Xue Y, Zhou JC. Effects of single-nucleotide polymorphism on the pharmacokinetics and pharmacodynamics of metformin. Expert Rev Clin Pharmacol 2022; 15:1107-1117. [PMID: 36065506 DOI: 10.1080/17512433.2022.2118714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Metformin has been recognized as the first-choice drug for type 2 diabetes mellitus (T2DM). The potency of metformin in the treatment of type 2 diabetes has always been in the spotlight and shown significant individual differences. Based on previous studies, the efficacy of metformin is related to the single-nucleotide polymorphisms of transporter genes carried by patients, amongst which a variety of gene polymorphisms of transporter and target protein genes affect the effectiveness and adverse repercussion of metformin. AREAS COVERED Here, we reviewed the current knowledge about gene polymorphisms impacting metformin efficacy based on transporter and drug target proteins. EXPERT OPINION The reason for the difference in clinical drug potency of metformin can be attributed to the gene polymorphism of drug transporters and drug target proteins in the human body. Substantial evidence shows that genetic polymorphisms in transporters such as organic cation transporter 1 (OCT1) and organic cation transporter 2 (OCT2) affect the glucose-lowering effectiveness of metformin. However, optimization of individualized dosing regimens of metformin is necessary to clarify the role of several polymorphisms.
Collapse
Affiliation(s)
- Shaoqian Li
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Xu
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shangzhi Fan
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Yang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Tang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zunbo He
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong Xue
- The Second Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie-Can Zhou
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Park JE, Han JS. HM-chromanone suppresses hepatic glucose production via activation of AMP-activated protein kinase in HepG2 cell. Eur J Pharmacol 2022; 928:175108. [PMID: 35718128 DOI: 10.1016/j.ejphar.2022.175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
We investigated whether (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone) could suppress the transcription factors expression and enzymes involved in glucose production by activating AMPK in hepatocytes. HepG2 cells were treated with a medium containing HM-chromanone (5-100 μM), compound C (10 μM) and insulin (100 nM). Glucose production and glycogen synthesis assay were determined using a glucose assay kit and glycogen assay kit, respectively. Activities of AMP-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC), cAMP response element-binding protein (CREB), PPAR coactivator-1α (PGC1α), CREB-regulated transcription coactivator 2 (CRTC2), Glycogen synthase kinase (GSK3β), Phosphoenolpyruvate carboxykinase (PEPCK), glycogen synthase (GS), Glucose 6-phosphatase (G6pase) and β-actin were determined by Western blot analysis. HM-chromanone significantly inhibited hepatic glucose production and increased glycogen synthesis by activating glycogen synthase. HM-chromanone induced the phosphorylation of CRTC2 and GSK-3β by phosphorylating AMPK in HepG2 cells, which was confirmed by compound C. Furthermore, it significantly decreased the phosphorylation of CREB in a time- and concentration-dependent manner, and the effect was reversed in the presence of compound C. Therefore, the complex formation of CRTC2 and CREB was inhibited. HM-chromanone inhibited the expression of PGC-1α, PEPCK, and G6Pase genes involved in production of hepatic glucose. The results showed that HM-chromanone activates AMPK in a time and concentration dependent manner, thus suppressing hepatic glucose production and increasing glycogen synthesis in HepG2 cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, Republic of Korea.
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
21
|
Lemon Balm and Corn Silk Mixture Alleviates Metabolic Disorders Caused by a High-Fat Diet. Antioxidants (Basel) 2022; 11:antiox11040730. [PMID: 35453415 PMCID: PMC9029851 DOI: 10.3390/antiox11040730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
We recently reported that varying combination ratios of lemon balm (Mellissa officinalis L.) and corn silk extracts (Stigma of Zea mays L. fruit) could reduce the obesity caused by a high-fat diet (HFD). The present study investigated the dose-dependent effect of a 1:1 (w:w) mixture of lemon balm and corn silk extracts (M-LB/CS) on HFD-mediated metabolic disorders and compared the effect with metformin. Oral administration of 50–200 mg/kg of M-LB/CS for 84 days significantly inhibited HFD-induced body weight gain, adipocyte hypertrophy, and lipogenic gene induction without affecting food consumption in mice. Biochemical analyses showed that M-LB/CS blocked abnormal lipid accumulation in the blood by escalating fecal lipid excretion. In addition, M-LB/CS prevented HFD-mediated pancreatic atrophy, decreased the number of insulin- and glucagon-immunoreactive cells, and inhibited increases in glycated hemoglobin, glucose, and insulin. Moreover, M-LB/CS also reduced hepatic injury, lipid accumulation, gluconeogenesis, and lipid peroxidation in parallel with the induction of AMP-activated protein kinase and antioxidant enzymes. Furthermore, M-LB/CS protected the kidney by inhibiting tubular vacuolation and reducing serum creatinine and blood urea nitrogen levels. The prophylactic effect of 100 mg/kg M-LB/CS-administration was comparable to that of metformin. Therefore, M-LB/CS may be an alternative option for managing obesity and its related metabolic disorders.
Collapse
|
22
|
Dou X, Zhou WY, Ding M, Ma YJ, Yang QQ, Qian SW, Tang Y, Tang QQ, Liu Y. The protease SENP2 controls hepatic gluconeogenesis by regulating the SUMOylation of the fuel sensor AMPKα. J Biol Chem 2021; 298:101544. [PMID: 34971706 PMCID: PMC8888337 DOI: 10.1016/j.jbc.2021.101544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled gluconeogenesis results in elevated hepatic glucose production in type 2 diabetes. The SUMO-specific protease 2 (SENP2) is known to catalyze deSUMOylation of target proteins, with broad effects on cell growth, signal transduction, and developmental processes. However, the role of SENP2 in hepatic gluconeogenesis and the occurrence of type 2 diabetes remains unknown. Herein, we established SENP2 hepatic knockout mice and found that SENP2 deficiency could protect against high fat diet-induced hyperglycemia. Pyruvate or glucagon-induced elevation in blood glucose was attenuated by disruption of SENP2 expression, whereas overexpression of SENP2 in the liver facilitated high fat diet-induced hyperglycemia. Using an in vitro assay, we showed that SENP2 regulated hepatic glucose production. Mechanistically, the effects of SENP2 on gluconeogenesis were found to be mediated by the cellular fuel sensor kinase AMPKα, which is a negative regulator of gluconeogenesis. SENP2 interacted with and deSUMOylated AMPKα, thereby promoting its ubiquitination and reducing its protein stability. Inhibition of AMPKα kinase activity dramatically reversed impaired hepatic gluconeogenesis and reduced blood glucose levels in SENP2-deficient mice. Our study highlights the novel role of hepatic SENP2 in regulating gluconeogenesis and furthers our understanding of the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Xin Dou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Wei-Yu Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yin-Jun Ma
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Qi-Qi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China.
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Wu J, Nagy LE, Wang L. The long and the small collide: LncRNAs and small heterodimer partner (SHP) in liver disease. Mol Cell Endocrinol 2021; 528:111262. [PMID: 33781837 PMCID: PMC8087644 DOI: 10.1016/j.mce.2021.111262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that plays a pivotal role in many biological processes by acting as a transcriptional repressor. In this review, we present the critical roles of SHP and summarize recent findings demonstrating the regulation between lncRNAs and SHP in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Li Wang
- Independent Researcher, Tucson, AZ, USA
| |
Collapse
|
24
|
Roy B, Palaniyandi SS. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci 2021; 11:77. [PMID: 33902691 PMCID: PMC8073961 DOI: 10.1186/s13578-021-00587-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization, metabolic syndrome (MetS) can be defined as a pathological condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. The incidence of MetS keeps rising, as at least 35% of the USA population suffers from MetS. One of the worst comorbidities of metabolic syndrome are cardiovascular diseases that significantly amplifies the mortality associated with this syndrome. There is an urgent need to understand the pathophysiology of MetS to find novel diagnosis, treatment and management to mitigate the MetS and associated complications. Altered circulatory adiponectin levels have been implicated in MetS. Adiponectin has numerous biologic functions including antioxidative, anti-nitrative, anti-inflammatory, and cardioprotective effects. Being a pleiotropic hormone of multiple tissues, tissue-specific key signaling pathways of adiponectin will help finding specific target/s to blunt the pathophysiology of metabolic syndrome and associated disorders. The purpose of this review is to elucidate tissue-specific signaling pathways of adiponectin and possibly identify potential therapeutic targets for MetS as well as to evaluate the potential of adiponectin as a biomarker/therapeutic option in MetS.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Integrative Biosciences Center (IBio), Room #3402, 6135 Woodward, Detroit, MI 48202 USA
- Department of Physiology, Wayne State University, Detroit, MI 48202 USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Integrative Biosciences Center (IBio), Room #3402, 6135 Woodward, Detroit, MI 48202 USA
- Department of Physiology, Wayne State University, Detroit, MI 48202 USA
| |
Collapse
|
25
|
Palombo V, Alharthi A, Batistel F, Parys C, Guyader J, Trevisi E, D'Andrea M, Loor JJ. Unique adaptations in neonatal hepatic transcriptome, nutrient signaling, and one-carbon metabolism in response to feeding ethyl cellulose rumen-protected methionine during late-gestation in Holstein cows. BMC Genomics 2021; 22:280. [PMID: 33865335 PMCID: PMC8053294 DOI: 10.1186/s12864-021-07538-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methionine (Met) supply during late-pregnancy enhances fetal development in utero and leads to greater rates of growth during the neonatal period. Due to its central role in coordinating nutrient and one-carbon metabolism along with immune responses of the newborn, the liver could be a key target of the programming effects induced by dietary methyl donors such as Met. To address this hypothesis, liver biopsies from 4-day old calves (n = 6/group) born to Holstein cows fed a control or the control plus ethyl-cellulose rumen-protected Met for the last 28 days prepartum were used for DNA methylation, transcriptome, metabolome, proteome, and one-carbon metabolism enzyme activities. RESULTS Although greater withers and hip height at birth in Met calves indicated better development in utero, there were no differences in plasma systemic physiological indicators. RNA-seq along with bioinformatics and transcription factor regulator analyses revealed broad alterations in 'Glucose metabolism', 'Lipid metabolism, 'Glutathione', and 'Immune System' metabolism due to enhanced maternal Met supply. Greater insulin sensitivity assessed via proteomics, and efficiency of transsulfuration pathway activity suggested beneficial effects on nutrient metabolism and metabolic-related stress. Maternal Met supply contributed to greater phosphatidylcholine synthesis in calf liver, with a role in very low density lipoprotein secretion as a mechanism to balance metabolic fates of fatty acids arising from the diet or adipose-depot lipolysis. Despite a lack of effect on hepatic amino acid (AA) transport, a reduction in metabolism of essential AA within the liver indicated an AA 'sparing effect' induced by maternal Met. CONCLUSIONS Despite greater global DNA methylation, maternal Met supply resulted in distinct alterations of hepatic transcriptome, proteome, and metabolome profiles after birth. Data underscored an effect on maintenance of calf hepatic Met homeostasis, glutathione, phosphatidylcholine and taurine synthesis along with greater efficiency of nutrient metabolism and immune responses. Transcription regulators such as FOXO1, PPARG, E2F1, and CREB1 appeared central in the coordination of effects induced by maternal Met. Overall, maternal Met supply induced better immunometabolic status of the newborn liver, conferring the calf a physiologic advantage during a period of metabolic stress and suboptimal immunocompetence.
Collapse
Affiliation(s)
- Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Abdulrahman Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Mariasilvia D'Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Targeting Cancer Metabolism and Current Anti-Cancer Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:15-48. [PMID: 33725343 DOI: 10.1007/978-3-030-55035-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have exploited the metabolic hallmarks that distinguish between normal and cancer cells, aiming at identifying specific targets of anti-cancer drugs. It has become apparent that metabolic flexibility allows cancer cells to survive during high anabolic demand or the depletion of nutrients and oxygen. Cancers can reprogram their metabolism to the microenvironments by increasing aerobic glycolysis to maximize ATP production, increasing glutaminolysis and anabolic pathways to support bioenergetic and biosynthetic demand during rapid proliferation. The increased key regulatory enzymes that support the relevant pathways allow us to design small molecules which can specifically block activities of these enzymes, preventing growth and metastasis of tumors. In this review, we discuss metabolic adaptation in cancers and highlight the crucial metabolic enzymes involved, specifically those involved in aerobic glycolysis, glutaminolysis, de novo fatty acid synthesis, and bioenergetic pathways. Furthermore, we also review the success and the pitfalls of the current anti-cancer drugs which have been applied in pre-clinical and clinical studies.
Collapse
|
27
|
Chen M, Huang N, Liu J, Huang J, Shi J, Jin F. AMPK: A bridge between diabetes mellitus and Alzheimer's disease. Behav Brain Res 2020; 400:113043. [PMID: 33307136 DOI: 10.1016/j.bbr.2020.113043] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and etiology of diabetes mellitus (DM) and Alzheimer's disease (AD) share many common cellular and molecular themes. Recently, a growing body of research has shown that AMP-activated protein kinase (AMPK), a biomolecule that regulates energy balance and glucose and lipid metabolism, plays key roles in DM and AD. In this review, we summarize the relevant research on the roles of AMPK in DM and AD, including its functions in gluconeogenesis and insulin resistance (IR) and its relationships with amyloid β-protein (Aβ), Tau and AMPK activators. In DM, AMPK is involved in the regulation of glucose metabolism and IR. AMPK is closely related to gluconeogenesis, which can not only be activated by the upstream kinases liver kinase B1 (LKB1), transforming growth factor β-activated kinase 1 (TAK1), and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) but also regulate the downstream kinases glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxy kinase (PEPCK), thereby affecting gluconeogenesis and ameliorating DM. Moreover, AMPK can regulate glucose transporter 4 (GLUT4) and free fatty acids to improve IR. In AD, AMPK can ameliorate abnormal brain energy metabolism, not only by reduces Aβ deposition through β-secretase but also reduces tau hyperphosphorylation through sirtuin 1 (SIRT1) and protein phosphatase 2A (PP2A). Therefore, AMPK is a bridge between DM and AD.
Collapse
Affiliation(s)
- Meixiang Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ju Liu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
28
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
29
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
30
|
Kong G, Zhou L, Serger E, Palmisano I, De Virgiliis F, Hutson TH, Mclachlan E, Freiwald A, La Montanara P, Shkura K, Puttagunta R, Di Giovanni S. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab 2020; 2:918-933. [PMID: 32778834 DOI: 10.1038/s42255-020-0252-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Guiping Kong
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Luming Zhou
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Elisabeth Serger
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Francesco De Virgiliis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Thomas H Hutson
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Eilidh Mclachlan
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Anja Freiwald
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Paolo La Montanara
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Kirill Shkura
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Radhika Puttagunta
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
32
|
Kim JH, Yoon JE, Nikapitiya C, Kim TH, Uddin MB, Lee HC, Kim YH, Hwang JH, Chathuranga K, Chathuranga WAG, Choi HS, Kim CJ, Jung JU, Lee CH, Lee JS. Small Heterodimer Partner Controls the Virus-Mediated Antiviral Immune Response by Targeting CREB-Binding Protein in the Nucleus. Cell Rep 2020; 27:2105-2118.e5. [PMID: 31091449 DOI: 10.1016/j.celrep.2019.04.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/01/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023] Open
Abstract
Small heterodimer partner (SHP) is an orphan nuclear receptor that acts as a transcriptional co-repressor by interacting with nuclear receptors and transcription factors. Although SHP plays a negative regulatory function in various signaling pathways, its role in virus infection has not been studied. Here, we report that SHP is a potent negative regulator of the virus-mediated type I IFN signaling that maintains homeostasis within the antiviral innate immune system. Upon virus infection, SHP interacts specifically with CREB-binding protein (CBP) in the nucleus, thereby obstructing CBP/β-catenin interaction competitively. Consequently, SHP-deficient cells enhance antiviral responses, including transcription of the type I IFN gene, upon virus infection. Furthermore, SHP-deficient mice show higher levels of IFN production and are more resistant to influenza A virus infection. Our results suggest that SHP is a nuclear regulator that blocks transcription of the type I IFN gene to inhibit excessive innate immune responses.
Collapse
Affiliation(s)
- Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ji-Eun Yoon
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Faculty of Veterinary & Animal Science, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
33
|
Chen X, Chen S, Shen T, Yang W, Chen Q, Zhang P, You Y, Sun X, Xu H, Tang Y, Mi J, Yang Y, Ling W. Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes. FASEB J 2020; 34:10056-10072. [PMID: 32579277 DOI: 10.1096/fj.202000115rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/11/2022]
Abstract
Adropin as a secretory peptide has shown a protective role on the disorders of glucose and lipid metabolism. However, the role and mechanism of this peptide on the hepatic glucose production has remained unclear. Adropin knockout (KO) mice were generated to explore its effects on the enhanced hepatic glucose production in obesity. We found that compared to wild-type (WT) mice, adropin-KO mice developed the unbalanced enhanced hepatic glucose production in advance of the whole-body insulin resistance (IR) by high-fat diet (HFD). Mechanistically, adropin dissociated CREB-CRTC2 and FoxO1-PGC1α complex and reduced their binding to the promoters of G6Pase and PEPCK to decrease glucose production in IR. However, these effects were not observed in insulin-sensitive hepatocytes. Furthermore, in IR hepatocytes, dampened AMPK signaling was re-activated by adropin treatment via inhibition of PP2A. To further authenticate AMPK role in vivo, we administrated HFD-fed mice with AAV8-CA AMPKα and found that AMPK activation functionally restored the aberrant glucose production and IR induced by adropin-deficiency. This study provides evidence that adropin activates the AMPK pathway via inhibition of PP2A and decreases the liver glucose production in IR context. Therefore, adropin may represent a novel target for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Tianran Shen
- Department of Nutrition, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wenqi Yang
- Laboratory Center for Sport Science and Medicine, Guangzhou Institute of Physical Education, Guangzhou, PR China
| | - Qian Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Peiwen Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Xiaoyuan Sun
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Huihui Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Jiaxin Mi
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Yan Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| |
Collapse
|
34
|
Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol 2020; 19:62. [PMID: 32404204 PMCID: PMC7222526 DOI: 10.1186/s12933-020-01041-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a lysosome-dependent intracellular degradative pathway, which mediates the cellular adaptation to nutrient and oxygen depletion as well as to oxidative and endoplasmic reticulum stress. The molecular mechanisms that stimulate autophagy include the activation of energy deprivation sensors, sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK). These enzymes not only promote organellar integrity directly, but they also enhance autophagic flux, which leads to the removal of dysfunctional mitochondria and peroxisomes. Type 2 diabetes is characterized by suppression of SIRT1 and AMPK signaling as well as an impairment of autophagy; these derangements contribute to an increase in oxidative stress and the development of cardiomyopathy. Antihyperglycemic drugs that signal through insulin may further suppress autophagy and worsen heart failure. In contrast, metformin and SGLT2 inhibitors activate SIRT1 and/or AMPK and promote autophagic flux to varying degrees in cardiomyocytes, which may explain their benefits in experimental cardiomyopathy. However, metformin and SGLT2 inhibitors differ meaningfully in the molecular mechanisms that underlie their effects on the heart. Whereas metformin primarily acts as an agonist of AMPK, SGLT2 inhibitors induce a fasting-like state that is accompanied by ketogenesis, a biomarker of enhanced SIRT1 signaling. Preferential SIRT1 activation may also explain the ability of SGLT2 inhibitors to stimulate erythropoiesis and reduce uric acid (a biomarker of oxidative stress)—effects that are not seen with metformin. Changes in both hematocrit and serum urate are the most important predictors of the ability of SGLT2 inhibitors to reduce the risk of cardiovascular death and hospitalization for heart failure in large-scale trials. Metformin and SGLT2 inhibitors may also differ in their ability to mitigate diabetes-related increases in intracellular sodium concentration and its adverse effects on mitochondrial functional integrity. Differences in the actions of SGLT2 inhibitors and metformin may reflect the distinctive molecular pathways that explain differences in the cardioprotective effects of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX, 75226, USA. .,Imperial College, London, UK.
| |
Collapse
|
35
|
Packer M. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors. J Am Soc Nephrol 2020; 31:907-919. [PMID: 32276962 DOI: 10.1681/asn.2020010010] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation-sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)-can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas .,Imperial College, London, United Kingdom
| |
Collapse
|
36
|
Kim JH, Hong AR, Kim YH, Yoo H, Kang SW, Chang SE, Song Y. JNK suppresses melanogenesis by interfering with CREB-regulated transcription coactivator 3-dependent MITF expression. Am J Cancer Res 2020; 10:4017-4029. [PMID: 32226536 PMCID: PMC7086364 DOI: 10.7150/thno.41502] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Melanogenesis is a critical self-defense mechanism against ultraviolet radiation (UVR)-induced skin damage and carcinogenesis; however, dysregulation of melanin production and distribution causes skin-disfiguring pigmentary disorders. Melanogenesis is initiated by UVR-induced cAMP generation and ensuing activation of transcription factor CREB, which induces expression of the master melanogenic regulator MITF. Recent studies have demonstrated that recruitment of CRTCs to the CREB transcription complex is also required for UVR-stimulated melanogenesis. Therefore, modulation of cAMP-CRTC/CREB-MITF signaling may be a useful therapeutic strategy for UVR-associated skin pigmentary disorders. Methods: We identified the small-molecule Ro31-8220 from CREB/CRTC activity screening and examined its melanogenic activity in cultured mouse and human melanocytes as well as in human skin. Molecular mechanisms were deciphered by immunoblotting, RT-PCR, promoter assays, tyrosinase activity assays, immunofluorescent examination of CRTC3 subcellular localization, and shRNA-based knockdown. Results: Ro31-8220 suppressed basal and cAMP-stimulated melanin production in melanocytes and human melanocyte co-culture as well as UVR-stimulated melanin accumulation in human skin through downregulation of MITF and tyrosinase expression. Mechanistically, down regulation of MITF expression by Ro31-8220 was due to inhibition of transcriptional activity of CREB, which was resulted from phosphorylation-dependent blockade of nuclear translocation of CRTC3 via JNK activation. The selective JNK activator anisomycin also inhibited melanin production through phosphoinhibition of CRTC3, while JNK inhibition enhanced melanogenesis by stimulating CRTC3 dephosphorylation and nuclear migration. Conclusions: Melanogenesis can be enhanced or suppressed via pharmacological modulation of a previously unidentified JNK-CRTC/CREB-MITF signaling axis. As Ro31-8220 potently inhibits UVR-stimulated melanin accumulation in human skin, suggesting that small-molecule JNK-CRTC signaling modulators may provide therapeutic benefit for pigmentation disorders.
Collapse
|
37
|
Seth Nanda C, Venkateswaran SV, Patani N, Yuneva M. Defining a metabolic landscape of tumours: genome meets metabolism. Br J Cancer 2020; 122:136-149. [PMID: 31819196 PMCID: PMC7051970 DOI: 10.1038/s41416-019-0663-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex disease of multiple alterations occuring at the epigenomic, genomic, transcriptomic, proteomic and/or metabolic levels. The contribution of genetic mutations in cancer initiation, progression and evolution is well understood. However, although metabolic changes in cancer have long been acknowledged and considered a plausible therapeutic target, the crosstalk between genetic and metabolic alterations throughout cancer types is not clearly defined. In this review, we summarise the present understanding of the interactions between genetic drivers of cellular transformation and cancer-associated metabolic changes, and how these interactions contribute to metabolic heterogeneity of tumours. We discuss the essential question of whether changes in metabolism are a cause or a consequence in the formation of cancer. We highlight two modes of how metabolism contributes to tumour formation. One is when metabolic reprogramming occurs downstream of oncogenic mutations in signalling pathways and supports tumorigenesis. The other is where metabolic reprogramming initiates transformation being either downstream of mutations in oncometabolite genes or induced by chronic wounding, inflammation, oxygen stress or metabolic diseases. Finally, we focus on the factors that can contribute to metabolic heterogeneity in tumours, including genetic heterogeneity, immunomodulatory factors and tissue architecture. We believe that an in-depth understanding of cancer metabolic reprogramming, and the role of metabolic dysregulation in tumour initiation and progression, can help identify cellular vulnerabilities that can be exploited for therapeutic use.
Collapse
Affiliation(s)
| | | | - Neill Patani
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London, UK.
| |
Collapse
|
38
|
Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 2019; 15:569-589. [PMID: 31439934 DOI: 10.1038/s41574-019-0242-2] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Despite its position as the first-line drug for treatment of type 2 diabetes mellitus, the mechanisms underlying the plasma glucose level-lowering effects of metformin (1,1-dimethylbiguanide) still remain incompletely understood. Metformin is thought to exert its primary antidiabetic action through the suppression of hepatic glucose production. In addition, the discovery that metformin inhibits the mitochondrial respiratory chain complex 1 has placed energy metabolism and activation of AMP-activated protein kinase (AMPK) at the centre of its proposed mechanism of action. However, the role of AMPK has been challenged and might only account for indirect changes in hepatic insulin sensitivity. Various mechanisms involving alterations in cellular energy charge, AMP-mediated inhibition of adenylate cyclase or fructose-1,6-bisphosphatase 1 and modulation of the cellular redox state through direct inhibition of mitochondrial glycerol-3-phosphate dehydrogenase have been proposed for the acute inhibition of gluconeogenesis by metformin. Emerging evidence suggests that metformin could improve obesity-induced meta-inflammation via direct and indirect effects on tissue-resident immune cells in metabolic organs (that is, adipose tissue, the gastrointestinal tract and the liver). Furthermore, the gastrointestinal tract also has a major role in metformin action through modulation of glucose-lowering hormone glucagon-like peptide 1 and the intestinal bile acid pool and alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Centre, Leiden, Netherlands
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.
- CNRS, UMR8104, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
39
|
Luna-Vital DA, Chatham L, Juvik J, Singh V, Somavat P, de Mejia EG. Activating Effects of Phenolics from Apache Red Zea mays L. on Free Fatty Acid Receptor 1 and Glucokinase Evaluated with a Dual Culture System with Epithelial, Pancreatic, and Liver Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9148-9159. [PMID: 30785272 DOI: 10.1021/acs.jafc.8b06642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim was to characterize a phenolic-rich water extract from the pericarp of an improved genotype of Apache red maize (RPE) and evaluate its ability to activate the type 2 diabetes markers free fatty acid receptor 1 (GPR40) and glucokinase (GK) in vitro. The extract contained mainly phenolic acids, anthocyanins, and other flavonoids. RPE inhibited α-amylase (IC50 = 88.3 μg/mL), α-glucosidase (IC50 = 169.3 μg/mL), and reduced glucose transport in a Caco-2 cell monolayer (up to 25%). Furthermore, RPE activated GPR40 (EC50 = 77.7 μg/mL) in pancreatic INS-1E cells and GK (EC50 = 43.4 μg/mL) in liver HepG2 cells, potentially through allosteric modulation. RPE activated GPR40-related insulin secretory pathway and activated the glucose metabolism regulator AMPK (up to 78%). Our results support the hypothesis that foods with a high concentration of anthocyanins and phenolic acids, such as in the selected variety of maize used, could ameliorate obesity and type 2 diabetes comorbidities.
Collapse
Affiliation(s)
- Diego A Luna-Vital
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Laura Chatham
- Department of Crop Sciences , University of Illinois at Urbana-Champaign , 307 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - John Juvik
- Department of Crop Sciences , University of Illinois at Urbana-Champaign , 307 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Vijay Singh
- Department of Agricultural and Biological Engineering , University of Illinois at Urbana-Champaign , 1304 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| | - Pavel Somavat
- School of Earth, Environmental, and Marine Sciences , The University of Texas Rio Grande Valley , ESCNE 1.618, 1201 West University Dr. , Edinburg , Texas 78539 , United States
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| |
Collapse
|
40
|
Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Arch Biochem Biophys 2019; 672:108057. [PMID: 31356781 DOI: 10.1016/j.abb.2019.07.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are generated by gut microbial fermentation of dietary fiber. SCFAs may exert multiple beneficial effects on human lipid and glucose metabolism. However, their actions and underlying mechanisms are not fully elucidated. In this study, we examined the direct effects of propionate on hepatic glucose and lipid metabolism using human HepG2 hepatocytes. Here, we demonstrate that propionate at a physiologically-relevant concentration effectively suppresses palmitate-enhanced glucose production in HepG2 cells but does not affect intracellular neutral lipid levels. Our results indicated that propionate can decline in gluconeogenesis by down-regulation of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) through activation of AMP-activated protein kinase (AMPK), which is a major regulator of the hepatic glucose metabolism. Mechanistic studies also revealed that propionate-stimulated AMPK phosphorylation can be ascribed to Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation in response to an increase in intracellular Ca2+ concentration. Moreover, siRNA-mediated knockdown of the propionate receptor GPR43 prevented propionate-inducible activation of AMPK and abrogates the gluconeogenesis-inhibitory action. Thus, our data indicate that the binding of propionate to hepatic GPR43 elicits CaMKKβ-dependent activation of AMPK through intracellular Ca2+ increase, leading to suppression of gluconeogenesis. The present study suggests the potential efficacy of propionate in preventive and therapeutic management of diabetes.
Collapse
|
41
|
Malik SA, Acharya JD, Mehendale NK, Kamat SS, Ghaskadbi SS. Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation. Free Radic Res 2019; 53:815-827. [PMID: 31223033 DOI: 10.1080/10715762.2019.1635252] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Insulin resistance (IR) is known to precede onset of type 2 diabetes and increased oxidative stress appears to be a deleterious factor leading to IR. In this study, we evaluated ability of pterostilbene (PTS), a methoxylated analogue of resveratrol and a known antioxidant, to reverse palmitic acid (PA)-mediated IR in HepG2 cells. PTS prevented reactive oxygen species (ROS) formation and subsequent oxidative lipid damage by reducing the expression of NADPH oxidase 3 (NOX3) in PA treated HepG2 cells. Hepatic glucose production was used as a measure of IR and PTS reversed PA-mediated increase in hepatic glucose production by reducing expression of genes coding for gluconeogenic enzymes namely glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate carboxylase (PC); and their transcription factors cAMP response element binding protein (CREB) and fork head class Box O (FOXO1) along with its coactivator peroxisome proliferator-activated receptor gamma co-activator-1 α (PGC1α). PTS reversed PA-mediated activation of c-Jun N-terminal kinase (JNK), which in turn altered insulin signalling pathway by phosphorylating IRS-1 at Ser 307, leading to inhibition of phosphorylation of Akt and GSK-3β. PTS also reduced PA-mediated lipid accumulation by reducing expression of transcription factors SREBP1c and PPARα. SREBP1c activates genes involved in fatty acid and triglyceride synthesis while PPARα activates CPT1, a rate limiting enzyme for controlling entry and oxidation of fatty acids into mitochondria. PTS, however, did not influence PA uptake confirmed by using BODIPY-labelled fluorescent C16 fatty acid analogue. Thus, our data provides a possible mechanistic explanation for reversal of PA-mediated IR in HepG2 cells.
Collapse
Affiliation(s)
- Sajad Ahmad Malik
- a Department of Zoology, Savitribai Phule Pune University , Pune , India
| | - Jhankar D Acharya
- a Department of Zoology, Savitribai Phule Pune University , Pune , India
| | - Neelay K Mehendale
- b Department of Biology, Indian Institute of Science Education and Research , Pune , India
| | - Siddhesh S Kamat
- b Department of Biology, Indian Institute of Science Education and Research , Pune , India
| | - Saroj S Ghaskadbi
- a Department of Zoology, Savitribai Phule Pune University , Pune , India
| |
Collapse
|
42
|
Kim YH, Kim D, Hong AR, Kim JH, Yoo H, Kim J, Kim I, Kang SW, Chang SE, Song Y. Therapeutic Potential of Rottlerin for Skin Hyperpigmentary Disorders by Inhibiting the Transcriptional Activity of CREB-Regulated Transcription Coactivators. J Invest Dermatol 2019; 139:2359-2367.e2. [PMID: 31176710 DOI: 10.1016/j.jid.2019.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022]
Abstract
Exposure to UVR stimulates the cAMP signaling pathway, which leads to melanin deposits in skin tissues. Although melanogenesis can be beneficial by protecting skin from UVR-induced damage, excessive or uneven deposits of melanin can cause various skin hyperpigmentation disorders. Because cAMP-responsive element binding protein (CREB) and CREB-regulated transcription coactivators (CRTC) play a major role in conveying cAMP signals that induce transcription of microphthalmia-associated transcription factor and melanin production, we screened for a CREB or CRTC inhibitor and identified rottlerin (Rot) as a potent inhibitor of its transcriptional activity. Rot suppressed melanin production in both basal and cAMP-stimulated cultured melanocytes by downregulating melanogenic gene expression. In addition, topical application of Rot on the tails of mice decreased melanin accumulation. Mechanistically, we showed that Rot decreased the mitochondrial membrane potential, which then activated AMPK, leading to the phosphorylation and nuclear exclusion of CRTC3 and suppressing the expression of CREB target genes, including MITF. Our study demonstrates that Rot is an active antimelanogenic agent and suggests that screening for an inhibitor of CREB or CRTC transcriptional activity is a promising strategy by which to discover better drugs to treat skin hyperpigmentary disorders.
Collapse
Affiliation(s)
- Yo-Han Kim
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Ulsan, Korea; Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Ulsan, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Donghwan Kim
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Ulsan, Korea; Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Ulsan, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - A-Reum Hong
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Ulsan, Korea; Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Ulsan, Korea
| | - Ji-Hye Kim
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Ulsan, Korea; Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Ulsan, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hanju Yoo
- Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Ulsan, Korea; Department of Dermatology, University of Ulsan, College of Medicine, Ulsan, Korea
| | - Jinhwan Kim
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Ulsan, Korea; Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Ulsan, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Inki Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Ulsan, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, University of Ulsan, College of Medicine, Ulsan, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Ulsan, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
43
|
Chhabra Y, Nelson CN, Plescher M, Barclay JL, Smith AG, Andrikopoulos S, Mangiafico S, Waxman DJ, Brooks AJ, Waters MJ. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity. FASEB J 2019; 33:6412-6430. [PMID: 30779881 PMCID: PMC6463913 DOI: 10.1096/fj.201802328r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growth hormone (GH) has an important function as an insulin antagonist with elevated insulin sensitivity evident in humans and mice lacking a functional GH receptor (GHR). We sought the molecular basis for this sensitivity by utilizing a panel of mice possessing specific deletions of GHR signaling pathways. Metabolic clamps and glucose homeostasis tests were undertaken in these obese adult C57BL/6 male mice, which indicated impaired hepatic gluconeogenesis. Insulin sensitivity and glucose disappearance rate were enhanced in muscle and adipose of mice lacking the ability to activate the signal transducer and activator of transcription (STAT)5 via the GHR (Ghr-391-/-) as for GHR-null (GHR-/-) mice. These changes were associated with a striking inhibition of hepatic glucose output associated with altered glycogen metabolism and elevated hepatic glycogen content during unfed state. The enhanced hepatic insulin sensitivity was associated with increased insulin receptor β and insulin receptor substrate 1 activation along with activated downstream protein kinase B signaling cascades. Although phosphoenolpyruvate carboxykinase (Pck)-1 expression was unchanged, its inhibitory acetylation was elevated because of decreased sirtuin-2 expression, thereby promoting loss of PCK1. Loss of STAT5 signaling to defined chromatin immunoprecipitation targets would further increase lipogenesis, supporting hepatosteatosis while lowering glucose output. Finally, up-regulation of IL-15 expression in muscle, with increased secretion of adiponectin and fibroblast growth factor 1 from adipose tissue, is expected to promote insulin sensitivity.-Chhabra, Y., Nelson, C. N., Plescher, M., Barclay, J. L., Smith, A. G., Andrikopoulos, S., Mangiafico, S., Waxman, D. J., Brooks, A. J., Waters, M. J. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity.
Collapse
Affiliation(s)
- Yash Chhabra
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Caroline N Nelson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Monika Plescher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Johanna L Barclay
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sof Andrikopoulos
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | | | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Andrew J Brooks
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Park J, Joe Y, Ryter SW, Surh YJ, Chung HT. Similarities and Distinctions in the Effects of Metformin and Carbon Monoxide in Immunometabolism. Mol Cells 2019; 42:292-300. [PMID: 31091555 PMCID: PMC6530647 DOI: 10.14348/molcells.2019.0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022] Open
Abstract
Immunometabolism, defined as the interaction of metabolic pathways with the immune system, influences the pathogenesis of metabolic diseases. Metformin and carbon monoxide (CO) are two pharmacological agents known to ameliorate metabolic disorders. There are notable similarities and differences in the reported effects of metformin and CO on immunometabolism. Metformin, an anti-diabetes drug, has positive effects on metabolism and can exert anti-inflammatory and anti-cancer effects via adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. CO, an endogenous product of heme oxygenase-1 (HO-1), can exert anti-inflammatory and antioxidant effects at low concentration. CO can confer cytoprotection in metabolic disorders and cancer via selective activation of the protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) pathway. Both metformin and CO can induce mitochondrial stress to produce a mild elevation of mitochondrial ROS (mtROS) by distinct mechanisms. Metformin inhibits complex I of the mitochondrial electron transport chain (ETC), while CO inhibits ETC complex IV. Both metformin and CO can differentially induce several protein factors, including fibroblast growth factor 21 (FGF21) and sestrin2 (SESN2), which maintain metabolic homeostasis; nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant response; and REDD1, which exhibits an anticancer effect. However, metformin and CO regulate these effects via different pathways. Metformin stimulates p53- and AMPK-dependent pathways whereas CO can selectively trigger the PERK-dependent signaling pathway. Although further studies are needed to identify the mechanistic differences between metformin and CO, pharmacological application of these agents may represent useful strategies to ameliorate metabolic diseases associated with altered immunometabolism.
Collapse
Affiliation(s)
- Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Stefan W. Ryter
- Joan and Sanford I. Weill Department of Medicine, and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, NY 10065,
USA
| | - Young-Joon Surh
- Tumor microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08733,
Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| |
Collapse
|
45
|
Zhang X, Yang S, Chen J, Su Z. Unraveling the Regulation of Hepatic Gluconeogenesis. Front Endocrinol (Lausanne) 2019; 9:802. [PMID: 30733709 PMCID: PMC6353800 DOI: 10.3389/fendo.2018.00802] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatic gluconeogenesis, de novo glucose synthesis from available precursors, plays a crucial role in maintaining glucose homeostasis to meet energy demands during prolonged starvation in animals. The abnormally increased rate of hepatic gluconeogenesis contributes to hyperglycemia in diabetes. Gluconeogenesis is regulated on multiple levels, such as hormonal secretion, gene transcription, and posttranslational modification. We review here the molecular mechanisms underlying the transcriptional regulation of gluconeogenesis in response to nutritional and hormonal changes. The nutrient state determines the hormone release, which instigates the signaling cascades in the liver to modulate the activities of various transcriptional factors through various post-translational modifications like phosphorylation, methylation, and acetylation. AMP-activated protein kinase (AMPK) can mediate the activities of some transcription factors, however its role in the regulation of gluconeogenesis remains uncertain. Metformin, a primary hypoglycemic agent of type 2 diabetes, ameliorates hyperglycemia predominantly through suppression of hepatic gluconeogenesis. Several molecular mechanisms have been proposed to be metformin's mode of action.
Collapse
Affiliation(s)
| | | | | | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Liu H, Qi X, Yu K, Lu A, Lin K, Zhu J, Zhang M, Sun Z. AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct 2019; 10:151-162. [DOI: 10.1039/c8fo01486h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AMPK is involved in hypoglycemic and hypolipidemic activities of mogrosides from Siraitia grosvenorii (Swingle) fruits on diabetic mice.
Collapse
Affiliation(s)
- Hesheng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Xiangyang Qi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Keke Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Anjie Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Kaifeng Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Jiajing Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Zhida Sun
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| |
Collapse
|
47
|
A single extra copy of Down syndrome critical region 1-4 results in impaired hepatic glucose homeostasis. Mol Metab 2018; 21:82-89. [PMID: 30583978 PMCID: PMC6407364 DOI: 10.1016/j.molmet.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/19/2023] Open
Abstract
Objectives During fasting, hepatic gluconeogenesis is induced to maintain energy homeostasis. Moreover, abnormal dysregulation of hepatic glucose production is commonly observed in type 2 diabetes. However, the signaling components controlling hepatic glucose production to maintain normal glucose levels are not fully understood. Here, we examined the physiological role of Down syndrome critical region 1–4 (DSCR1-4), an endogenous calcineurin signaling inhibitor in the liver that mediates metabolic adaptation to fasting. Methods We assessed the effect of cyclosporine A, an inhibitor of calcineurin signaling on gluconeogenic gene expression in primary hepatocytes. DSCR1-4 expression was examined in diet- and genetically-induced mouse models of obesity. We also investigated the metabolic phenotype of a single extra copy of DSCR1-4 in transgenic mice and how DSCR1-4 regulates glucose homeostasis in the liver. Results Treatment with cyclosporin A increased hepatic glucose production and gluconeogenic gene expression. The expression of DSCR1-4 was induced by refeeding and overexpressed in obese mouse livers. Moreover, transgenic mice with a single extra copy of DSCR1-4 exhibited pyruvate intolerance and impaired glucose homeostasis. Mechanistically, DSCR1-4 overexpression increased phosphorylation of the cAMP response element-binding protein, which led to elevated expression levels of gluconeogenic genes and, thus, enhanced hepatic glucose production during fasting. Conclusion A single extra copy of DSCR1-4 results in dysregulated hepatic glucose homeostasis and pyruvate intolerance. Our findings suggest that nutrient-sensitive DSCR1-4 is a novel target for controlling hepatic gluconeogenesis in diabetes. DSCR1 mRNA and protein levels are increased in livers upon nutrient availability. DSCR1-4 is overexpressed in diet- or genetically induced obesity. DSCR1-4 trisomy mice exhibit impaired glucose homeostasis and pyruvate intolerance. Trisomy of DSCR1-4 leads to increased hepatic glucose production.
Collapse
|
48
|
Tamargo-Gómez I, Mariño G. AMPK: Regulation of Metabolic Dynamics in the Context of Autophagy. Int J Mol Sci 2018; 19:ijms19123812. [PMID: 30501132 PMCID: PMC6321489 DOI: 10.3390/ijms19123812] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells have developed mechanisms that allow them to link growth and proliferation to the availability of energy and biomolecules. AMPK (adenosine monophosphate-activated protein kinase) is one of the most important molecular energy sensors in eukaryotic cells. AMPK activity is able to control a wide variety of metabolic processes connecting cellular metabolism with energy availability. Autophagy is an evolutionarily conserved catabolic pathway whose activity provides energy and basic building blocks for the synthesis of new biomolecules. Given the importance of autophagic degradation for energy production in situations of nutrient scarcity, it seems logical that eukaryotic cells have developed multiple molecular links between AMPK signaling and autophagy regulation. In this review, we will discuss the importance of AMPK activity for diverse aspects of cellular metabolism, and how AMPK modulates autophagic degradation and adapts it to cellular energetic status. We will explain how AMPK-mediated signaling is mechanistically involved in autophagy regulation both through specific phosphorylation of autophagy-relevant proteins or by indirectly impacting in the activity of additional autophagy regulators.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain.
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain.
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain.
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain.
| |
Collapse
|
49
|
Kumagai A, Itakura A, Koya D, Kanasaki K. AMP-Activated Protein (AMPK) in Pathophysiology of Pregnancy Complications. Int J Mol Sci 2018; 19:ijms19103076. [PMID: 30304773 PMCID: PMC6212814 DOI: 10.3390/ijms19103076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Although the global maternal mortality ratio has been consistently reduced over time, in 2015, there were still 303,000 maternal deaths throughout the world, of which 99% occurred in developing countries. Understanding pathophysiology of pregnancy complications contributes to the proper prenatal care for the reduction of prenatal, perinatal and neonatal mortality and morbidity ratio. In this review, we focus on AMP-activated protein kinase (AMPK) as a regulator of pregnancy complications. AMPK is a serine/threonine kinase that is conserved within eukaryotes. It regulates the cellular and whole-body energy homeostasis under stress condition. The functions of AMPK are diverse, and the dysregulation of AMPK is known to correlate with many disorders such as cardiovascular disease, diabetes, inflammatory disease, and cancer. During pregnancy, AMPK is necessary for the proper placental differentiation, nutrient transportation, maternal and fetal energy homeostasis, and protection of the fetal membrane. Activators of AMPK such as 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), resveratrol, and metformin restores pregnancy complications such as gestational diabetes mellitus (GDM), preeclampsia, intrauterine growth restriction, and preterm birth preclinically. We also discuss on the relationship between catechol-O-methyltransferase (COMT), an enzyme that metabolizes catechol, and AMPK during pregnancy. It is known that metformin cannot activate AMPK in COMT deficient mice, and that 2-methoxyestradiol (2-ME), a metabolite of COMT, recovers the AMPK activity, suggesting that COMT is a regulator of AMPK. These reports suggest the therapeutic use of AMPK activators for various pregnancy complications, however, careful analysis is required for the safe use of AMPK activators since AMPK activation could cause fetal malformation.
Collapse
Affiliation(s)
- Asako Kumagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
50
|
Lee JM, Han HS, Jung YS, Harris RA, Koo SH, Choi HS. The SMILE transcriptional corepressor inhibits cAMP response element-binding protein (CREB)-mediated transactivation of gluconeogenic genes. J Biol Chem 2018; 293:13125-13133. [PMID: 29950523 DOI: 10.1074/jbc.ra118.002196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Under fasting conditions, activation of several hepatic genes sets the stage for gluconeogenesis in the liver. cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 2 (CRTC2), and peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α) are essential for this transcriptional induction of gluconeogenic genes. PGC-1α induction is mediated by activation of a CREB/CRTC2 signaling complex, and recent findings have revealed that small heterodimer partner-interacting leucine zipper protein (SMILE), a member of the CREB/ATF family of basic region-leucine zipper (bZIP) transcription factors, is an insulin-inducible corepressor that decreases PGC-1α expression and abrogates its stimulatory effect on hepatic gluconeogenesis. However, the molecular mechanism whereby SMILE suppresses PGC-1α expression is unknown. Here, we investigated SMILE's effects on the CREB/CRTC2 signaling pathway and glucose metabolism. We found that SMILE significantly inhibits CREB/CRTC2-induced PGC-1α expression by interacting with and disrupting the CREB/CRTC2 complex. Consequently, SMILE decreased PGC-1α-induced hepatic gluconeogenic gene expression. Furthermore, SMILE inhibited CREB/CRTC2-induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene expression by directly repressing the expression of these genes and by indirectly inhibiting the expression of PGC-1α via CREB/CRTC2 repression. Indeed, enhanced gluconeogenesis and circulating blood glucose levels in mice injected with an adenovirus construct containing a constitutively active CRTC2 variant (CRTC2-S171A) were significantly reduced by WT SMILE, but not by leucine zipper-mutated SMILE. These results reveal that SMILE represses CREB/CRTC2-induced PGC-1α expression, an insight that may help inform potential therapeutic approaches targeting PGC-1α-mediated regulation of hepatic glucose metabolism.
Collapse
Affiliation(s)
- Ji-Min Lee
- From the National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hye-Sook Han
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 136-713, Republic of Korea, and
| | - Yoon Seok Jung
- From the National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 136-713, Republic of Korea, and
| | - Hueng-Sik Choi
- From the National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea,
| |
Collapse
|