1
|
Zhao J, Yang Q, Cheng C, Wang Z. Cumulative genetic score of KIAA0319 affects reading ability in Chinese children: moderation by parental education and mediation by rapid automatized naming. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:10. [PMID: 37259151 DOI: 10.1186/s12993-023-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
KIAA0319, a well-studied candidate gene, has been shown to be associated with reading ability and developmental dyslexia. In the present study, we investigated whether KIAA0319 affects reading ability by interacting with the parental education level and whether rapid automatized naming (RAN), phonological awareness and morphological awareness mediate the relationship between KIAA0319 and reading ability. A total of 2284 Chinese children from primary school grades 3 and 6 participated in this study. Chinese character reading accuracy and word reading fluency were used as measures of reading abilities. The cumulative genetic risk score (CGS) of 13 SNPs in KIAA0319 was calculated. Results revealed interaction effect between CGS of KIAA0319 and parental education level on reading fluency. The interaction effect suggested that individuals with a low CGS of KIAA0319 were better at reading fluency in a positive environment (higher parental educational level) than individuals with a high CGS. Moreover, the interaction effect coincided with the differential susceptibility model. The results of the multiple mediator model revealed that RAN mediates the impact of the genetic cumulative effect of KIAA0319 on reading abilities. These findings provide evidence that KIAA0319 is a risk vulnerability gene that interacts with environmental factor to impact reading abilities and demonstrate the reliability of RAN as an endophenotype between genes and reading associations.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| | - Qing Yang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Chen Cheng
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| |
Collapse
|
2
|
Elsherif M, Mourad M, Hamouda N, Abdou R, Salem T. Diagnostic performance of a modified visual perception test. HEARING, BALANCE AND COMMUNICATION 2022. [DOI: 10.1080/21695717.2022.2155777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mayada Elsherif
- Otolaryngology Head and Neck Department, Audiovestibular Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Mona Mourad
- Otolaryngology Head and Neck Department, Audiovestibular Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Nesrine Hamouda
- Otolaryngology Head and Neck Department, Phoniatrics Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Rania Abdou
- Otolaryngology Head and Neck Department, Phoniatrics Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Taima Salem
- Otolaryngology Head and Neck Department, Audiovestibular Unit, Alexandria University Hospitals, Alexandria, Egypt
| |
Collapse
|
3
|
Perrino PA, Chasse RY, Monaco AP, Molnár Z, Velayos‐Baeza A, Fitch RH. Rapid auditory processing and medial geniculate nucleus anomalies in Kiaa0319 knockout mice. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12808. [PMID: 35419947 PMCID: PMC9744489 DOI: 10.1111/gbb.12808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Developmental dyslexia is a common neurodevelopmental disorder characterized by difficulties in reading and writing. Although underlying biological and genetic mechanisms remain unclear, anomalies in phonological processing and auditory processing have been associated with dyslexia. Several candidate risk genes have also been identified, with KIAA0319 as a main candidate. Animal models targeting the rodent homolog (Kiaa0319) have been used to explore putative behavioral and anatomic anomalies, with mixed results. For example after downregulation of Kiaa0319 expression in rats via shRNA, significant adult rapid auditory processing impairments were reported, along with cortical anomalies reflecting atypical neuronal migration. Conversely, Kiaa0319 knockout (KO) mice were reported to have typical adult auditory processing, and no visible cortical anomalies. To address these inconsistencies, we tested Kiaa0319 KO mice on auditory processing tasks similar to those used previously in rat shRNA knockdown studies. Subsequent neuroanatomic analyses on these same mice targeted medial geniculate nucleus (MGN), a receptive communication-related brain structure. Results confirm that Kiaa0319 KO mice exhibit significant auditory processing impairments specific to rapid/brief stimuli, and also show significant volumetric reductions and a shift toward fewer large and smaller neurons in the MGN. The latter finding is consistent with post mortem MGN data from human dyslexic brains. Combined evidence supports a role for KIAA0319 in the development of auditory CNS pathways subserving rapid auditory processing functions critical to the development of speech processing, language, and ultimately reading. Results affirm KIAA0319 variation as a possible risk factor for dyslexia specifically via anomalies in central acoustic processing pathways.
Collapse
Affiliation(s)
- Peter A. Perrino
- Department of Psychological Science/Behavioral NeuroscienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Renee Y. Chasse
- Department of Psychological Science/Behavioral NeuroscienceUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - R. Holly Fitch
- Department of Psychological Science/Behavioral NeuroscienceUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
4
|
KIAA0319 influences cilia length, cell migration and mechanical cell-substrate interaction. Sci Rep 2022; 12:722. [PMID: 35031635 PMCID: PMC8760330 DOI: 10.1038/s41598-021-04539-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023] Open
Abstract
Following its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell-substrate force regulation.
Collapse
|
5
|
Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res 2020; 106:39-84. [PMID: 32327148 DOI: 10.1016/bs.aivir.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV) is a nonenveloped, ssDNA virus in the parvovirus family, which has become one of the leading candidate vectors for human gene therapy. AAV has been studied extensively to identify host cellular factors involved in infection, as well as to identify capsid variants that confer clinically favorable transduction profiles ex vivo and in vivo. Recent advances in technology have allowed for direct genetic approaches to be used to more comprehensively characterize host factors required for AAV infection and allowed for identification of a critical multi-serotype receptor, adeno-associated virus receptor (AAVR). In this chapter, we will discuss the interactions of AAV with its glycan and proteinaceous receptors and describe the host and viral components involved in AAV entry, which requires cellular attachment, endocytosis, trafficking to the trans-Golgi network and nuclear import. AAV serves as a paradigm for entry of nonenveloped viruses. Furthermore, we will discuss the potential of utilizing our increased understanding of virus-host interactions during AAV entry to develop better AAV-based therapeutics, with a focus on host factors and capsid interactions involved in in vivo tropism.
Collapse
|
6
|
Landi N, Perdue M. Neuroimaging genetics studies of specific reading disability and developmental language disorder: A review. LANGUAGE AND LINGUISTICS COMPASS 2019; 13:e12349. [PMID: 31844423 PMCID: PMC6913889 DOI: 10.1111/lnc3.12349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developmental disorders of spoken and written language are heterogeneous in nature with impairments observed across various linguistic, cognitive, and sensorimotor domains. These disorders are also associated with characteristic patterns of atypical neural structure and function that are observable early in development, often before formal schooling begins. Established patterns of heritability point toward genetic contributions, and molecular genetics approaches have identified genes that play a role in these disorders. Still, identified genes account for only a limited portion of phenotypic variance in complex developmental disorders, described as the problem of "missing heritability." The characterization of intermediate phenotypes at the neural level may fill gaps in our understanding of heritability patterns in complex disorders, and the emerging field of neuroimaging genetics offers a promising approach to accomplish this goal. The neuroimaging genetics approach is gaining prevalence in language- and reading-related research as it is well-suited to incorporate behavior, genetics, and neurobiology into coherent etiological models of complex developmental disorders. Here, we review research applying the neuroimaging genetics approach to the study of specific reading disability (SRD) and developmental language disorder (DLD), much of which links genes with known neurodevelopmental function to functional and structural abnormalities in the brain.
Collapse
Affiliation(s)
- Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| | - Meaghan Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| |
Collapse
|
7
|
Guidi LG, Velayos‐Baeza A, Martinez‐Garay I, Monaco AP, Paracchini S, Bishop DVM, Molnár Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur J Neurosci 2018; 48:3212-3233. [PMID: 30218584 PMCID: PMC6282621 DOI: 10.1111/ejn.14149] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
The capacity for language is one of the key features underlying the complexity of human cognition and its evolution. However, little is known about the neurobiological mechanisms that mediate normal or impaired linguistic ability. For developmental dyslexia, early postmortem studies conducted in the 1980s linked the disorder to subtle defects in the migration of neurons in the developing neocortex. These early studies were reinforced by human genetic analyses that identified dyslexia susceptibility genes and subsequent evidence of their involvement in neuronal migration. In this review, we examine recent experimental evidence that does not support the link between dyslexia and neuronal migration. We critically evaluate gene function studies conducted in rodent models and draw attention to the lack of robust evidence from histopathological and imaging studies in humans. Our review suggests that the neuronal migration hypothesis of dyslexia should be reconsidered, and the neurobiological basis of dyslexia should be approached with a fresh start.
Collapse
Affiliation(s)
- Luiz G. Guidi
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Isabel Martinez‐Garay
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Division of NeuroscienceSchool of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Guidi LG, Holloway ZG, Arnoult C, Ray PF, Monaco AP, Molnár Z, Velayos-Baeza A. AU040320 deficiency leads to disruption of acrosome biogenesis and infertility in homozygous mutant mice. Sci Rep 2018; 8:10379. [PMID: 29991750 PMCID: PMC6039479 DOI: 10.1038/s41598-018-28666-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/27/2018] [Indexed: 12/31/2022] Open
Abstract
Study of knockout (KO) mice has helped understand the link between many genes/proteins and human diseases. Identification of infertile KO mice provides valuable tools to characterize the molecular mechanisms underlying gamete formation. The KIAA0319L gene has been described to have a putative association with dyslexia; surprisingly, we observed that homozygous KO males for AU040320, KIAA0319L ortholog, are infertile and present a globozoospermia-like phenotype. Mutant spermatozoa are mostly immotile and display a malformed roundish head with no acrosome. In round spermatids, proacrosomal vesicles accumulate close to the acroplaxome but fail to coalesce into a single acrosomal vesicle. In wild-type mice AU040320 localises to the trans-Golgi-Network of germ cells but cannot be detected in mature acrosomes. Our results suggest AU040320 may be necessary for the normal formation of proacrosomal vesicles or the recruitment of cargo proteins required for downstream events leading to acrosomal fusion. Mutations in KIAA0319L could lead to human infertility; we screened for KIAA0319L mutations in a selected cohort of globozoospermia patients in which no genetic abnormalities have been previously identified, but detected no pathogenic changes in this particular cohort.
Collapse
Affiliation(s)
- Luiz G Guidi
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Zoe G Holloway
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Christophe Arnoult
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F-38000, France
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F-38000, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, F-38000, France
| | - Anthony P Monaco
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Office of the President, Ballou Hall, Tufts University, Medford, MA, 02155, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Antonio Velayos-Baeza
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
9
|
Guidi LG, Mattley J, Martinez-Garay I, Monaco AP, Linden JF, Velayos-Baeza A, Molnár Z. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing. Cereb Cortex 2017; 27:5831-5845. [PMID: 29045729 PMCID: PMC5939205 DOI: 10.1093/cercor/bhx269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system.
Collapse
Affiliation(s)
- Luiz G Guidi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jane Mattley
- Ear Institute, University College London, London WC1X 8EE, UK
| | - Isabel Martinez-Garay
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Current address: Office of the President, Ballou Hall, Tufts University, Medford, MA 02155, USA
| | - Jennifer F Linden
- Ear Institute, University College London, London WC1X 8EE, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
10
|
Adams AK, Smith SD, Truong DT, Willcutt EG, Olson RK, DeFries JC, Pennington BF, Gruen JR. Enrichment of putatively damaging rare variants in the DYX2 locus and the reading-related genes CCDC136 and FLNC. Hum Genet 2017; 136:1395-1405. [PMID: 28866788 PMCID: PMC5702371 DOI: 10.1007/s00439-017-1838-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Eleven loci with prior evidence for association with reading and language phenotypes were sequenced in 96 unrelated subjects with significant impairment in reading performance drawn from the Colorado Learning Disability Research Center collection. Out of 148 total individual missense variants identified, the chromosome 7 genes CCDC136 and FLNC contained 19. In addition, a region corresponding to the well-known DYX2 locus for RD contained 74 missense variants. Both allele sets were filtered for a minor allele frequency ≤0.01 and high Polyphen-2 scores. To determine if observations of these alleles are occurring more frequently in our cases than expected by chance in aggregate, counts from our sample were compared to the number of observations in the European subset of the 1000 Genomes Project using Fisher's exact test. Significant P values were achieved for both CCDC136/FLNC (P = 0.0098) and the DYX2 locus (P = 0.012). Taken together, this evidence further supports the influence of these regions on reading performance. These results also support the influence of rare variants in reading disability.
Collapse
Affiliation(s)
- Andrew K Adams
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Shelley D Smith
- Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | | | - Jeffrey R Gruen
- Department of Genetics, Yale University, New Haven, CT, USA.
- Department of Pediatrics and the Investigative Medicine Program, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Adeno-associated Virus (AAV) Serotypes Have Distinctive Interactions with Domains of the Cellular AAV Receptor. J Virol 2017; 91:JVI.00391-17. [PMID: 28679762 PMCID: PMC5571256 DOI: 10.1128/jvi.00391-17] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and a proteinaceous receptor(s). Adeno-associated virus receptor (AAVR) (also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes, including the evolutionarily distant serotypes AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. By using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a molecular mass of 150 kDa. By establishing a purification procedure, performing further protein separation by two-dimensional electrophoresis, and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is an N-linked glycosylated protein, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and virus overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like polycystic kidney disease (PKD) repeat domain (PKD2) present in the ectodomain of AAVR. In contrast, AAV5 interacts primarily through the first, most membrane-distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes, including AAV1 and -8, require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor. IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. However, fundamental aspects of the AAV life cycle, including how AAV interacts with host cellular factors to facilitate infection, are only partly understood. In particular, AAV receptors contribute significantly to AAV vector transduction efficiency and tropism. The recently identified AAV receptor (AAVR) is a key host receptor for multiple serotypes, including the most studied serotype, AAV2. AAVR binds directly to AAV2 particles and is rate limiting for viral transduction. Defining the AAV-AAVR interface in more detail is important to understand how AAV engages with its cellular receptor and how the receptor facilitates the entry process. Here, we further define AAV-AAVR interactions, genetically and biochemically, and show that different AAV serotypes have discrete interactions with the Ig-like PKD domains of AAVR. These findings reveal an unexpected divergence of AAVR engagement within these parvoviruses.
Collapse
|
12
|
The role of READ1 and KIAA0319 genetic variations in developmental dyslexia: testing main and interactive effects. J Hum Genet 2017; 62:949-955. [DOI: 10.1038/jhg.2017.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/23/2022]
|
13
|
Martinez-Garay I, Guidi LG, Holloway ZG, Bailey MAG, Lyngholm D, Schneider T, Donnison T, Butt SJB, Monaco AP, Molnár Z, Velayos-Baeza A. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice. Brain Struct Funct 2017; 222:1367-1384. [PMID: 27510895 PMCID: PMC5368214 DOI: 10.1007/s00429-016-1282-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.
Collapse
Affiliation(s)
- Isabel Martinez-Garay
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
| | - Luiz G Guidi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Zoe G Holloway
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Melissa A G Bailey
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Daniel Lyngholm
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Tomasz Schneider
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Timothy Donnison
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon J B Butt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Office of the President, Ballou Hall, Tufts University, Medford, MA, 02155, USA.
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Antonio Velayos-Baeza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
14
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
15
|
Franquinho F, Nogueira-Rodrigues J, Duarte JM, Esteves SS, Carter-Su C, Monaco AP, Molnár Z, Velayos-Baeza A, Brites P, Sousa MM. The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. Cereb Cortex 2017; 27:1732-1747. [PMID: 28334068 PMCID: PMC5905272 DOI: 10.1093/cercor/bhx023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/23/2016] [Accepted: 01/18/2017] [Indexed: 01/21/2023] Open
Abstract
KIAA0319 is a transmembrane protein associated with dyslexia with a presumed role in neuronal migration. Here we show that KIAA0319 expression is not restricted to the brain but also occurs in sensory and spinal cord neurons, increasing from early postnatal stages to adulthood and being downregulated by injury. This suggested that KIAA0319 participates in functions unrelated to neuronal migration. Supporting this hypothesis, overexpression of KIAA0319 repressed axon growth in hippocampal and dorsal root ganglia neurons; the intracellular domain of KIAA0319 was sufficient to elicit this effect. A similar inhibitory effect was observed in vivo as axon regeneration was impaired after transduction of sensory neurons with KIAA0319. Conversely, the deletion of Kiaa0319 in neurons increased neurite outgrowth in vitro and improved axon regeneration in vivo. At the mechanistic level, KIAA0319 engaged the JAK2-SH2B1 pathway to activate Smad2, which played a central role in KIAA0319-mediated repression of axon growth. In summary, we establish KIAA0319 as a novel player in axon growth and regeneration with the ability to repress the intrinsic growth potential of axons. This study describes a novel regulatory mechanism operating during peripheral nervous system and central nervous system axon growth, and offers novel targets for the development of effective therapies to promote axon regeneration.
Collapse
Affiliation(s)
- Filipa Franquinho
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular – IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar – ICBAS, 4050-313 Porto, Portugal
| | - Joana Nogueira-Rodrigues
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular – IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Joana M. Duarte
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular – IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Sofia S. Esteves
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular – IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Christin Carter-Su
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-22, USA
| | - Anthony P. Monaco
- The Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
- Office of the President, Ballou Hall, Tufts University, Medford, MA 02155, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | - Pedro Brites
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular – IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mónica M. Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular – IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
16
|
Pei J, Grishin NV. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54. Protein Sci 2017; 26:617-630. [PMID: 27977898 DOI: 10.1002/pro.3096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans.
Collapse
Affiliation(s)
| | - Nick V Grishin
- Howard Hughes Medical Institute.,Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| |
Collapse
|
17
|
Neef NE, Müller B, Liebig J, Schaadt G, Grigutsch M, Gunter TC, Wilcke A, Kirsten H, Skeide MA, Kraft I, Kraus N, Emmrich F, Brauer J, Boltze J, Friederici AD. Dyslexia risk gene relates to representation of sound in the auditory brainstem. Dev Cogn Neurosci 2017; 24:63-71. [PMID: 28182973 PMCID: PMC6987796 DOI: 10.1016/j.dcn.2017.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies associate poor reading with unstable speech-evoked brainstem responses. DCDC2 and KIAA0319 risk alleles form a strong genetic link with developmental dyslexia. Genetic burden with KIAA0319 risk is related to unstable speech-evoked brainstem responses. Genetic burden with DCDC2 risk is related to intact speech-evoked brainstem responses. Revealed brain-gene relationships may inform the multifactorial pathophysiology of dyslexia.
Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Bent Müller
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Maren Grigutsch
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Thomas C Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Arndt Wilcke
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Holger Kirsten
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig and LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Michael A Skeide
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Indra Kraft
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Frank Emmrich
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Johannes Boltze
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Department of Medical Cell Technology, Fraunhofer Research Institution for Marine Biotechnology, and Institute for Medical and Marine Biotechnology, University of Lübeck, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
19
|
Kong R, Song RR. [Research advances in susceptible genes for developmental dyslexia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1308-1312. [PMID: 27974128 PMCID: PMC7403085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2023]
Abstract
Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Collapse
Affiliation(s)
- Rui Kong
- Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
20
|
Kong R, Song RR. [Research advances in susceptible genes for developmental dyslexia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1308-1312. [PMID: 27974128 PMCID: PMC7403085 DOI: 10.7499/j.issn.1008-8830.2016.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Collapse
Affiliation(s)
- Rui Kong
- Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
21
|
KIAA0319 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children. J Hum Genet 2016; 61:745-52. [PMID: 27098879 PMCID: PMC4999827 DOI: 10.1038/jhg.2016.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/26/2016] [Accepted: 03/27/2016] [Indexed: 12/18/2022]
Abstract
The gene KIAA0319 has been reported to be associated with developmental dyslexia (DD) in previous studies, although the results have not always been consistent. However, few studies have been conducted in Uyghur populations. In the present study, we aimed to investigate the association of KIAA0319 polymorphisms and DD in individuals of Uyghurian descent. We used a custom-by-design 48-Plex SNPscan Kit to genotype 18 single-nucleotide polymorphisms (SNPs) of KIAA0319 in a group of 196 children with dyslexia and 196 controls of Uyghur descent aged 8-12 years. As a result, 7 SNPs (Pmin=0.001) of KIAA0319 had nominal significant differences between the cases and controls under specific genotypic models. The two SNPs rs6935076 (P=0.020 under dominant model; P=0.028 under additive model) and rs3756821 (P=0.021 under additive model) remained significantly associated with dyslexia after Bonferroni correction. Linkage disequilibrium analysis showed three blocks within KIAA0319, and only a 10-SNP haplotype in block 3 was present at significantly different frequencies in the dyslexic children and controls. This study indicated that genetic polymorphisms of KIAA0319 are associated with an increased risk of DD in the Uyghur population.
Collapse
|
22
|
Nielsen K, Abbott R, Griffin W, Lott J, Raskind W, Berninger VW. Evidence-Based Reading and Writing Assessment for Dyslexia in Adolescents and Young Adults. LEARNING DISABILITIES (PITTSBURGH, PA.) 2016; 21:38-56. [PMID: 26855554 PMCID: PMC4739804 DOI: 10.18666/ldmj-2016-v21-i1-6971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The same working memory and reading and writing achievement phenotypes (behavioral markers of genetic variants) validated in prior research with younger children and older adults in a multi-generational family genetics study of dyslexia were used to study 81 adolescent and young adults (ages 16 to 25) from that study. Dyslexia is impaired word reading and spelling skills below the population mean and ability to use oral language to express thinking. These working memory predictor measures were given and used to predict reading and writing achievement: Coding (storing and processing) heard and spoken words (phonological coding), read and written words (orthographic coding), base words and affixes (morphological coding), and accumulating words over time (syntax coding); Cross-Code Integration (phonological loop for linking phonological name and orthographic letter codes and orthographic loop for linking orthographic letter codes and finger sequencing codes), and Supervisory Attention (focused and switching attention and self-monitoring during written word finding). Multiple regressions showed that most predictors explained individual difference in at least one reading or writing outcome, but which predictors explained unique variance beyond shared variance depended on outcome. ANOVAs confirmed that research-supported criteria for dyslexia validated for younger children and their parents could be used to diagnose which adolescents and young adults did (n=31) or did not (n=50) meet research criteria for dyslexia. Findings are discussed in reference to the heterogeneity of phenotypes (behavioral markers of genetic variables) and their application to assessment for accommodations and ongoing instruction for adolescents and young adults with dyslexia.
Collapse
Affiliation(s)
- Kathleen Nielsen
- University of Washington Multidisciplinary Research Center (UWLDC)
| | - Robert Abbott
- Educational Psychology at the University of Washington
| | | | | | | | | |
Collapse
|
23
|
Powers NR, Eicher JD, Miller LL, Kong Y, Smith SD, Pennington BF, Willcutt EG, Olson RK, Ring SM, Gruen JR. The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles. J Med Genet 2015; 53:163-71. [PMID: 26660103 PMCID: PMC4789805 DOI: 10.1136/jmedgenet-2015-103418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
Background Reading disability (RD) and language impairment (LI) are heritable learning disabilities that obstruct acquisition and use of written and spoken language, respectively. We previously reported that two risk haplotypes, each in strong linkage disequilibrium (LD) with an allele of READ1, a polymorphic compound short tandem repeat within intron 2 of risk gene DCDC2, are associated with RD and LI. Additionally, we showed a non-additive genetic interaction between READ1 and KIAHap, a previously reported risk haplotype in risk gene KIAA0319, and that READ1 binds the transcriptional regulator ETV6. Objective To examine the hypothesis that READ1 is a transcriptional regulator of KIAA0319. Methods We characterised associations between READ1 alleles and RD and LI in a large European cohort, and also assessed interactions between READ1 and KIAHap and their effect on performance on measures of reading, language and IQ. We also used family-based data to characterise the genetic interaction, and chromatin conformation capture (3C) to investigate the possibility of a physical interaction between READ1 and KIAHap. Results and conclusions READ1 and KIAHap show interdependence—READ1 risk alleles synergise with KIAHap, whereas READ1 protective alleles act epistatically to negate the effects of KIAHap. The family data suggest that these variants interact in trans genetically, while the 3C results show that a region of DCDC2 containing READ1 interacts physically with the region upstream of KIAA0319. These data support a model in which READ1 regulates KIAA0319 expression through KIAHap and in which the additive effects of READ1 and KIAHap alleles are responsible for the trans genetic interaction.
Collapse
Affiliation(s)
- Natalie R Powers
- Investigate Medicine, Yale University, New Haven, Connecticut, USA Department of Pediatrics, Yale University, New Haven, Connecticut, USA
| | - John D Eicher
- Investigate Medicine, Yale University, New Haven, Connecticut, USA
| | - Laura L Miller
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut, USA
| | - Shelley D Smith
- Departments of Pediatrics and Developmental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA Departments of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA Departments of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Susan M Ring
- School of Social and Community Medicine, University of Bristol, Bristol, UK MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jeffrey R Gruen
- Investigate Medicine, Yale University, New Haven, Connecticut, USA Department of Pediatrics, Yale University, New Haven, Connecticut, USA Department of Investigative Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
24
|
An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Hum Genet 2015; 134:749-60. [DOI: 10.1007/s00439-015-1555-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 12/24/2022]
|
25
|
Sun Y, Gao Y, Zhou Y, Chen H, Wang G, Xu J, Xia J, Huen MSY, Siok WT, Jiang Y, Tan LH. Association study of developmental dyslexia candidate genes DCDC2 and KIAA0319 in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:627-34. [PMID: 25230923 DOI: 10.1002/ajmg.b.32267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/21/2014] [Indexed: 11/05/2022]
Abstract
Developmental dyslexia (DD) is characterized by difficulties in reading and spelling independent of intelligence, educational backgrounds and neurological injuries. Increasing evidences supported DD as a complex genetic disorder and identified four DD candidate genes namely DYX1C1, DCDC2, KIAA0319 and ROBO1. As such, DCDC2 and KIAA0319 are located in DYX2, one of the most studied DD susceptibility loci. However, association of these two genes with DD was inconclusive across different populations. Given the linguistic and genetic differences between Chinese and other populations, it is worthwhile to investigate association of DCDC2 and KIAA0319 with Chinese dyslexic children. Here, we selected 60 tag SNPs covering DCDC2 and KIAA0319 followed by high density genotyping in a large unrelated Chinese cohort with 502 dyslexic cases and 522 healthy controls. Several SNPs (Pmin = 0.0192) of DCDC2 and KIAA0319 as well as a four-maker haplotype (Padjusted = 0.0289, Odds Ratio (OR) = 1.3400) of KIAA0319 showed nominal association with DD. However, none of these results survived Bonferroni correction for multiple comparisons. Thus, the association of DCDC2 and KIAA0319 with DD in Chinese population should be further validated and their contribution to DD etiology and pathology should be interpreted with caution.
Collapse
Affiliation(s)
- Yimin Sun
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, China; CapitalBio Corporation, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mascheretti S, Riva V, Giorda R, Beri S, Lanzoni LFE, Cellino MR, Marino C. KIAA0319 and ROBO1: evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia. J Hum Genet 2014; 59:189-97. [PMID: 24430574 DOI: 10.1038/jhg.2013.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 01/17/2023]
Abstract
Substantial heritability has been reported for developmental dyslexia (DD), and KIAA0319 and ROBO1 appear as more than plausible candidate susceptibility genes for this developmental disorder. Converging evidence indicates that developmental difficulties in oral language and mathematics can predate or co-occur with DD, and substantial genetic correlations have been found between these abilities and reading traits. In this study, we explored the role of eight single-nucleotide polymorphisms spanning within KIAA0319 and ROBO1 genes, and DD as a dichotomic trait, related neuropsychological phenotypes and comorbid language and mathematical (dis)abilities in a large cohort of 493 Italian nuclear families ascertained through a proband with a diagnosis of DD. Marker-trait association was analyzed by implementing a general test of family-based association for quantitative traits (that is, the Quantitative Transmission Disequilibrium Test, version 2.5.1). By providing evidence for significant association with mathematics skills, our data add further result in support of ROBO1 contributing to the deficits in DD and its correlated phenotypes. Taken together, our findings shed further light into the etiologic basis and the phenotypic complexity of this developmental disorder.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Silvana Beri
- Molecular Biology Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | | | - Maria Rosaria Cellino
- Centro Regionale di Riferimento per i Disturbi dell'Apprendimento-CRRDA, ULSS 20, Verona, Italy
| | - Cecilia Marino
- 1] Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, QC, Canada [2] Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
27
|
Carrion-Castillo A, Franke B, Fisher SE. Molecular genetics of dyslexia: an overview. DYSLEXIA (CHICHESTER, ENGLAND) 2013; 19:214-240. [PMID: 24133036 DOI: 10.1002/dys.1464] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 05/28/2023]
Abstract
Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | | | | |
Collapse
|
28
|
Powers N, Eicher J, Butter F, Kong Y, Miller L, Ring S, Mann M, Gruen J. Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment. Am J Hum Genet 2013; 93:19-28. [PMID: 23746548 PMCID: PMC3710765 DOI: 10.1016/j.ajhg.2013.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 11/24/2022] Open
Abstract
Reading disability (RD) and language impairment (LI) are common learning disabilities that make acquisition and utilization of reading and verbal language skills, respectively, difficult for affected individuals. Both disorders have a substantial genetic component with complex inheritance. Despite decades of study, reading and language, like many other complex traits, consistently evade identification of causative and functional variants. We previously identified a putative functional risk variant, named BV677278 for its GenBank accession number, for RD in DCDC2. This variant consists of an intronic microdeletion and a highly polymorphic short tandem repeat (STR) within its breakpoints. We have also shown this STR to bind to an unknown nuclear protein with high specificity. Here, we replicate BV677278's association with RD, expand its association to LI, identify the BV677278-binding protein as the transcription factor ETV6, and provide compelling genetic evidence that BV677278 is a regulatory element that influences reading and language skills. We also provide evidence that BV677278 interacts nonadditively with KIAA0319, an RD-associated gene, to adversely affect several reading and cognitive phenotypes. On the basis of these data, we propose a new name for BV677278: "READ1" or "regulatory element associated with dyslexia 1."
Collapse
Affiliation(s)
- Natalie R. Powers
- Department of Genetics, Yale University, 464 Congress Avenue, Suite 243, New Haven, CT 06520, USA
| | - John D. Eicher
- Department of Genetics, Yale University, 464 Congress Avenue, Suite 243, New Haven, CT 06520, USA
| | - Falk Butter
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | - Laura L. Miller
- School of Social and Community Medicine, University of Bristol, Rooms OF10 and OF18, Oakfield House, Oakfield Grove, Clifton, Bristol BS8 2BN, UK
| | - Susan M. Ring
- School of Social and Community Medicine, University of Bristol, Rooms OF10 and OF18, Oakfield House, Oakfield Grove, Clifton, Bristol BS8 2BN, UK
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jeffrey R. Gruen
- Department of Genetics, Yale University, 464 Congress Avenue, Suite 243, New Haven, CT 06520, USA
- Department of Pediatrics, Yale University, 464 Congress Avenue, Suite 208, New Haven, CT 06520, USA
- Department of Investigative Medicine, Yale University, 464 Congress Avenue, Suite 208, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Szalkowski CE, Fiondella CF, Truong DT, Rosen GD, LoTurco JJ, Fitch RH. The effects of Kiaa0319 knockdown on cortical and subcortical anatomy in male rats. Int J Dev Neurosci 2013; 31:116-22. [PMID: 23220223 PMCID: PMC3689304 DOI: 10.1016/j.ijdevneu.2012.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/13/2022] Open
Abstract
Developmental dyslexia is a disorder characterized by a specific deficit in reading despite adequate overall intelligence and educational resources. The neurological substrate underlying these significant behavioral impairments is not known. Studies of post mortem brain tissue from male and female dyslexic individuals revealed focal disruptions of neuronal migration concentrated in the left hemisphere, along with aberrant symmetry of the right and left the planum temporale, and changes in cell size distribution within the medial geniculate nucleus of the thalamus (Galaburda et al., 1985; Humphreys et al., 1990). More recent neuroimaging studies have identified several changes in the brains of dyslexic individuals, including regional changes in gray matter, changes in white matter, and changes in patterns of functional activation. In a further effort to elucidate the etiology of dyslexia, epidemiological and genetic studies have identified several candidate dyslexia susceptibility genes. Some recent work has investigated associations between some of these genetic variants and structural changes in the brain. Variants of one candidate dyslexia susceptibility gene, KIAA0319, have been linked to morphological changes in the cerebellum and functional activational changes in the superior temporal sulcus (Jamadar et al., 2011; Pinel et al., 2012). Animal models have been used to create a knockdown of Kiaa0319 (the rodent homolog of the human gene) via in utero RNA interference in order to study the gene's effects on brain development and behavior. Studies using this animal model have demonstrated that knocking down the gene leads to focal disruptions of neuronal migration in the form of ectopias and heterotopias, similar to those observed in the brains of human dyslexics. However, further changes to the structure of the brain have not been studied following this genetic disruption. The current study sought to determine the effects of embryonic Kiaa0319 knockdown on volume of the cortex and hippocampus, as well as midsagittal area of the corpus callosum in male rats. Results demonstrate that Kiaa0319 knockdown did not change the volume of the cortex or hippocampus, but did result in a significant reduction in the midsagittal area of the corpus callosum. Taken in the context of previous reports of behavioral deficits following Kiaa0319 knockdown (Szalkowski et al., 2012), and reports that reductions of corpus callosum size are related to processing deficits in humans (Paul, 2011), these results suggest that Kiaa0319 has a specific involvement in neural systems important for temporal processing.
Collapse
Affiliation(s)
- Caitlin E Szalkowski
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, 06269, United States.
| | | | | | | | | | | |
Collapse
|
30
|
Centanni TM, Booker AB, Sloan AM, Chen F, Maher BJ, Carraway RS, Khodaparast N, Rennaker R, LoTurco JJ, Kilgard MP. Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cereb Cortex 2013; 24:1753-66. [PMID: 23395846 DOI: 10.1093/cercor/bht028] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex.
Collapse
Affiliation(s)
- T M Centanni
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | | | - A M Sloan
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - F Chen
- University of Connecticut
| | | | - R S Carraway
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - N Khodaparast
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - R Rennaker
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | | | - M P Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| |
Collapse
|
31
|
Graham SA, Fisher SE. Decoding the genetics of speech and language. Curr Opin Neurobiol 2013; 23:43-51. [PMID: 23228431 DOI: 10.1016/j.conb.2012.11.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 12/31/2022]
|
32
|
Raskind WH, Peter B, Richards T, Eckert MM, Berninger VW. The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol 2013; 3:601. [PMID: 23308072 PMCID: PMC3538356 DOI: 10.3389/fpsyg.2012.00601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022] Open
Abstract
This article provides an overview of (a) issues in definition and diagnosis of specific reading disabilities at the behavioral level that may occur in different constellations of developmental and phenotypic profiles (patterns); (b) rapidly expanding research on genetic heterogeneity and gene candidates for dyslexia and other reading disabilities; (c) emerging research on gene-brain relationships; and (d) current understanding of epigenetic mechanisms whereby environmental events may alter behavioral expression of genetic variations. A glossary of genetic terms (denoted by bold font) is provided for readers not familiar with the technical terms.
Collapse
Affiliation(s)
- Wendy H Raskind
- Department of Medicine, University of Washington Seattle, WA, USA ; Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
33
|
Szalkowski CE, Fiondella CG, Galaburda AM, Rosen GD, Loturco JJ, Fitch RH. Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. Int J Dev Neurosci 2012; 30:293-302. [PMID: 22326444 PMCID: PMC3516384 DOI: 10.1016/j.ijdevneu.2012.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/22/2022] Open
Abstract
Within the last decade several genes have been identified as candidate risk genes for developmental dyslexia. Recent research using animal models and embryonic RNA interference (RNAi) has shown that a subset of the candidate dyslexia risk genes--DYX1C1, ROBO1, DCDC2, KIAA0319--regulate critical parameters of neocortical development, such as neuronal migration. For example, embryonic disruption of the rodent homolog of DYX1C1 disrupts neuronal migration and produces deficits in rapid auditory processing (RAP) and working memory--phenotypes that have been reported to be associated with developmental dyslexia. In the current study we used a modified prepulse inhibition paradigm to assess acoustic discrimination abilities of male Wistar rats following in utero RNA interference targeting Kiaa0319. We also assessed spatial learning and working memory using a Morris water maze (MWM) and a radial arm water maze. We found that embryonic interference with this gene resulted in disrupted migration of neocortical neurons leading to formation of heterotopia in white matter, and to formation of hippocampal dysplasia in a subset of animals. These animals displayed deficits in processing complex acoustic stimuli, and those with hippocampal malformations exhibited impaired spatial learning abilities. No significant impairment in working memory was detected in the Kiaa0319 RNAi treated animals. Taken together, these results suggest that Kiaa0319 plays a role in neuronal migration during embryonic development, and that early interference with this gene results in an array of behavioral deficits including impairments in rapid auditory processing and simple spatial learning.
Collapse
Affiliation(s)
- Caitlin E Szalkowski
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA.
| | | | | | | | | | | |
Collapse
|