1
|
Faheem I, Nagaraja V. Multifunctional Mycobacterial Topoisomerases with Distinctive Features. ACS Infect Dis 2025; 11:366-385. [PMID: 39825760 DOI: 10.1021/acsinfecdis.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, Mycobacterium tuberculosis retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task. DNA topoisomerases make up a unique class of ubiquitous enzymes that ensure steady-state level supercoiling and solve topological problems occurring during DNA transactions in cells. They continue to be attractive targets for the discovery of novel classes of antibacterials and to develop better molecules from existing drugs by virtue of their reaction mechanism. The limited repertoire of topoisomerases in M. tuberculosis, key differences in their properties compared to topoisomerases from other bacteria, their essentiality for the pathogen's survival, and validation as candidates for drug discovery provide an opportunity to exploit them in drug discovery efforts. The present review provides insights into their organization, structure, function, and regulation to further efforts in targeting them for new inhibitor discovery. First, the structure and biochemical properties of DNA gyrase and Topoisomerase I (TopoI) of mycobacteria are described compared to the well-studied counterparts from other bacteria. Next, we provide an overview of known inhibitors of DNA gyrase and emerging novel bacterial topoisomerase inhibitors (NBTIs). We also provide an update on TopoI-specific compounds, highlighting mycobacteria-specific inhibitors.
Collapse
Affiliation(s)
- Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
2
|
García-López M, Hernández P, Megias D, Ferrándiz MJ, de la Campa AG. Physiologic and Transcriptomic Effects Triggered by Overexpression of Wild Type and Mutant DNA Topoisomerase I in Streptococcus pneumoniae. Int J Mol Sci 2023; 24:15800. [PMID: 37958782 PMCID: PMC10648598 DOI: 10.3390/ijms242115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Topoisomerase I (TopoI) in Streptococcus pneumoniae, encoded by topA, is a suitable target for drug development. Seconeolitsine (SCN) is a new antibiotic that specifically blocks this enzyme. We obtained the topARA mutant, which encodes an enzyme less active than the wild type (topAWT) and more resistant to SCN inhibition. Likely due to the essentiality of TopoI, we were unable to replace the topAWT allele by the mutant topARA version. We compared the in vivo activity of TopoIRA and TopoIWT using regulated overexpression strains, whose genes were either under the control of a moderately (PZn) or a highly active promoter (PMal). Overproduction of TopoIRA impaired growth, increased SCN resistance and, in the presence of the gyrase inhibitor novobiocin (NOV), caused lower relaxation than TopoIWT. Differential transcriptomes were observed when the topAWT and topARA expression levels were increased about 5-fold. However, higher increases (10-15 times), produced a similar transcriptome, affecting about 52% of the genome, and correlating with a high DNA relaxation level with most responsive genes locating in topological domains. These results confirmed that TopoI is indeed the target of SCN in S. pneumoniae and show the important role of TopoI in global transcription, supporting its suitability as an antibiotic target.
Collapse
Affiliation(s)
- Miriam García-López
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Pablo Hernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
3
|
de Vasconcelos Junior AA, Tirado-Vélez JM, Martín-Galiano AJ, Megias D, Ferrándiz MJ, Hernández P, Amblar M, de la Campa AG. StaR Is a Positive Regulator of Topoisomerase I Activity Involved in Supercoiling Maintenance in Streptococcus pneumoniae. Int J Mol Sci 2023; 24:ijms24065973. [PMID: 36983048 PMCID: PMC10053502 DOI: 10.3390/ijms24065973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory novobiocin concentrations, which inhibit gyrase activity, higher doubling times were observed in a strain lacking staR, and in two strains in which StaR was over-expressed either under the control of the ZnSO4-inducible PZn promoter (strain ΔstaRPZnstaR) or of the maltose-inducible PMal promoter (strain ΔstaRpLS1ROMstaR). These results suggest that StaR has a direct role in novobiocin susceptibility and that the StaR level needs to be maintained within a narrow range. Treatment of ΔstaRPZnstaR with inhibitory novobiocin concentrations resulted in a change of the negative DNA supercoiling density (σ) in vivo, which was higher in the absence of StaR (σ = -0.049) than when StaR was overproduced (σ = -0.045). We have located this protein in the nucleoid by using super-resolution confocal microscopy. Through in vitro activity assays, we demonstrated that StaR stimulates TopoI relaxation activity, while it has no effect on gyrase activity. Interaction between TopoI and StaR was detected both in vitro and in vivo by co-immunoprecipitation. No alteration of the transcriptome was associated with StaR amount variation. The results suggest that StaR is a new streptococcal nucleoid-associated protein that activates topoisomerase I activity by direct protein-protein interaction.
Collapse
Affiliation(s)
| | - Jose M Tirado-Vélez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Antonio J Martín-Galiano
- Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - María-José Ferrándiz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pablo Hernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Mónica Amblar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Adela G de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
4
|
Unraveling topoisomerase IA gate dynamics in presence of PPEF and its preclinical evaluation against multidrug-resistant pathogens. Commun Biol 2023; 6:195. [PMID: 36807602 PMCID: PMC9938908 DOI: 10.1038/s42003-023-04412-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/03/2023] [Indexed: 02/20/2023] Open
Abstract
Type IA topoisomerases maintain DNA topology by cleaving ssDNA and relaxing negative supercoils. The inhibition of its activity in bacteria prevents the relaxation of negative supercoils, which in turn impedes DNA metabolic processes leading to cell death. Using this hypothesis, two bisbenzimidazoles, PPEF and BPVF are synthesized, selectively inhibiting bacterial TopoIA and TopoIII. PPEF stabilizes the topoisomerase and topoisomerase-ssDNA complex, acts as an interfacial inhibitor. PPEF display high efficacy against ~455 multi-drug resistant gram positive and negative bacteria. To understand molecular mechanism of inhibition of TopoIA and PPEF, accelerated MD simulation is carried out, and results suggested that PPEF binds, stabilizes the closed conformation of TopoIA with -6Kcal/mol binding energy and destabilizes the binding of ssDNA. The TopoIA gate dynamics model can be used as a tool to screen TopoIA inhibitors as therapeutic candidates. PPEF and BPVF cause cellular filamentation and DNA fragmentation leading to bacterial cell death. PPEF and BPVF show potent efficacy against systemic and neutropenic mouse models harboring E. coli, VRSA, and MRSA infection without cellular toxicity.
Collapse
|
5
|
Wadhawan M, Ahmad F, Yadav S, Rathaur S. Proteomic Analysis Reveals Differential Protein Expression Induced by Inhibition of Prolyl Oligopeptidase in Filarial Parasites. Protein J 2022; 41:613-624. [PMID: 36271977 DOI: 10.1007/s10930-022-10080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
Prolyl oligopeptidase (POP) plays a crucial role in the processing and degradation of neuropeptides and regulates inositol trisphosphate (IP3) signaling in mammals. We have reported that POP inhibition leads to IP3-mediated calcium efflux leading to mitochondrial-mediated apoptosis in the filarial parasite Setaria cervi. This study further elucidates the effect of altered calcium homeostasis on the proteome of filarial parasites. Adult parasites were treated with POP's specific inhibitor, Z-Pro-prolinal (ZPP), for 7 h. Cytosolic and mitochondrial proteome was analyzed using 2D gel electrophoresis coupled with MALDI-MS/MS. Phosphoproteins were also analyzed in the cytosolic fraction of the parasites. The phosphoprotein analysis revealed 7, and 9 spots in the cytosolic fraction of control and ZPP-treated parasites, respectively. The two identified protein spots in the treated set were found to be involved in G protein signaling. In cytosolic fraction, 109 and 112 protein spots were observed in control and treated parasites, respectively. Of these, 56 upregulated and 32 downregulated protein spots were observed in the treated set. On the other hand, 50 and 47 protein spots were detected in the mitochondrial fraction of control and treated parasites, respectively. Of these spots, 18 upregulated and 12 down-regulated protein spots were found in treated parasites. In silico analysis showed that the identified proteins were involved in energy metabolism, calcium signaling, stress response, and cytoskeleton organization. These findings correlate with our previous results suggesting the important regulatory role of POP in signaling and different metabolic pathways of filarial parasites.
Collapse
Affiliation(s)
- Mohit Wadhawan
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Smita Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
6
|
Pineau M, Martis B. S, Forquet R, Baude J, Villard C, Grand L, Popowycz F, Soulère L, Hommais F, Nasser W, Reverchon S, Meyer S. What is a supercoiling-sensitive gene? Insights from topoisomerase I inhibition in the Gram-negative bacterium Dickeya dadantii. Nucleic Acids Res 2022; 50:9149-9161. [PMID: 35950487 PMCID: PMC9458453 DOI: 10.1093/nar/gkac679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation induced by DNA gyrase inhibition were categorised as 'supercoiling-sensitive'. Here, we studied the opposite variation of DNA supercoiling in the phytopathogen Dickeya dadantii using the non-marketed antibiotic seconeolitsine. We showed that the drug is active against topoisomerase I from this species, and analysed the first transcriptomic response of a Gram-negative bacterium to topoisomerase I inhibition. We find that the responding genes essentially differ from those observed after DNA relaxation, and further depend on the growth phase. We characterised these genes at the functional level, and also detected distinct patterns in terms of expression level, spatial and orientational organisation along the chromosome. Altogether, these results highlight that the supercoiling-sensitivity is a complex feature, which depends on the action of specific topoisomerases, on the physiological conditions, and on their genomic context. Based on previous in vitro expression data of several promoters, we propose a qualitative model of SC-dependent regulation that accounts for many of the contrasting transcriptomic features observed after DNA gyrase or topoisomerase I inhibition.
Collapse
Affiliation(s)
- Maïwenn Pineau
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Shiny Martis B.
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Jessica Baude
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Camille Villard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Lucie Grand
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 69622 Villeurbanne, France
| | - Florence Popowycz
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 69622 Villeurbanne, France
| | - Laurent Soulère
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 69622 Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Sam Meyer
- To whom correspondence should be addressed. Tel: +33 4 72 43 85 16;
| |
Collapse
|
7
|
Rayanil KO, Prempree C, Nimgirawath S. First Total Syntheses of Natural Phenanthrene Alkaloids, Uvariopsamine, Noruvariopsamine, 8-Hydroxystephenanthrine, 8-Methoxyuvariopsine, Thalihazine, and Secophoebine, and Their Potential as Antimalarial Agents. Chem Pharm Bull (Tokyo) 2022; 70:483-491. [PMID: 35786567 DOI: 10.1248/cpb.c22-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first total syntheses of natural phenanthrene alkaloids, namely, uvariopsamine (1), noruvariopsamine (2), 8-hydroxystephenanthrine (3), 8-methoxyuvariopsine (4), thalihazine (5), and secophoebine (6), have been realized. In addition, their in vitro antimalarial activity against the multidrug-resistant K1 strain of Plasmodium falciparum and in vitro cytotoxic activity against the human nasopharynx carcinoma (KB), small cell lung cancer (NCI-H187), and breast cancer (MCF7) human cancer cell lines were investigated. All the phenanthrene alkaloids showed significant antiplasmodial activity (IC50 1.07-7.41 µM), and most compounds displayed low to no toxicity against the three cancer cell lines tested. Particularly, 3 exhibited the best antimalarial activity with an IC50 value of 1.07 µM, no toxicity to NCI-H187 (IC50 > 50 µM), and low toxicity against KB (IC50 24.53 µM) and MCF7 (IC50 42.67 µM) cell lines.
Collapse
Affiliation(s)
- Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University
| | | | | |
Collapse
|
8
|
A tale of topoisomerases and the knotty genetic material in the backdrop of Plasmodium biology. Biosci Rep 2022; 42:231351. [PMID: 35699968 PMCID: PMC9261774 DOI: 10.1042/bsr20212847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The untangling or overwinding of genetic material is an inevitable part of DNA
replication, repair, recombination, and transcription. Topoisomerases belong to
a conserved enzyme family that amends DNA topology during various processes of
DNA metabolism. To relax the genetic material, topoisomerases transiently break
the phosphodiester bond on one or both DNA strands and remain associated with
the cleavage site by forming a covalent enzyme–DNA intermediate. This
releases torsional stress and allows the broken DNA to be re-ligated by the
enzyme. The biological function of topoisomerases ranges from the separation of
sister chromatids following DNA replication to the aiding of chromosome
condensation and segregation during mitosis. Topoisomerases are also actively
involved in meiotic recombination. The unicellular apicomplexan parasite,
Plasmodium falciparum, harbors different topoisomerase
subtypes, some of which have substantially different sequences and functions
from their human counterparts. This review highlights the biological function of
each identified Plasmodium topoisomerase along with a
comparative analysis of their orthologs in human or other model organisms. There
is also a focus on recent advancements towards the development of topoisomerase
chemical inhibitors, underscoring the druggability of unique topoisomerase
subunits that are absent in humans. Plasmodium harbors three
distinct genomes in the nucleus, apicoplast, and mitochondria, respectively, and
undergoes non-canonical cell division during the schizont stage of development.
This review emphasizes the specific developmental stages of
Plasmodium on which future topoisomerase research should
focus.
Collapse
|
9
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
10
|
Tirado-Vélez JM, Carreño D, Sevillano D, Alou L, Yuste J, de la Campa AG. Seconeolitsine, the Novel Inhibitor of DNA Topoisomerase I, Protects against Invasive Pneumococcal Disease Caused by Fluoroquinolone-Resistant Strains. Antibiotics (Basel) 2021; 10:antibiotics10050573. [PMID: 34068007 PMCID: PMC8152265 DOI: 10.3390/antibiotics10050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance in Streptococcus pneumoniae has increased worldwide, making fluoroquinolones an alternative therapeutic option. Fluoroquinolones inhibit the type II DNA topoisomerases (topoisomerase IV and gyrase). In this study we have evaluated the in vivo activity of seconeolitsine, an inhibitor of topoisomerase I. Levofloxacin (12.5 to 50 mg/kg) or seconeolitsine (5 to 40 mg/kg) were administered every 12 h during two days in mice infected with a serotype 8-resistant strain. At 48 h, a 70% protection was obtained with seconeolitsine (40 mg/kg; p < 0.001). However, survival with levofloxacin was 20%, regardless of the dose. In addition, seconeolitsine decreased bacteremia efficiently. Levofloxacin had higher levels in serum than seconeolitsine (Cmax of 14.7 vs. 1.6; p < 0.01) and higher values of area under the serum concentration-time curve (AUC0-12h of 17.3 vs. 5; p < 0.01). However, seconeolitsine showed higher levels of time to peak concentration and elimination half-life. This is consistent with the higher binding of seconeolitsine to plasma proteins (40% and 80% when used at 1 µg/mL and 50 µg/mL, respectively) in comparison to levofloxacin (12% at 5 µg/mL and 33% at 50 µg/mL). Our results suggest that seconeolitsine would be a promising therapeutic alternative against pneumococcal isolates with high fluoroquinolone resistance levels.
Collapse
Affiliation(s)
- Jose Manuel Tirado-Vélez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
| | - David Carreño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
| | - David Sevillano
- Microbiology Division-Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.S.); (L.A.)
| | - Luis Alou
- Microbiology Division-Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.S.); (L.A.)
| | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Correspondence: (J.Y.); (A.G.d.l.C.); Tel.: +34-918-223-620 (J.Y.); +34-918-223-944 (A.G.d.l.C.)
| | - Adela G. de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
- Correspondence: (J.Y.); (A.G.d.l.C.); Tel.: +34-918-223-620 (J.Y.); +34-918-223-944 (A.G.d.l.C.)
| |
Collapse
|
11
|
Ferrándiz MJ, Hernández P, de la Campa AG. Genome-wide proximity between RNA polymerase and DNA topoisomerase I supports transcription in Streptococcus pneumoniae. PLoS Genet 2021; 17:e1009542. [PMID: 33930020 PMCID: PMC8115823 DOI: 10.1371/journal.pgen.1009542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/12/2021] [Accepted: 04/10/2021] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is a major cause of disease and death that develops resistance to multiple antibiotics. DNA topoisomerase I (TopoI) is a novel pneumococcal drug target. TopoI is the sole type-I pneumococcal topoisomerase that regulates supercoiling homeostasis in this bacterium. In this study, a direct in vitro interaction between TopoI and RNA polymerase (RNAP) was detected by surface plasmon resonance. To understand the interplay between transcription and supercoiling regulation in vivo, genome-wide association of RNAP and TopoI was studied by ChIP-Seq. RNAP and TopoI were enriched at the promoters of 435 and 356 genes, respectively. Higher levels of expression were consistently measured in those genes whose promoters recruit both RNAP and TopoI, in contrast with those enriched in only one of them. Both enzymes occupied a narrow region close to the ATG codon. In addition, RNAP displayed a regular distribution throughout the coding regions. Likewise, the summits of peaks called with MACS tool, mapped around the ATG codon in both cases. However, RNAP showed a broader distribution towards ATG-downstream positions. Remarkably, inhibition of RNAP with rifampicin prevented the localization of TopoI at promoters and, vice versa, inhibition of TopoI with seconeolitsine prevented the binding of RNAP to promoters. This indicates a functional interplay between RNAP and TopoI. To determine the molecular factors responsible for RNAP and TopoI co-recruitment, we looked for DNA sequence motifs. We identified a motif corresponding to a -10-extended promoter for TopoI and for RNAP. Furthermore, RNAP was preferentially recruited to genes co-directionally oriented with replication, while TopoI was more abundant in head-on genes. TopoI was located in the intergenic regions of divergent genes pairs, near the promoter of the head-on gene of the pair. These results suggest a role for TopoI in the formation/stability of the RNAP-DNA complex at the promoter and during transcript elongation. Streptococcus pneumoniae is a main cause of pneumonia, meningitis and sepsis. Antibiotic resistance in this bacterium has spread worldwide, compromising medical treatment. Therefore, the development of new drugs directed to novel targets is necessary. DNA topology is essential for the regulation of replication and gene expression. Topology is regulated and maintained by DNA topoisomerases, carrying out nicking-closing reactions. Type I and type II topoisomerases act on single-stranded and double-stranded DNA, respectively. Although type II topoisomerases are the target of clinically used antibiotics, there are no clinical antibiotics directed against type I topoisomerases. Seconeolitsine, a new drug targeting topoisomerase I, is effective against bacteria that have a single type I topoisomerase, such as Streptococcus pneumoniae and Mycobacterium tuberculosis. In this report, we studied the role of topoisomerase I in transcription. We found that topoisomerase I and RNA polymerase physically interact in vitro and co-localize at gene promoters in vivo. Binding of each of these enzymes to promoters was prevented by the specific inhibition of the other enzyme, supporting a role for topoisomerase I in RNA polymerase transcription.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pablo Hernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Seddek A, Annamalai T, Tse-Dinh YC. Type IA Topoisomerases as Targets for Infectious Disease Treatments. Microorganisms 2021; 9:E86. [PMID: 33401386 PMCID: PMC7823277 DOI: 10.3390/microorganisms9010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage-rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor-enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure-activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
Collapse
Affiliation(s)
- Ahmed Seddek
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
13
|
Valenzuela MV, Domenech M, Mateos-Martínez P, González-Camacho F, de la Campa AG, García MT. Antibacterial activity of a DNA topoisomerase I inhibitor versus fluoroquinolones in Streptococcus pneumoniae. PLoS One 2020; 15:e0241780. [PMID: 33141832 PMCID: PMC7608930 DOI: 10.1371/journal.pone.0241780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022] Open
Abstract
The DNA topoisomerase complement of Streptococcus pneumoniae is constituted by two type II enzymes (topoisomerase IV and gyrase), and a single type I enzyme (topoisomerase I). These enzymes maintain the DNA topology, which is essential for replication and transcription. While fluoroquinolones target the type II enzymes, seconeolitsine, a new antimicrobial agent, targets topoisomerase I. We compared for the first time the in vitro effect of inhibition of topoisomerase I by seconeolitsine and of the type II topoisomerases by the fluoroquinolones levofloxacin and moxifloxacin. We used three isogenic non-encapsulated strains and five non-vaccine serotypes isolates belonging to two circulating pneumococcal clones, ST638 (2 strains) and ST1569V (3 strains). Each group contained strains with diverse susceptibility to fluoroquinolones. Minimal inhibitory concentrations, killing curves and postantibiotic effects were determined. Seconeolitsine demonstrated the fastest and highest bactericidal activity against planktonic bacteria and biofilms. When fluoroquinolone-susceptible planktonic bacteria were considered, seconeolitsine induced postantibiotic effects (1.00−1.87 h) similar than levofloxacin (1.00−2.22 h), but longer than moxifloxacin (0.39−1.71 h). The same effect was observed in sessile bacteria forming biofilms. Seconeolitsine induced postantibiotic effects (0.84−2.31 h) that were similar to those of levofloxacin (0.99−3.32 h) but longer than those of moxifloxacin (0.89−1.91 h). The greatest effect was observed in the viability and adherence of bacteria in the postantibiotic phase. Seconeolitsine greatly reduced the thickness of the biofilms formed in comparison with fluoroquinolones: 2.91 ± 0.43 μm (seconeolitsine), 7.18 ± 0.58 μm (levofloxacin), 17.08 ± 1.02 μm (moxifloxacin). When fluoroquinolone-resistant bacteria were considered, postantibiotic effects induced by levofloxacin and moxifloxacin, but not by seconeolitsine, were shorter, decreasing up to 5-fold (levofloxacin) or 2-fold (moxifloxacin) in planktonic cells, and up to 1.7 (levofloxacin) or 1.4-fold (moxifloxacin) during biofilm formation. Therefore, topoisomerase I inhibitors could be an alternative for the treatment of pneumococcal diseases, including those caused by fluoroquinolone-resistant isolates.
Collapse
Affiliation(s)
- Myriam V. Valenzuela
- Departamento de Genética, Unidad de Microbiología, Fisiología y Microbiología, Universidad Complutense, Madrid, Spain
| | - Mirian Domenech
- Unidad de Neumococos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid; Spain
| | - Patricia Mateos-Martínez
- Departamento de Genética, Unidad de Microbiología, Fisiología y Microbiología, Universidad Complutense, Madrid, Spain
| | - Fernando González-Camacho
- Unidad de Neumococos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid; Spain
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid; Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail: (MTG); (AGC)
| | - Maria Teresa García
- Departamento de Genética, Unidad de Microbiología, Fisiología y Microbiología, Universidad Complutense, Madrid, Spain
- * E-mail: (MTG); (AGC)
| |
Collapse
|
14
|
Lin JC, Wang XZ, Shen T, Zhang JY. iTRAQ-based quantitative analysis reveals the mechanism underlying the changes in physiological activity in a glutamate racemase mutant strain of Streptococcus mutans UA159. Mol Biol Rep 2020; 47:3719-3733. [PMID: 32338332 DOI: 10.1007/s11033-020-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus mutans UA159 is responsible for human dental caries with robust cariogenic potential. Our previous study noted that a glutamate racemase (MurI) mutant strain (designated S. mutans FW1718), with the hereditary background of UA159, displayed alterations of morphogenesis, attenuated stress tolerance, and weakened biofilm-forming capabilities, accompanying with unclear mechanisms. In this study, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics to characterize the proteome profiles of the murI mutant strain vs. the wild-type strain in chemically defined media to elucidate the mechanisms by which S. mutans copes with MurI deficiency. Whole-cell proteins of S. mutans FW1718 and UA159 were assessed by iTRAQ-coupled LC-ESI-MS/MS. Furthermore, differentially expressed proteins (DEPs) were identified by Mascot, Gene Ontology (GO) annotation, Cluster of Orthologous Groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, a protein-protein interaction (PPI) network was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Among 1173 total bacterial proteins identified, 112 DEPs exhibited altered expression patterns in S. mutans UA159 with or without the murI mutation. The ΔmurI cells displayed an increase in the relative expression of 93 proteins (fold change ≥ 1.2, p < 0.05) and a decrease in 29 proteins (fold change ≤ 0.833, p < 0.05) compared with the wild-type cells. PPI analysis revealed a complex network of DEPs containing 191 edges and 122 nodes. The DEPs significantly upregulated after murI knockout had roles in diverse functional processes spanning cell-wall biosynthesis, energy production, and DNA replication and repair. We identified distinct variations and diverse modulators caused by murI mutation in the proteome of S. mutans, indicating that the modification of cell membrane structure, redistribution of energy metabolism and enhanced nucleic acid machinery contributed to the S. mutans response to specific environmental contexts.
Collapse
Affiliation(s)
- Jia-Cheng Lin
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang-Zhu Wang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Ting Shen
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Ying Zhang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Bermejo A, Collado A, Barrachina I, Marqués P, El Aouad N, Franck X, Garibotto F, Dacquet C, Caignard DH, Suvire FD, Enriz RD, Piqueras L, Figadère B, Sanz MJ, Cabedo N, Cortes D. Polycerasoidol, a Natural Prenylated Benzopyran with a Dual PPARα/PPARγ Agonist Activity and Anti-inflammatory Effect. JOURNAL OF NATURAL PRODUCTS 2019; 82:1802-1812. [PMID: 31268307 DOI: 10.1021/acs.jnatprod.9b00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dual peroxisome proliferator-activated receptor-α/γ (PPARα/γ) agonists regulate both lipid and glucose homeostasis under different metabolic conditions and can exert anti-inflammatory activity. We investigated the potential dual PPARα/γ agonism of prenylated benzopyrans polycerasoidol (1) and polycerasoidin (2) and their derivatives for novel drug development. Nine semisynthetic derivatives were prepared from the natural polycerasoidol (1) and polycerasoidin (2), which were evaluated for PPARα, -γ, -δ and retinoid X receptor-α activity in transactivation assays. Polycerasoidol (1) exhibited potent dual PPARα/γ agonism and low cytotoxicity. Structure-activity relationship studies revealed that a free phenol group at C-6 and a carboxylic acid at C-9' were key features for dual PPARα/γ agonism activity. Molecular modeling indicated the relevance of these groups for optimal ligand binding to the PPARα and PPARγ domains. In addition, polycerasoidol (1) exhibited a potent anti-inflammatory effect by inhibiting mononuclear leukocyte adhesion to the dysfunctional endothelium in a concentration-dependent manner via RXRα/PPARγ interactions. Therefore, polycerasoidol (1) can be considered a hit-to-lead molecule for the further development of novel dual PPARα/γ agonists capable of preventing cardiovascular events associated with metabolic disorders.
Collapse
Affiliation(s)
- Almudena Bermejo
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Center of Citriculture and Vegetal Production , IVIA , Moncada, 46100 Valencia , Spain
| | - Aida Collado
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| | - Isabel Barrachina
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| | - Patrice Marqués
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | | | - Xavier Franck
- UMR CNRS 6014/FR 3038, COBRA, Université de Rouen , Mont-Saint-Aignan 76821 , France
| | - Francisco Garibotto
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Catherine Dacquet
- Départament des Sciences Expérimentales , Institut de Recherches Servier , Suresnes 92150 , France
| | - Daniel H Caignard
- Départament des Sciences Expérimentales , Institut de Recherches Servier , Suresnes 92150 , France
| | - Fernando D Suvire
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Laura Piqueras
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Bruno Figadère
- UMR CNRS 8076, LERMIT , Université Paris-Sud, UFR de Pharmacie , Châtenay-Malabry 92290 , France
| | - María-Jesús Sanz
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Nuria Cabedo
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Diego Cortes
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| |
Collapse
|
16
|
Szafran MJ, Gongerowska M, Małecki T, Elliot M, Jakimowicz D. Transcriptional Response of Streptomyces coelicolor to Rapid Chromosome Relaxation or Long-Term Supercoiling Imbalance. Front Microbiol 2019; 10:1605. [PMID: 31354687 PMCID: PMC6637917 DOI: 10.3389/fmicb.2019.01605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Negative DNA supercoiling allows chromosome condensation and facilitates DNA unwinding, which is required for the occurrence of DNA transaction processes, i.e., DNA replication, transcription and recombination. In bacteria, changes in chromosome supercoiling impact global gene expression; however, the limited studies on the global transcriptional response have focused mostly on pathogenic species and have reported various fractions of affected genes. Furthermore, the transcriptional response to long-term supercoiling imbalance is still poorly understood. Here, we address the transcriptional response to both novobiocin-induced rapid chromosome relaxation or long-term topological imbalance, both increased and decreased supercoiling, in environmental antibiotic-producing bacteria belonging to the Streptomyces genus. During the Streptomyces complex developmental cycle, multiple copies of GC-rich linear chromosomes present in hyphal cells undergo profound topological changes, from being loosely condensed in vegetative hyphae, to being highly compacted in spores. Moreover, changes in chromosomal supercoiling have been suggested to be associated with the control of antibiotic production and environmental stress response. Remarkably, in S. coelicolor, a model Streptomyces species, topoisomerase I (TopA) is solely responsible for the removal of negative DNA supercoils. Using a S. coelicolor strain in which topA transcription is under the control of an inducible promoter, we identified genes involved in the transcriptional response to long-term supercoiling imbalance. The affected genes are preferentially organized in several clusters, and a supercoiling-hypersensitive cluster (SHC) was found to be located in the core of the S. coelicolor chromosome. The transcripts affected by long-term topological imbalance encompassed genes encoding nucleoid-associated proteins, DNA repair proteins and transcriptional regulators, including multiple developmental regulators. Moreover, using a gyrase inhibitor, we identified those genes that were directly affected by novobiocin, and found this was correlated with increased AT content in their promoter regions. In contrast to the genes affected by long-term supercoiling changes, among the novobiocin-sensitive genes, a significant fraction encoded for proteins associated with membrane transport or secondary metabolite synthesis. Collectively, our results show that long-term supercoiling imbalance globally regulates gene transcription and has the potential to impact development, secondary metabolism and DNA repair, amongst others.
Collapse
Affiliation(s)
- Marcin Jan Szafran
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Martyna Gongerowska
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Tomasz Małecki
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Marie Elliot
- Department of Biology, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Dagmara Jakimowicz
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
17
|
Jones JA, Hevener KE. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA topoisomerase I from the gram-positive model organism Streptococcus mutans. Biochem Biophys Res Commun 2019; 516:333-338. [PMID: 31204053 DOI: 10.1016/j.bbrc.2019.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023]
Abstract
Herein we report the first structure of topoisomerase I determined from the gram-positive bacterium, S. mutans. Bacterial topoisomerase I is an ATP-independent type 1A topoisomerase that uses the inherent torsional strain within hyper-negatively supercoiled DNA as an energy source for its critical function of DNA relaxation. Interest in the enzyme has gained momentum as it has proven to be essential in various bacterial organisms. In order to aid in further biochemical characterization, the apo 65-kDa amino-terminal fragment of DNA topoisomerase I from the gram-positive model organism Streptococcus mutans was crystalized and a three-dimensional structure was determined to 2.06 Å resolution via x-ray crystallography. The overall structure illustrates the four classic major domains that create the traditional topoisomerase I "lock" formation comprised of a sizable toroidal aperture atop what is considered to be a highly dynamic body. A catalytic tyrosine residue resides at the interface between two domains and is known to form a 5' phosphotyrosine DNA-enzyme intermediate during transient single-stranded cleavage required for enzymatic relaxation of hyper negative DNA supercoils. Surrounding the catalytic tyrosine residue is the remainder of the highly conserved active site. Within 5 Å from the catalytic center, only one dissimilar residue is observed between topoisomerase I from S. mutans and the gram-negative model organism E. coli. Immediately adjacent to the conserved active site, however, S. mutans topoisomerase I displays a somewhat unique nine residue loop extension not present in any bacterial topoisomerase I structures previously determined other than that of an extremophile.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| |
Collapse
|
18
|
Cassels BK, Fuentes-Barros G, Castro-Saavedra S. Boldo, Its Secondary Metabolites and their Derivatives. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083804666181113112928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Boldo leaves (Boldo folium, from Peumus boldus Mol.) are very frequently used as a medicinal herb in Chile and are exported to many countries to be used in teas or as extracts included in herbal remedies, primarily as an aid to digestion and as a mild sedative. Scientific support for these uses is scanty, and boldine, an alkaloid viewed as characteristic of the tree and present in high concentration in the bark, is extracted by specialized companies and sold as the supposed main active constituent. Consequently, boldine has been the subject of a considerable number of research papers, while some of the other alkaloids present to a greater extent in the leaves have been relatively neglected except when found in large amounts in other species. These studies range from assays of antioxidant activity to anti-inflammatory, antineoplastic and other medical applications. The essential oil, usually containing a large percentage of the toxic ascaridole, was once used as a vermifuge and is now regarded with caution, but is still of interest as a possible natural insecticide, fungicide, antiparasitic and herbicide. The last decade has seen an explosive increase in papers pointing to possible uses of boldo and its constituents. This review attempts to bring these publications together in a comprehensive way with the purpose of stimulating and orienting further research into the useful properties of this Chilean endemic tree.
Collapse
Affiliation(s)
- Bruce K. Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
19
|
Chowdhury SR, Majumder HK. DNA Topoisomerases in Unicellular Pathogens: Structure, Function, and Druggability. Trends Biochem Sci 2019; 44:415-432. [PMID: 30609953 DOI: 10.1016/j.tibs.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
All organisms, including unicellular pathogens, compulsorily possess DNA topoisomerases for successful nucleic acid metabolism. But particular subtypes of topoisomerases exist, in all prokaryotes and in some unicellular eukaryotes, that are absent in higher eukaryotes. Moreover, topoisomerases from pathogenic members of a niche possess some unique molecular architecture and functionalities completely distinct from their nonpathogenic colleagues. This review will highlight the unique attributes associated with the structures and functions of topoisomerases from the unicellular pathogens, with special reference to bacteria and protozoan parasites. It will also summarise the progress made in the domain pertaining to the druggability of these topoisomerases, upon which a future platform for therapeutic development can be successfully constructed.
Collapse
Affiliation(s)
- Somenath Roy Chowdhury
- Laboratory of Molecular Parasitology, Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Hemanta K Majumder
- Laboratory of Molecular Parasitology, Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
20
|
García MT, Carreño D, Tirado-Vélez JM, Ferrándiz MJ, Rodrigues L, Gracia B, Amblar M, Ainsa JA, de la Campa AG. Boldine-Derived Alkaloids Inhibit the Activity of DNA Topoisomerase I and Growth of Mycobacterium tuberculosis. Front Microbiol 2018; 9:1659. [PMID: 30087665 PMCID: PMC6066988 DOI: 10.3389/fmicb.2018.01659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
The spread of multidrug-resistant isolates of Mycobacterium tuberculosis requires the discovery of new drugs directed to new targets. In this study, we investigated the activity of two boldine-derived alkaloids, seconeolitsine (SCN) and N-methyl-seconeolitsine (N-SCN), against M. tuberculosis. These compounds have been shown to target DNA topoisomerase I enzyme and inhibit growth of Streptococcus pneumoniae. Both SCN and N-SCN inhibited M. tuberculosis growth at 1.95-15.6 μM, depending on the strain. In M. smegmatis this inhibitory effect correlated with the amount of topoisomerase I in the cell, hence demonstrating that this enzyme is the target for these alkaloids in mycobacteria. The gene coding for topoisomerase I of strain H37Rv (MtbTopoI) was cloned into pQE1 plasmid of Escherichia coli. MtbTopoI was overexpressed with an N-terminal 6-His-tag and purified by affinity chromatography. In vitro inhibition of MtbTopoI activity by SCN and N-SCN was tested using a plasmid relaxation assay. Both SCN and N-SCN inhibited 50% of the enzymatic activity at 5.6 and 8.4 μM, respectively. Cleavage of single-stranded DNA was also inhibited with SCN. The effects on DNA supercoiling were also evaluated in vivo in plasmid-containing cultures of M. tuberculosis. Plasmid supercoiling densities were -0.060 in cells untreated or treated with boldine, and -0.072 in 1 × MIC N-SCN treated cells, respectively, indicating that the plasmid became hypernegatively supercoiled in the presence of N-SCN. Altogether, these results demonstrate that the M. tuberculosis topoisomerase I enzyme is an attractive drug target, and that SCN and N-SCN are promising lead compounds for drug development.
Collapse
Affiliation(s)
- María T. García
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Tirado-Vélez
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - Begoña Gracia
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Mónica Amblar
- Unidad de Patología Molecular de Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Ainsa
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
21
|
Garnier F, Debat H, Nadal M. Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. Methods Mol Biol 2018; 1703:1-20. [PMID: 29177730 DOI: 10.1007/978-1-4939-7459-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All the type IA topoisomerases display universal characteristics relying on a core region basically responsible for the transesterification and the strand passage reaction. First limited to the bacterial domain for a long time, these enzymes were further retrieved in Archaea and Eukarya as well. This is representative of an extremely ancient origin, probably due to an inheritance from the RNA world. As remaining evidence, some current topoisomerases IA have retained a RNA topoisomerase activity. Despite the presence of this core region in all of these TopoIAs, some differences exist and are originated from variable regions, located essentially within both extremities, conferring on them their specificities. During the last 2 decades the evidence of multiple activities and dedicated roles highlighted the importance of the topoisomerases IA. It is now obvious that topoisomerases IA are key enzymes involved in the maintenance of the genome stability. The discovery of these new activities was done thanks to the use of more accurate assays, based on new sophisticated DNA substrates.
Collapse
Affiliation(s)
- Florence Garnier
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Hélène Debat
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Marc Nadal
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France.
| |
Collapse
|
22
|
Ferrándiz MJ, Carreño D, Ayora S, de la Campa AG. HU of Streptococcus pneumoniae Is Essential for the Preservation of DNA Supercoiling. Front Microbiol 2018; 9:493. [PMID: 29662473 PMCID: PMC5890176 DOI: 10.3389/fmicb.2018.00493] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 01/11/2023] Open
Abstract
The histone-like protein HU is a conserved nucleoid-associated protein that is involved in the maintenance of the bacterial chromosome architecture. It is the only known nucleoid-associated protein in Streptococcus pneumoniae, but it has not been studied. The pneumococcal gene encoding this protein, hlp, is shown herein to be essential for cell viability. Its disruption was only possible either when it was duplicated in the chromosome and its expression induced from the P Zn promoter, or when hlp was cloned into a plasmid under the control of the inducible P mal promoter. In vitro assays indicated that pneumococcal HU shows a preference for binding to supercoiled DNA rather than to linear or nicked DNA. In vivo experiments in which the amount of HU was manipulated showed a relationship between the amount of HU and the level of DNA supercoiling. A twofold reduction in the amount of HU triggered a 21% increase in DNA relaxation in untreated cells. However, in cells treated with novobiocin, a drug that relaxes DNA by inhibiting DNA gyrase, a 35% increase in DNA relaxation was observed, instead of the expected 20% in cells with a constitutive HU amount. Conversely, a fourfold HU increase caused only 14% of DNA relaxation in the presence of novobiocin. Taken together, these results support an essential role for HU in the maintenance of DNA supercoiling in S. pneumoniae.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
23
|
de la Campa AG, Ferrándiz MJ, Martín-Galiano AJ, García MT, Tirado-Vélez JM. The Transcriptome of Streptococcus pneumoniae Induced by Local and Global Changes in Supercoiling. Front Microbiol 2017; 8:1447. [PMID: 28824578 PMCID: PMC5534458 DOI: 10.3389/fmicb.2017.01447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/17/2017] [Indexed: 01/28/2023] Open
Abstract
The bacterial chromosome is compacted in a manner optimal for DNA transactions to occur. The degree of compaction results from the level of DNA-supercoiling and the presence of nucleoid-binding proteins. DNA-supercoiling is homeostatically maintained by the opposing activities of relaxing DNA topoisomerases and negative supercoil-inducing DNA gyrase. DNA-supercoiling acts as a general cis regulator of transcription, which can be superimposed upon other types of more specific trans regulatory mechanism. Transcriptomic studies on the human pathogen Streptococcus pneumoniae, which has a relatively small genome (∼2 Mb) and few nucleoid-binding proteins, have been performed under conditions of local and global changes in supercoiling. The response to local changes induced by fluoroquinolone antibiotics, which target DNA gyrase subunit A and/or topoisomerase IV, involves an increase in oxygen radicals which reduces cell viability, while the induction of global supercoiling changes by novobiocin (a DNA gyrase subunit B inhibitor), or by seconeolitsine (a topoisomerase I inhibitor), has revealed the existence of topological domains that specifically respond to such changes. The control of DNA-supercoiling in S. pneumoniae occurs mainly via the regulation of topoisomerase gene transcription: relaxation triggers the up-regulation of gyrase and the down-regulation of topoisomerases I and IV, while hypernegative supercoiling down-regulates the expression of topoisomerase I. Relaxation affects 13% of the genome, with the majority of the genes affected located in 15 domains. Hypernegative supercoiling affects 10% of the genome, with one quarter of the genes affected located in 12 domains. However, all the above domains overlap, suggesting that the chromosome is organized into topological domains with fixed locations. Based on its response to relaxation, the pneumococcal chromosome can be said to be organized into five types of domain: up-regulated, down-regulated, position-conserved non-regulated, position-variable non-regulated, and AT-rich. The AT content is higher in the up-regulated than in the down-regulated domains. Genes within the different domains share structural and functional characteristics. It would seem that a topology-driven selection pressure has defined the chromosomal location of the metabolism, virulence and competence genes, which suggests the existence of topological rules that aim to improve bacterial fitness.
Collapse
Affiliation(s)
- Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain.,Presidencia, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María J Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| | - Antonio J Martín-Galiano
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| | - María T García
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad ComplutenseMadrid, Spain
| | - Jose M Tirado-Vélez
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
24
|
DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov Today 2017; 22:510-518. [DOI: 10.1016/j.drudis.2016.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022]
|
25
|
Affiliation(s)
- Giovanni Capranico
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Jessica Marinello
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Giovanni Chillemi
- SCAI
SuperComputing Applications and Innovation Department, Cineca, Via dei Tizii 6, 00185 Rome, Italy
| |
Collapse
|
26
|
Ekins S, Godbole AA, Kéri G, Orfi L, Pato J, Bhat RS, Verma R, Bradley EK, Nagaraja V. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I. Tuberculosis (Edinb) 2017; 103:52-60. [PMID: 28237034 DOI: 10.1016/j.tube.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
There is a shortage of compounds that are directed towards new targets apart from those targeted by the FDA approved drugs used against Mycobacterium tuberculosis. Topoisomerase I (Mttopo I) is an essential mycobacterial enzyme and a promising target in this regard. However, it suffers from a shortage of known inhibitors. We have previously used computational approaches such as homology modeling and docking to propose 38 FDA approved drugs for testing and identified several active molecules. To follow on from this, we now describe the in vitro testing of a library of 639 compounds. These data were used to create machine learning models for Mttopo I which were further validated. The combined Mttopo I Bayesian model had a 5 fold cross validation receiver operator characteristic of 0.74 and sensitivity, specificity and concordance values above 0.76 and was used to select commercially available compounds for testing in vitro. The recently described crystal structure of Mttopo I was also compared with the previously described homology model and then used to dock the Mttopo I actives norclomipramine and imipramine. In summary, we describe our efforts to identify small molecule inhibitors of Mttopo I using a combination of machine learning modeling and docking studies in conjunction with screening of the selected molecules for enzyme inhibition. We demonstrate the experimental inhibition of Mttopo I by small molecule inhibitors and show that the enzyme can be readily targeted for lead molecule development.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| | - Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary; Semmelweis Univ, Dept Med Chem, MTA SE Pathobiochem Res Grp, H-1092, Budapest, Hungary
| | - Lászlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary; Semmelweis Univ, Dept Med Chem, MTA SE Pathobiochem Res Grp, H-1092, Budapest, Hungary
| | - János Pato
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Rajeshwari Subray Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Rinkee Verma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
27
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
28
|
Ferrándiz MJ, Martín-Galiano AJ, Arnanz C, Camacho-Soguero I, Tirado-Vélez JM, de la Campa AG. An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene. Nucleic Acids Res 2016; 44:7292-303. [PMID: 27378778 PMCID: PMC5009749 DOI: 10.1093/nar/gkw602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022] Open
Abstract
We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7–31.4 kb in length and included 9–22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Antonio J Martín-Galiano
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Cristina Arnanz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Isabel Camacho-Soguero
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - José-Manuel Tirado-Vélez
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain Presidencia. Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
29
|
Small-Molecule Inhibitors Targeting Topoisomerase I as Novel Antituberculosis Agents. Antimicrob Agents Chemother 2016; 60:4028-36. [PMID: 27114277 DOI: 10.1128/aac.00288-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/15/2016] [Indexed: 01/30/2023] Open
Abstract
Bacterial topoisomerase functions are required for regulation of DNA supercoiling and overcoming the DNA topological barriers that are encountered during many vital cellular processes. DNA gyrase and topoisomerase IV of the type IIA bacterial topoisomerase family are important clinical targets for antibacterial therapy. Topoisomerase I, belonging to the type IA topoisomerase family, has recently been validated as a potential antitubercular target. The topoisomerase I activity has been shown to be essential for bacterial viability and infection in a murine model of tuberculosis. Mixture-based combinatorial libraries were screened in this study to identify novel bacterial topoisomerase I inhibitors. Using positional-scanning deconvolution, selective small-molecule inhibitors of bacterial topoisomerase I were identified starting from a polyamine scaffold. Antibacterial assays demonstrated that four of these small-molecule inhibitors of bacterial topoisomerase I are bactericidal against Mycobacterium smegmatis and Mycobacterium tuberculosis The MICs for growth inhibition of M. smegmatis increased with overexpression of recombinant M. tuberculosis topoisomerase I, consistent with inhibition of intracellular topoisomerase I activity being involved in the antimycobacterial mode of action.
Collapse
|
30
|
Párraga J, Andujar SA, Rojas S, Gutierrez LJ, El Aouad N, Sanz MJ, Enriz RD, Cabedo N, Cortes D. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands. Eur J Med Chem 2016; 122:27-42. [PMID: 27343851 DOI: 10.1016/j.ejmech.2016.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/11/2023]
Abstract
Dopamine receptors (DR) ligands are potential drug candidates for treating neurological disorders including schizophrenia or Parkinson's disease. Three series of isoquinolines: (E)-1-styryl-1,2,3,4-tetrahydroisoquinolines (series 1), 7-phenyl-1,2,3,7,8,8a-hexahydrocyclopenta[ij]-IQs (HCPIQs) (series 2) and (E)-1-(prop-1-en-1-yl)-1,2,3,4- tetrahydroisoquinolines (series 3), were prepared to determine their affinity for both D1 and D2-like DR. The effect of different substituents on the nitrogen atom (methyl or allyl), the dioxygenated function (methoxyl or catechol), the substituent at the β-position of the THIQ skeleton, and the presence or absence of the cyclopentane motif, were studied. We observed that the most active compounds in the three series (2c, 2e, 3a, 3c, 3e, 5c and 5e) possessed a high affinity for D2-like DR and these remarkable features: a catechol group in the IQ-ring and the N-substitution (methyl or allyl). The series showed the following trend to D2-RD affinity: HCPIQs > 1-styryl > 1-propenyl. Therefore, the substituent at the β-position of the THIQ and the cyclopentane ring also modulated this affinity. Among these dopaminergic isoquinolines, HCPIQs stood out for unexpected selectivity to D2-DR since the Ki D1/D2 ratio reached values of 2465, 1010 and 382 for compounds 3a, 3c and 3e, respectively. None of the most active THIQs in D2 DR displayed relevant cytotoxicity in human neutrophils and HUVEC. Finally, and in agreement with the experimental data, molecular modeling studies on DRs of the most characteristic ligands of the three series revealed stronger molecular interactions with D2 DR than with D1 DR, which further supports to the encountered enhanced selectivity to D2 DR.
Collapse
Affiliation(s)
- Javier Párraga
- Departamento de Farmacología, Laboratorio de Farmacoquímica, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Sebastián A Andujar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Sebastián Rojas
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Lucas J Gutierrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | | | - M Jesús Sanz
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Nuria Cabedo
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain.
| | - Diego Cortes
- Departamento de Farmacología, Laboratorio de Farmacoquímica, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
31
|
Jones JA, Price E, Miller D, Hevener KE. A simplified protocol for high-yield expression and purification of bacterial topoisomerase I. Protein Expr Purif 2016; 124:32-40. [PMID: 27117979 DOI: 10.1016/j.pep.2016.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/15/2022]
Abstract
Type IA topoisomerases represent promising antibacterial drug targets. Data exists suggesting that the two bacterial type IA topoisomerase enzymes-topoisomerase I and topoisomerase III-share an overlapping biological role. Furthermore, topoisomerase I has been shown to be essential for the survival of certain organisms lacking topoisomerase III. With this in mind, it is plausible that topoisomerase I may represent a potential target for selective antibacterial drug development. As many reported bacterial topoisomerase I purification protocols have either suffered from relatively low yield, numerous steps, or a simple failure to report target protein yield altogether, a high-yield and high-purity bacterial topoisomerase I expression and purification protocol is highly desirable. The goal of this study was therefore to optimize the expression and purification of topoisomerase I from Streptococcus mutans, a clinically relevant organism that plays a significant role in oral and extra-oral infection, in order to quickly and easily attain the requisite quantities of pure target enzyme suitable for use in assay development, compound library screening, and carrying out further structural and biochemical characterization analyses. Herein we report the systematic implementation and analysis of various expression and purification techniques leading to the development and optimization of a rapid and straightforward protocol for the auto-induced expression and two-step, affinity tag purification of Streptococcus mutans topoisomerase I yielding >20 mg/L of enzyme at over 95% purity.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA
| | - Emily Price
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA
| | - Donovan Miller
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA
| | - Kirk E Hevener
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA.
| |
Collapse
|
32
|
Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med Chem 2016; 7:459-71. [PMID: 25875873 DOI: 10.4155/fmc.14.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance of bacterial pathogens to current antibiotics has grown to be an urgent crisis. Approaches to overcome this challenge include identification of novel targets for discovery of new antibiotics. Bacterial topoisomerase I is present in all bacterial pathogens as a potential target for bactericidal topoisomerase poison inhibitors. Recent efforts have identified inhibitors of bacterial topoisomerase I with antibacterial activity. Additional research on the mode of action and binding site of these inhibitors would provide further validation of the target and establish that bacterial topoisomerase I is druggable. Bacterial topoisomerase I is a potentially high value target for discovery of new antibiotics. Demonstration of topoisomerase I as the cellular target of an antibacterial compound would provide proof-of-concept validation.
Collapse
|
33
|
Synthesis and antibacterial activities of cadiolides A, B and C and analogues. Bioorg Med Chem 2015; 23:3618-28. [DOI: 10.1016/j.bmc.2015.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/16/2022]
|
34
|
Ravishankar S, Ambady A, Awasthy D, Mudugal NV, Menasinakai S, Jatheendranath S, Guptha S, Sharma S, Balakrishnan G, Nandishaiah R, Ramachandran V, Eyermann CJ, Reck F, Rudrapatna S, Sambandamurthy VK, Sharma UK. Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an attractive anti-tubercular target. Tuberculosis (Edinb) 2015; 95:589-98. [PMID: 26073894 DOI: 10.1016/j.tube.2015.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/30/2015] [Accepted: 05/13/2015] [Indexed: 12/21/2022]
Abstract
DNA topoisomerases perform the essential function of maintaining DNA topology in prokaryotes. DNA gyrase, an essential enzyme that introduces negative supercoils, is a clinically validated target. However, topoisomerase I (Topo I), an enzyme responsible for DNA relaxation has received less attention as an antibacterial target, probably due to the ambiguity over its essentiality in many organisms. The Mycobacterium tuberculosis genome harbors a single topA gene with no obvious redundancy in its function suggesting an essential role. The topA gene could be inactivated only in the presence of a complementing copy of the gene in M. tuberculosis. Furthermore, down-regulation of topA in a genetically engineered strain of M. tuberculosis resulted in loss of bacterial viability which correlated with a concomitant depletion of intracellular Topo I levels. The topA knockdown strain of M. tuberculosis failed to establish infection in a murine model of TB and was cleared from lungs in two months post infection. Phenotypic screening of a Topo I overexpression strain led to the identification of an inhibitor, thereby providing chemical validation of this target. Thus, our work confirms the attractiveness of Topo I as an anti-mycobacterial target.
Collapse
Affiliation(s)
- Sudha Ravishankar
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India.
| | - Anisha Ambady
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | - Disha Awasthy
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | | | | | - Supreeth Guptha
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | - Sreevalli Sharma
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | - Radha Nandishaiah
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | - Charles J Eyermann
- AstraZeneca Infection, Innovative Medicines, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Folkert Reck
- AstraZeneca Infection, Innovative Medicines, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Suresh Rudrapatna
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | - Umender K Sharma
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
35
|
Mohamed HF. Molecular analysis and anticancer properties of two identified isolates, Fusarium solani and Emericella nidulans isolated from Wady El-Natron soil in Egypt against Caco-2 (ATCC) cell line. Asian Pac J Trop Biomed 2015; 2:863-9. [PMID: 23569862 DOI: 10.1016/s2221-1691(12)60244-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To characterize, identify and investigate the anticancer properties of two new soil fungal isolates, Emericella nidulans and Fusarium solani isolated from Wady El-Natron in Egypt against colon cancer Caco-2 (ATCC) cell line. METHODS Soil sample was cultured and two strains were chosen for morphological and phenotypical characterization. Partial sequences of the 18s rRNA gene and the internal transcribed spacer region ITS of the two isolates were amplified by PCR. Phylogenetic tree construction and analysis of the resulted multiple sequences from the two fugal isolates were also carried out. In vitro anticancer activity of the two strains was done against colon Caco-2 cancer cell line. Reverse transcription - PCR was carried out to detect level of expression of p53 in Caco-2 cell line. RESULTS HF.1 displayed morphological and genotypic characteristics most similar to that of Fusarium solani while HF.2 was most similar to Emericella nidulans with high similarity of 99% and 97% respectively. The multiple sequence alignment of the two fungal isolates showed that, the maximum identical conserved domains in the 18s rRNA genes were identified with the nucleotide regions of 51st to 399th base pairs, 88th to 525th base pairs respectively. While those in the ITS genes were identified with the nucleotide regions of 88th to 463rd and 51st to 274th. The two isolates showed IC50 value with (6.24±5.21) and (9.84±0.36) µg/mL) concentrations respectively at 28h. Reverse transcription - PCR indicated that these cells showed high level of expression for p53 mRNA. CONCLUSIONS The morphology and molecular analysis identified HF.1 and HF.2 to be Fusarium solani and Emericella nidulans; new isolates of anticancer producing fungi from Wady El-Natroon city in Egypt. Treatment with the two isolates caused P53 expression in Caco-2 cell line. These two isolates can be used as an anticancer agents.
Collapse
Affiliation(s)
- Hala F Mohamed
- University of Al-Azhar, Faculty of Science (Girls Branch), Department of Botany and Microbiology,Youssef Abbas Street, Nasr City, Cairo, Egypt
| |
Collapse
|
36
|
Nimesh H, Sur S, Sinha D, Yadav P, Anand P, Bajaj P, Virdi JS, Tandon V. Synthesis and Biological Evaluation of Novel Bisbenzimidazoles as Escherichia coli Topoisomerase IA Inhibitors and Potential Antibacterial Agents. J Med Chem 2014; 57:5238-57. [DOI: 10.1021/jm5003028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hemlata Nimesh
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Souvik Sur
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Devapriya Sinha
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Pooja Yadav
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Prachi Anand
- Department of Chemistry & Biochemistry, CUNY−Hunter College, New York, New York 10065, United States
| | - Priyanka Bajaj
- Department
of Microbiology, University of Delhi, Delhi 110 021, India
| | | | - Vibha Tandon
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
- Special
Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
37
|
The fluoroquinolone levofloxacin triggers the transcriptional activation of iron transport genes that contribute to cell death in Streptococcus pneumoniae. Antimicrob Agents Chemother 2013; 58:247-57. [PMID: 24145547 DOI: 10.1128/aac.01706-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We studied the transcriptomic response of Streptococcus pneumoniae to levofloxacin (LVX) under conditions inhibiting topoisomerase IV but not gyrase. Although a complex transcriptomic response was observed, the most outstanding result was the upregulation of the genes of the fatDCEB operon, involved in iron (Fe(2+) and Fe(3+)) uptake, which were the only genes varying under every condition tested. Although the inhibition of topoisomerase IV by levofloxacin did not have a detectable effect in the level of global supercoiling, increases in general supercoiling and fatD transcription were observed after topoisomerase I inhibition, while the opposite was observed after gyrase inhibition with novobiocin. Since fatDCEB is located in a topological chromosomal domain downregulated by DNA relaxation, we studied the transcription of a copy of the 422-bp (including the Pfat promoter) region located upstream of fatDCEB fused to the cat reporter inserted into the chromosome 106 kb away from its native position: PfatfatD was upregulated in the presence of LVX in its native location, whereas no change was observed in the Pfatcat construction. Results suggest that topological changes are indeed involved in PfatfatDCE transcription. Upregulation of fatDCEB would lead to an increase of intracellular iron and, in turn, to the activation of the Fenton reaction and the increase of reactive oxygen species. In accordance, we observed an attenuation of levofloxacin lethality in iron-deficient media and in a strain lacking the gene coding for SpxB, the main source of hydrogen peroxide. In addition, we observed an increase of reactive oxygen species that contributed to levofloxacin lethality.
Collapse
|
38
|
Párraga J, Cabedo N, Andujar S, Piqueras L, Moreno L, Galán A, Angelina E, Enriz RD, Ivorra MD, Sanz MJ, Cortes D. 2,3,9- and 2,3,11-Trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur J Med Chem 2013; 68:150-66. [PMID: 23974015 DOI: 10.1016/j.ejmech.2013.07.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022]
|
39
|
Bansal S, Sinha D, Singh M, Cheng B, Tse-Dinh YC, Tandon V. 3,4-dimethoxyphenyl bis-benzimidazole, a novel DNA topoisomerase inhibitor that preferentially targets Escherichia coli topoisomerase I. J Antimicrob Chemother 2012; 67:2882-91. [PMID: 22945915 DOI: 10.1093/jac/dks322] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Antibiotic resistance in bacterial pathogens is a serious clinical problem. Novel targets are needed to combat increasing drug resistance in Escherichia coli. Our objective is to demonstrate that 2-(3,4-dimethoxyphenyl)-5-[5-(4-methylpiperazin-1-yl)-1H-benzimidazol-2yl]-1H-benzimidazole (DMA) inhibits E. coli DNA topoisomerase I more strongly than human topoisomerase I. In addition, DMA is non-toxic to mammalian cells at antibiotic dosage level. METHODS In the present study, we have established DMA as an antibacterial compound by determining MICs, post-antibiotic effects (PAEs) and MBCs for different standard as well as clinical strains of E. coli. We have described the differential catalytic inhibitory mechanism of bis-benzimidazole, DMA, for human and E. coli topoisomerase I and topoisomerase II by performing different assays, including relaxation assays, cleavage-religation assays, DNA unwinding assays, ethidium bromide displacement assays, decatenation assays and DNA gyrase supercoiling assays. RESULTS DMA significantly inhibited bacterial growth at a very low concentration, but did not affect human cell viability at higher concentrations. Activity assays showed that it preferentially targeted E. coli topoisomerase I over human topoisomerase I, topoisomerase II and gyrase. Cleavage-religation assays confirmed DMA as a poison inhibitor of E. coli topoisomerase I. This study illuminates new properties of DMA, which may be further modified to develop an efficient topoisomerase inhibitor that is selective towards bacterial topoisomerase I. CONCLUSIONS This is the first report of a bis-benzimidazole acting as an E. coli topoisomerase I inhibitor. DMA is a safe, non-cytotoxic molecule to human cells at concentrations that are needed for antibacterial activity.
Collapse
Affiliation(s)
- Sandhya Bansal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
40
|
Milián L, Ballesteros R, Sanz MJ, Blázquez MA. Synthesis and reactive oxygen species scavenging activity of halogenated alkaloids from boldine. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9844-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Casu L, Cottiglia F, Leonti M, De Logu A, Agus E, Tse-Dinh YC, Lombardo V, Sissi C. Ungeremine effectively targets mammalian as well as bacterial type I and type II topoisomerases. Bioorg Med Chem Lett 2011; 21:7041-4. [PMID: 22014547 DOI: 10.1016/j.bmcl.2011.09.097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/16/2022]
Abstract
From the methanol extract of the bulbs of Pancratium illyricum L., three phenanthridine type alkaloids, ungeremine (1), (-)-lycorine (2) and (+)-vittatine (3) were isolated. For the evaluation of their anticancer and antibacterial potential, compounds 1-3 were tested against human (I, IIα) and bacterial (IA, IV) topoisomerases. Our data demonstrated that ungeremine impairs the activity of both, human and bacterial topoisomerases. Remarkably, ungeremine was found to largely increments the DNA cleavage promoted by bacterial topoisomerase IA, a new target in antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Laura Casu
- Dipartimento Farmaco Chimico Tecnologico, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu IF, Sutherland JH, Cheng B, Tse-Dinh YC. Topoisomerase I function during Escherichia coli response to antibiotics and stress enhances cell killing from stabilization of its cleavage complex. J Antimicrob Chemother 2011; 66:1518-24. [PMID: 21486853 DOI: 10.1093/jac/dkr150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To explore the role of topoisomerase I in gene activation and increased RecA levels during the bacterial SOS response, as well as the effect of antibiotic treatment and stress challenge on cell killing initiated by trapped topoisomerase I cleavage complex. METHODS A mutant Escherichia coli strain with a ΔtopA mutation was used to investigate the role of topoisomerase I function in the SOS response to trimethoprim and mitomycin C. Induction of the recA and dinD1 promoters was measured using luciferase reporters of these promoters fused to luxCDABE. An increase in the RecA level following trimethoprim treatment was quantified directly by western blotting. The effect of stress challenge from trimethoprim and acidified nitrite treatments on cell killing by topoisomerase I cleavage complex accumulation was measured by the decrease in viability following induction of recombinant mutant topoisomerase I that forms a stabilized cleavage complex. RESULTS Topoisomerase I function was found to be required for efficient transcriptional activation of the recA and dinD1 promoters during the E. coli SOS response to trimethoprim and mitomycin C. The role of topoisomerase I in the SOS response was confirmed with quantitative western blot analysis of RecA following trimethoprim treatment. The bactericidal effect from topoisomerase I cleavage complex accumulation was shown to be enhanced by stress challenge from trimethoprim and acidified nitrite. CONCLUSIONS Bacterial topoisomerase I function is actively involved in the SOS response to antibiotics and stress challenge. Cell killing initiated by the topoisomerase I cleavage complex would be enhanced by antibiotics and the host response. These findings provide further support for bacterial topoisomerase I as a therapeutic target.
Collapse
Affiliation(s)
- I-Fen Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|