1
|
Chen X, Shen J, Jiang X, Pan M, Chang S, Li J, Wang L, Miao M, Feng X, Zhang L, Shu G, Liu W, Xu F, Zhang W, Ding Z, Zong H, Liu W, Li D, Chen B, Shao M, Fei G, Zha X, Fan X. Characterization of dipyridamole as a novel ferroptosis inhibitor and its therapeutic potential in acute respiratory distress syndrome management. Theranostics 2024; 14:6947-6968. [PMID: 39629132 PMCID: PMC11610143 DOI: 10.7150/thno.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Rationale: Ferroptosis in lung epithelium and endothelium contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), a critical and often fatal condition marked by acute inflammation and elevated pulmonary vascular permeability. Despite this, there are currently no FDA-approved therapeutics specifically targeting ferroptosis for ARDS management. Methods: A screening of 259 FDA-approved drugs was conducted to identify an effective ferroptosis inhibitor in pulmonary epithelial and endothelial cells. The anti-ferroptotic and therapeutic efficacy of this screened drug was rigorously evaluated using two distinct ARDS mouse models (LPS-induced acute lung injury and CLP-induced sepsis) and human airway organoids (hAOs). The regulatory mechanism of this drug on ferroptosis inhibition was investigated via RNA-sequencing, qRT-PCR, western blotting, IF, luciferase reporter assay, chromatin immunoprecipitation assay, limited proteolysis-mass spectrometry assay, cellular thermal shift assay, and drug affinity responsive target stability assay. Furthermore, a proof-of-concept clinical trial was conducted, wherein ARDS patients were administered with the drug as adjunctive therapy. Results: Dipyridamole (DIPY) was identified as a potent inhibitor of ferroptosis in pulmonary epithelial and endothelial cells. DIPY effectively mitigated ferroptosis and pulmonary damage in both mouse models and hAOs, primarily by downregulating heme oxygenase 1 (HMOX1). The transcription factor cAMP responsive element binding protein 1 (CREB1) was identified as a key transactivator of HMOX1, which DIPY effectively downregulated. Mechanistically, DIPY binds to and activates superoxide dismutase 1 (SOD1), which in turn inhibits the CREB1/HMOX1 pathway, thereby suppressing ferroptosis. Notably, the clinical trial further corroborated the therapeutic potential of DIPY in ARDS patients, demonstrating improved outcomes with DIPY adjunctive therapy. Conclusions: These findings provide compelling evidence that DIPY inhibits ferroptosis in pulmonary epithelial and endothelial cells by modulating the SOD1/CREB1/HMOX1 signaling axis and suggest DIPY as a promising therapeutic strategy for ARDS treatment.
Collapse
Affiliation(s)
- Xu Chen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Jiapan Shen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Xueqin Jiang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, China
| | - Min Pan
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Shuang Chang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Juanjuan Li
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lei Wang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Manli Miao
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Xiaoxia Feng
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Ling Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Guoqing Shu
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Wenjian Liu
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangzhou Xu
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
| | - Wentao Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zhao Ding
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaiyuan Zong
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Weiwei Liu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Dapeng Li
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyun Fan
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Geriatric Institute, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
2
|
Liu Z, Fu Y, Yan M, Zhang S, Cai J, Chen G, Dong Z. microRNAs in kidney diseases: Regulation, therapeutics, and biomarker potential. Pharmacol Ther 2024; 262:108709. [PMID: 39181246 DOI: 10.1016/j.pharmthera.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression by inhibiting the translation of their specific target messenger RNAs. To date, numerous studies have demonstrated changes in the expression of miRNAs in the kidneys throughout the progression of both acute kidney injury (AKI) and chronic kidney disease (CKD) in both human patients and experimental models. The role of specific microRNAs in the pathogenesis of kidney diseases has also been demonstrated. Further studies have elucidated the regulation of these microRNAs in diseased kidneys. Besides, certain miRNAs are detected in plasma and/or urine in kidney diseases and are potential diagnostic biomarkers. In this review, we provide an overview of recent developments in our understanding of how miRNAs contribute to kidney diseases. We also explore the potential of miRNAs as both biomarkers and therapeutic targets for these conditions, and highlight future research directions.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Ying Fu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mingjuan Yan
- Changde Hospital, Xiangya School of Medicine, Central South University, China
| | - Subing Zhang
- Youxian People's Hospital, Youxian, Hunan 412300, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
| |
Collapse
|
3
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
4
|
Wang H, Cheng Q, Bao L, Li M, Chang K, Yi X. Cytoprotective Role of Heme Oxygenase-1 in Cancer Chemoresistance: Focus on Antioxidant, Antiapoptotic, and Pro-Autophagy Properties. Antioxidants (Basel) 2023; 12:1217. [PMID: 37371947 DOI: 10.3390/antiox12061217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chemoresistance remains the foremost challenge in cancer therapy. Targeting reactive oxygen species (ROS) manipulation is a promising strategy in cancer treatment since tumor cells present high levels of intracellular ROS, which makes them more vulnerable to further ROS elevation than normal cells. Nevertheless, dynamic redox evolution and adaptation of tumor cells are capable of counteracting therapy-induced oxidative stress, which leads to chemoresistance. Hence, exploring the cytoprotective mechanisms of tumor cells is urgently needed to overcome chemoresistance. Heme oxygenase-1 (HO-1), a rate-limiting enzyme of heme degradation, acts as a crucial antioxidant defense and cytoprotective molecule in response to cellular stress. Recently, emerging evidence indicated that ROS detoxification and oxidative stress tolerance owing to the antioxidant function of HO-1 contribute to chemoresistance in various cancers. Enhanced HO-1 expression or enzymatic activity was revealed to promote apoptosis resistance and activate protective autophagy, which also involved in the development of chemoresistance. Moreover, inhibition of HO-1 in multiple cancers was identified to reversing chemoresistance or improving chemosensitivity. Here, we summarize the most recent advances regarding the antioxidant, antiapoptotic, and pro-autophagy properties of HO-1 in mediating chemoresistance, highlighting HO-1 as a novel target for overcoming chemoresistance and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Qi Cheng
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Lingjie Bao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
5
|
Beckman JD, DaSilva A, Aronovich E, Nguyen A, Nguyen J, Hargis G, Reynolds D, Vercellotti GM, Betts B, Wood DK. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost 2023; 21:1366-1380. [PMID: 36738826 PMCID: PMC10246778 DOI: 10.1016/j.jtha.2023.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vascular activation is characterized by increased proinflammatory, pro thrombotic, and proadhesive signaling. Several chronic and acute conditions, including Bcr-abl-negative myeloproliferative neoplasms (MPNs), graft-vs-host disease, and COVID-19 have been noted to have increased activation of the janus kinase (JAK)-signal transducer and downstream activator of transcription (STAT) pathways. Two notable inhibitors of the JAK-STAT pathway are ruxolitinib (JAK1/2 inhibitor) and fedratinib (JAK2 inhibitor), which are currently used to treat MPN patients. However, in some conditions, it has been noted that JAK inhibitors can increase the risk of thromboembolic complications. OBJECTIVES We sought to define the anti-inflammatory and antithrombotic effects of JAK-STAT inhibitors in vascular endothelial cells. METHODS We assessed endothelial activation in the presence or absence of ruxolitinib or fedratinib by using immunoblots, immunofluorescence, qRT-PCR, and function coagulation assays. Finally, we used endothelialized microfluidics perfused with blood from normal and JAK2V617F+ individuals to evaluate whether ruxolitinib and fedratinib changed cell adhesion. RESULTS We found that both ruxolitinib and fedratinib reduced endothelial cell phospho-STAT1 and STAT3 signaling and attenuated nuclear phospho-NK-κB and phospho-c-Jun localization. JAK-STAT inhibition also limited secretion of proadhesive and procoagulant P-selectin and von Willebrand factor and proinflammatory IL-6. Likewise, we found that JAK-STAT inhibition reduced endothelial tissue factor and urokinase plasminogen activator expression and activity. CONCLUSIONS By using endothelialized microfluidics perfused with whole blood samples, we demonstrated that endothelial treatment with JAK-STAT inhibitors prevented rolling of both healthy control and JAK2V617F MPN leukocytes. Together, these findings demonstrate that JAK-STAT inhibitors reduce the upregulation of critical prothrombotic pathways and prevent increased leukocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Angelica DaSilva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elena Aronovich
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aithanh Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geneva Hargis
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Reynolds
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Betts
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Wu YH, Hsieh HL. Roles of Heme Oxygenase-1 in Neuroinflammation and Brain Disorders. Antioxidants (Basel) 2022; 11:antiox11050923. [PMID: 35624787 PMCID: PMC9137505 DOI: 10.3390/antiox11050923] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
The heme oxygenase (HO) system is believed to be a crucial mechanism for the nervous system under stress conditions. HO degrades heme to carbon monoxide, iron, and biliverdin. These heme degradation products are involved in modulating cellular redox homeostasis. The first identified isoform of the HO system, HO-1, is an inducible protein that is highly expressed in peripheral organs and barely detectable in the brain under normal conditions, whereas HO-2 is a constitutive protein that is highly expressed in the brain. Several lines of evidence indicate that HO-1 dysregulation is associated with brain inflammation and neurodegeneration, including Parkinson’s and Alzheimer’s diseases. In this review, we summarize the essential roles that the HO system plays in ensuring brain health and the molecular mechanism through which HO-1 dysfunction leads to neurodegenerative diseases and disruption of nervous system homeostasis. We also provide a summary of the herbal medicines involved in the regulation of HO-1 expression and explore the current situation regarding herbal remedies and brain disorders.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-211-8999 (ext. 5421)
| |
Collapse
|
7
|
The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021; 10:cells10092401. [PMID: 34572050 PMCID: PMC8471703 DOI: 10.3390/cells10092401] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.
Collapse
|
8
|
Henderson J, Dubey PK, Patil M, Singh S, Dubey S, Namakkal Soorappan R, Kannappan R, Sethu P, Qin G, Zhang J, Krishnamurthy P. microRNA-377 Signaling Modulates Anticancer Drug-Induced Cardiotoxicity in Mice. Front Cardiovasc Med 2021; 8:737826. [PMID: 34485421 PMCID: PMC8415717 DOI: 10.3389/fcvm.2021.737826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX, an anthracycline) is a widely used chemotherapy agent against various forms of cancer; however, it is also known to induce dose-dependent cardiotoxicity leading to adverse complications. Investigating the underlying molecular mechanisms and strategies to limit DOX-induced cardiotoxicity might have potential clinical implications. Our previous study has shown that expression of microRNA-377 (miR-377) increases in cardiomyocytes (CMs) after cardiac ischemia-reperfusion injury in mice, but its specific role in DOX-induced cardiotoxicity has not been elucidated. In the present study, we investigated the effect of anti-miR-377 on DOX-induced cardiac cell death, remodeling, and dysfunction. We evaluated the role of miR-377 in CM apoptosis, its target analysis by RNA sequencing, and we tested the effect of AAV9-anti-miR-377 on DOX-induced cardiotoxicity and mortality. DOX administration in mice increases miR-377 expression in the myocardium. miR-377 inhibition in cardiomyocyte cell line protects against DOX-induced cell death and oxidative stress. Furthermore, RNA sequencing and Gene Ontology (GO) analysis revealed alterations in a number of cell death/survival genes. Intriguingly, we observed accelerated mortality and enhanced myocardial remodeling in the mice pretreated with AAV9-anti-miR-377 followed by DOX administration as compared to the AAV9-scrambled-control-pretreated mice. Taken together, our data suggest that in vitro miR-377 inhibition protects against DOX-induced cardiomyocyte cell death. On the contrary, in vivo administration of AAV9-anti-miR-377 increases mortality in DOX-treated mice.
Collapse
Affiliation(s)
- John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Praveen K Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajasekaran Namakkal Soorappan
- Division of Molecular & Cellular Pathology, Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Che J, Yang J, Zhao B, Shang P. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol 2021; 906:174219. [PMID: 34081904 DOI: 10.1016/j.ejphar.2021.174219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance. Therefore, regulating the production of inflammatory factors and reactive oxygen species may become a strategy for the treatment of osteoporosis. Solid evidence showed that the overexpression of HO-1 compensates high oxidation levels by increasing intracellular antioxidant levels and reduces inflammation by suppressing pro-inflammatory factors. Some extracts can target HO-1 and ameliorate osteoporosis. However, no systematic report is available on therapies targeting HO-1 to combat osteoporosis. Therefore, this review summarizes the biological characteristics of HO-1, and the relationship between inflammatory response and reactive oxygen species production regulated by HO-1 and osteoporosis. The understanding of the role of HO-1 in osteoporosis may provide ideas for a potential clinical treatment and new drugs targeting HO-1.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| | - Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
10
|
Sanada Y, Tan SJO, Adachi N, Miyaki S. Pharmacological Targeting of Heme Oxygenase-1 in Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10030419. [PMID: 33803317 PMCID: PMC8001640 DOI: 10.3390/antiox10030419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a common aging-associated disease that clinically manifests as joint pain, mobility limitations, and compromised quality of life. Today, OA treatment is limited to pain management and joint arthroplasty at the later stages of disease progression. OA pathogenesis is predominantly mediated by oxidative damage to joint cartilage extracellular matrix and local cells such as chondrocytes, osteoclasts, osteoblasts, and synovial fibroblasts. Under normal conditions, cells prevent the accumulation of reactive oxygen species (ROS) under oxidatively stressful conditions through their adaptive cytoprotective mechanisms. Heme oxygenase-1 (HO-1) is an iron-dependent cytoprotective enzyme that functions as the inducible form of HO. HO-1 and its metabolites carbon monoxide and biliverdin contribute towards the maintenance of redox homeostasis. HO-1 expression is primarily regulated at the transcriptional level through transcriptional factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), specificity protein 1 (Sp1), transcriptional repressor BTB-and-CNC homology 1 (Bach1), and epigenetic regulation. Several studies report that HO-1 expression can be regulated using various antioxidative factors and chemical compounds, suggesting therapeutic implications in OA pathogenesis as well as in the wider context of joint disease. Here, we review the protective role of HO-1 in OA with a focus on the regulatory mechanisms that mediate HO-1 activity.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan;
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Sho Joseph Ozaki Tan
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan;
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
- Correspondence: ; Tel.: +81-82-257-5231
| |
Collapse
|
11
|
Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells 2021; 10:cells10030515. [PMID: 33671004 PMCID: PMC7997353 DOI: 10.3390/cells10030515] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1 (HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis. A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD (i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic program for catabolic recycling of proteins and organelles. While autophagy is primarily associated with cell survival, its occurrence can coincide with RCD programs. This review will summarize the roles of HO-1 and its reaction products in co-regulating RCD and autophagy programs, with its implication for both protective and detrimental tissue responses, with emphasis on how these impact HO-1 as a candidate therapeutic target in disease.
Collapse
|
12
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
13
|
Yarahmadi A, Shahrokhi SZ, Mostafavi-Pour Z, Azarpira N. MicroRNAs in diabetic nephropathy: From molecular mechanisms to new therapeutic targets of treatment. Biochem Pharmacol 2020; 189:114301. [PMID: 33203517 DOI: 10.1016/j.bcp.2020.114301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Despite considerable investigation in diabetic nephropathy (DN) pathogenesis and possible treatments, current therapies still do not provide competent prevention from disease progression to end-stage renal disease (ESRD) in most patients. Therefore, investigating exact molecular mechanisms and important mediators underlying DN may help design better therapeutic approaches for proper treatment. MicroRNAs (MiRNAs) are a class of small non-coding RNAs that play a crucial role in post-transcriptional regulation of many gene expression within the cells and present an excellent opportunity for new therapeutic approaches because their profile is often changed during many diseases, including DN. This review discusses the most important signaling pathways involved in DN and changes in miRNAs profile in each signaling pathway. We also suggest possible approaches for miRNA derived interventions for designing better treatment of DN.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Shi L, Tian Z, Fu Q, Li H, Zhang L, Tian L, Mi W. miR-217-regulated MEF2D-HDAC5/ND6 signaling pathway participates in the oxidative stress and inflammatory response after cerebral ischemia. Brain Res 2020; 1739:146835. [PMID: 32311345 DOI: 10.1016/j.brainres.2020.146835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022]
Abstract
Multiple factors are known to contribute to the pathogenesis of cerebral ischemic injury, including microRNAs (miRNAs). However, the precise mechanism of miRNAs involvement in cerebral ischemia remains largely unclear. In the current study, we found that miR-217 was significantly upregulated in ischemic stroke models, and the upregulation of miR-217 was associated with the development of post-stroke cognitive impairment. Further investigation revealed that myocyte enhancer factor 2D (MEF2D) was the direct target of miR-217. In vitro experiments showed that miR-217 promoted aggregation of histone deacetylase 5 (HDAC5) in cell nuclei by targeting MEF2D, which led to decreased expression of interleukin (IL)-10. In addition, miR-217 inhibited the expression of NADH dehydrogenase subunit 6 (ND6) in a MEF2D-dependent manner. Overexpression of MEF2D can reverse oxygen-glucose deprivation (OGD)-induced downregulation of ND6 and OGD-mediated neuronal apoptosis, and also reduce the elevated generation of reactive oxygen species (ROS) induced by OGD. Additionally, we found that in vivo administration of MEF2D overexpression plasmids increased IL-10 production and ameliorated cognitive impairment after cerebral ischemia. Taken together, these findings reveal a novel pathogenetic mechganism of cerebral ischemia-related brain injury involving the miR-217/MEF2D/HDAC5 axis and the miR-217/MEF2D/ND6 axis.
Collapse
Affiliation(s)
- Likai Shi
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Zhenpu Tian
- Department of Anesthesiology, Hainan Hospital of the Chinese People's Liberation Army (PLA) General Hospital, Jianglin Road, Haitang District, Sanya, Hainan 572013, China
| | - Qiang Fu
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Lifeng Zhang
- Department of Anesthesiology, Hainan Hospital of the Chinese People's Liberation Army (PLA) General Hospital, Jianglin Road, Haitang District, Sanya, Hainan 572013, China
| | - Li Tian
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, No. 1878 Sichuanbei Road, Shanghai 200081,China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
15
|
Gallardo V, González M, Toledo F, Sobrevia L. Role of heme oxygenase 1 and human chorionic gonadotropin in pregnancy associated diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165522. [DOI: 10.1016/j.bbadis.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 01/13/2023]
|
16
|
Grieco GE, Brusco N, Licata G, Nigi L, Formichi C, Dotta F, Sebastiani G. Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes. Int J Mol Sci 2019; 20:ijms20246358. [PMID: 31861156 PMCID: PMC6940935 DOI: 10.3390/ijms20246358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic β cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inβ cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications. Although several pharmacological therapies specifically targeting miRNAs have already been developed and brought to the clinic, most previous miRNA-based drug delivery methods were unable to target a specific miRNA in a single cell type or tissue, leading to important off-target effects. In order to overcome these issues, aptamers and nanoparticles have been described as non-cytotoxic vehicles for miRNA-based drug delivery. These approaches could represent an innovative way to specifically target and modulate miRNAs involved in oxidative stress in diabetes and its complications. Therefore, the aims of this review are: (i) to report the role of miRNAs involved in oxidative stress in diabetes as promising therapeutic targets; (ii) to shed light onto the new delivery strategies developed to modulate the expression of miRNAs in diseases.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
- UO Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
- UO Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
- UO Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577-586269
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| |
Collapse
|
17
|
Xie MY, Hou LJ, Sun JJ, Zeng B, Xi QY, Luo JY, Chen T, Zhang YL. Porcine Milk Exosome MiRNAs Attenuate LPS-Induced Apoptosis through Inhibiting TLR4/NF-κB and p53 Pathways in Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9477-9491. [PMID: 31429552 DOI: 10.1021/acs.jafc.9b02925] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharide (LPS) is a bacterial endotoxin that induces intestine inflammation. Milk exosomes improve the intestine and immune system development of newborns. This study aims to establish the protective mechanisms of porcine milk exosomes on the attenuation of LPS-induced intestinal inflammation and apoptosis. In vivo, exosomes prevented LPS-induced intestine damage and inhibited (p < 0.05) LPS-induced inflammation. In vitro, exosomes inhibited (p < 0.05) LPS-induced intestinal epithelial cells apoptosis (23% ± 0.4% to 12% ± 0.2%). Porcine milk exosomes also decreased (p < 0.05) the LPS-induced TLR4/NF-κB signaling pathway activation. Furthermore, exosome miR-4334 and miR-219 reduced (p < 0.05) LPS-induced inflammation through the NF-κB pathway and miR-338 inhibited (p < 0.05) the LPS-induced apoptosis via the p53 pathway. Cotransfection with these three miRNAs more effectively prevented (p < 0.05) LPS-induced cell apoptosis than these miRNAs individual transfection. The apoptosis percentage in the group cotransfected with the three miRNAs (14% ± 0.4%) was lower (p < 0.05) than that in the NC miRNA group (28% ± 0.5%), and also lower than that in each individual miRNA group. In conclusion, porcine milk exosomes protect the intestine epithelial cells against LPS-induced injury by inhibiting cell inflammation and protecting against apoptosis through the action of exosome miRNAs. The presented results suggest that the physiological amounts of miRNAs-enriched exosomes addition to infant formula could be used as a novel preventative measure for necrotizing enterocolitis.
Collapse
Affiliation(s)
- Mei-Ying Xie
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Lian-Jie Hou
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- National Engineering Research Center for Breeding Swine Industry , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Jia-Jie Sun
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- National Engineering Research Center for Breeding Swine Industry , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Bin Zeng
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Qian-Yun Xi
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Jun-Yi Luo
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| | - Yong-Liang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- College of Animal Science , South China Agricultural University , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- National Engineering Research Center for Breeding Swine Industry , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
- Guangdong Engineering & Research Center for Woody Fodder Plants , 483 Wushan Road, Tianhe District , Guangzhou , Guangdong 510642 , China
| |
Collapse
|
18
|
Yanatori I, Richardson DR, Toyokuni S, Kishi F. How iron is handled in the course of heme catabolism: Integration of heme oxygenase with intracellular iron transport mechanisms mediated by poly (rC)-binding protein-2. Arch Biochem Biophys 2019; 672:108071. [PMID: 31421070 DOI: 10.1016/j.abb.2019.108071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
Heme and iron are essential to almost all forms of life. The strict maintenance of heme and iron homeostasis is essential to prevent cellular toxicity and the existence of systemic and intracellular regulation is fundamental. Cytosolic heme can be catabolized and detoxified by heme oxygenases (HOs). Interestingly, free heme detoxification through HOs results in the production of free ferrous iron, which can be potentially hazardous for cells. Recently, the intracellular iron chaperone, poly (rC)-binding protein 2 (PCBP2), has been identified, which can be involved in accepting iron after heme catabolism as well as intracellular iron transport. In fact, HO1, NADPH-cytochrome P450 reductase, and PCBP2 form a functional unit that integrates the catabolism of heme with the binding and transport of iron by PCBP2. In this review, we provide an overview of our understanding of the iron chaperones and discuss the mechanism how iron chaperones bind iron released during the process of heme degradation.
Collapse
Affiliation(s)
- Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Des R Richardson
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan; Department of Pathology and Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales, 2006, Australia
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Fumio Kishi
- Kenjinkai Healthcare Corporation, 530 Asa, Sanyo-Onoda Yamaguchi, 757-0001, Japan.
| |
Collapse
|
19
|
Safaralizadeh R, Ajami N, Nemati M, Hosseinpourfeizi M, Azimzadeh Isfanjani A, Moaddab SY. Disregulation of miR-216a and miR-217 in Gastric Cancer and Their Clinical Significance. J Gastrointest Cancer 2019; 50:78-83. [PMID: 29177609 DOI: 10.1007/s12029-017-0019-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The majority of gastric cancer (GC) diagnoses occur at the middle or late stage of the disease, indicating that finding novel biomarkers that could be detectable at earlier stage is urgently needed. Accumulating studies have shown that microRNAs, a class of tiny single-stranded RNAs, play important roles in multiple biological processes including cancer development. The present study aimed to evaluate the effect of miR-216a and miR-217 in GC. MATERIAL AND METHODS The real-time quantitative reverse-transcription PCR was exploited to identify and compare the expression levels of miR-216a and miR-217 in 37 pairs of samples of gastric cancer tissue and adjacent normal tissue. Superimposed on this, the potential relationship between miR-216a/217 levels and clinicopathological parameters in patients suffering GC was explored. RESULTS The results obtained from this study showed that the miR-216a is significantly upregulated in gastric cancer tissues, compared with adjacent normal tissues, but the altered expression of miR-217 was not significant. For miR-216a/217, no significant correlations were detected between expression levels of these miRNAs and clinical and pathological characteristics of patients. CONCLUSION This prospective study proposes that upregulation of miR-216a might represent an important mechanism for the development of gastric cancer.
Collapse
Affiliation(s)
- Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Naser Ajami
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Nemati
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | | | - Seyed-Yaghob Moaddab
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. Crosstalk Between Oxidative Stress and Endoplasmic Reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1. Front Physiol 2019; 10:70. [PMID: 30804804 PMCID: PMC6378556 DOI: 10.3389/fphys.2019.00070] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Type-2 diabetes prevalence is continuing to rise worldwide due to physical inactivity and obesity epidemic. Diabetes and fluctuations of blood sugar are related to multiple micro- and macrovascular complications, that are attributed to oxidative stress, endoplasmic reticulum (ER) activation and inflammatory processes, which lead to endothelial dysfunction characterized, among other features, by reduced availability of nitric oxide (NO) and aberrant angiogenic capacity. Several enzymatic anti-oxidant and anti-inflammatory agents have been found to play protective roles against oxidative stress and its downstream signaling pathways. Of particular interest, heme oxygenase (HO) isoforms, specifically HO-1, have attracted much attention as major cytoprotective players in conditions associated with inflammation and oxidative stress. HO operates as a key rate-limiting enzyme in the process of degradation of the iron-containing molecule, heme, yielding the following byproducts: carbon monoxide (CO), iron, and biliverdin. Because HO-1 induction was linked to pro-oxidant states, it has been regarded as a marker of oxidative stress; however, accumulating evidence has established multiple cytoprotective roles of the enzyme in metabolic and cardiovascular disorders. The cytoprotective effects of HO-1 depend on several cellular mechanisms including the generation of bilirubin, an anti-oxidant molecule, from the degradation of heme; the induction of ferritin, a strong chelator of free iron; and the release of CO, that displays multiple anti-inflammatory and anti-apoptotic actions. The current review article describes the major molecular mechanisms contributing to endothelial dysfunction and altered angiogenesis in diabetes with a special focus on the interplay between oxidative stress and ER stress response. The review summarizes the key cytoprotective roles of HO-1 against hyperglycemia-induced endothelial dysfunction and aberrant angiogenesis and discusses the major underlying cellular mechanisms associated with its protective effects.
Collapse
Affiliation(s)
- Hatem Maamoun
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tarek Benameur
- College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, United States
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Liu Z, Yang Q, Wei Q, Chang Y, Qu M, Yu L. The protective effect of miR-377 inhibitor against renal ischemia-reperfusion injury through inhibition of inflammation and oxidative stress via a VEGF-dependent mechanism in mice. Mol Immunol 2019; 106:153-158. [DOI: 10.1016/j.molimm.2018.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 01/29/2023]
|
22
|
Khole S, Mittal S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, Ghaskadbi S. Andrographolide enhances redox status of liver cells by regulating microRNA expression. Free Radic Biol Med 2019; 130:397-407. [PMID: 30414976 DOI: 10.1016/j.freeradbiomed.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
Abstract
Andrographis paniculata Nees and its principal compound andrographolide are well known for exerting beneficial effects by modulating signaling pathways in different biological systems. Our earlier studies have demonstrated the ability of andrographolide as well as andrographolide enriched extracts to activate Nrf2/HO-1 pathway through adenosine A2a receptor. Present study investigated ability of andrographolide to regulate Nrf2 induced antioxidant defense systems by miRNAs using HepG2 cells. Andrographolide strongly induced Nrf2 which in turn modulated enzymes of glutathione and thioredoxin antioxidant systems. It also regulated crucial transcription factors viz. hepatocyte nuclear factor alpha (HNF4A) and tumor suppressor protein 53 (p53). Downregulation of HNF4A by andrographolide led to decrease in miRNAs regulating Heme oxygenase-1 (miR-377) and glutathione cysteine ligase (miR-433). Upregulation of p53 on the other hand led to increase in miRNAs regulating thioredoxin interacting protein (miR-17, miR-224) and glutathione peroxidase (miR-181a). Involvement of p53 and HNF4A in modulation of these miRNAs was confirmed by chromatin immunoprecipitation assay. Overall, the work reveals that andrographolide through modulation of p53 and HNF4A, regulates miRNAs leading to upregulation of HO-1, glutathione and thioredoxin systems. Andrographolide thus, can play a beneficial role in modulating antioxidant defense in oxidative stress induced diseases such as diabetes, ageing etc.
Collapse
Affiliation(s)
- Swati Khole
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India
| | - Smriti Mittal
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India; Department of Biotechnology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashatra, India
| | - Nidhi Jagadish
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Debjani Ghosh
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Vijay Gadgil
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Vilas Sinkar
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India.
| |
Collapse
|
23
|
Heme oxygenase-1 as a potential therapeutic target in rheumatic diseases. Life Sci 2018; 218:205-212. [PMID: 30580021 DOI: 10.1016/j.lfs.2018.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a cellular stress protein, serves a vital metabolic function as the rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin (BR). HO-1 may function as one of the most momentous factors of cell adaptation to oxidase stress, as well as a regulator of inflammatory signaling programs through the generation of its biologically active end products. Intensive investigation is now focusing on the potential function of HO-1 in inflammatory disorders, among which rheumatic diseases are one of the principal issues. METHODS "Heme oxygenase-1", "rheumatic diseases"; "lupus", "rheumatic arthritis", "osteoarthritis" and "oxidative stress" were used as key words for searching in Pubmed and Google scholar database. RESULTS Collected information from the related articles revealed the important role of pathogenesis and therapeutic potential of HO-1 in rheumatic diseases. Conclusions and discussions HO-1 has potential as a target for the treatment of rheumatic diseases due to its characteristic anti-inflammatory and anti-oxidative role. However, it is essential to monitor the HO-1 expression during particular stage of the disorders, and levels of HO-1 in different tissues and organs should be further confirmed in order to correlate it with clinical symptoms and other hallmarks of rheumatic diseases.
Collapse
|
24
|
Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. J Hypertens 2018; 36:2226-2236. [DOI: 10.1097/hjh.0000000000001770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Gas Signaling Molecules and Mitochondrial Potassium Channels. Int J Mol Sci 2018; 19:ijms19103227. [PMID: 30340432 PMCID: PMC6214077 DOI: 10.3390/ijms19103227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
Recently, gaseous signaling molecules, such as carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), which were previously considered to be highly toxic, have been of increasing interest due to their beneficial effects at low concentrations. These so-called gasotransmitters affect many cellular processes, such as apoptosis, proliferation, cytoprotection, oxygen sensing, ATP synthesis, and cellular respiration. It is thought that mitochondria, specifically their respiratory complexes, constitute an important target for these gases. On the other hand, increasing evidence of a cytoprotective role for mitochondrial potassium channels provides motivation for the analysis of the role of gasotransmitters in the regulation of channel function. A number of potassium channels have been shown to exhibit activity within the inner mitochondrial membrane, including ATP-sensitive potassium channels, Ca2+-activated potassium channels, voltage-gated Kv potassium channels, and TWIK-related acid-sensitive K+ channel 3 (TASK-3). The effects of these channels include the regulation of mitochondrial respiration and membrane potential. Additionally, they may modulate the synthesis of reactive oxygen species within mitochondria. The opening of mitochondrial potassium channels is believed to induce cytoprotection, while channel inhibition may facilitate cell death. The molecular mechanisms underlying the action of gasotransmitters are complex. In this review, we focus on the molecular mechanisms underlying the action of H2S, NO, and CO on potassium channels present within mitochondria.
Collapse
|
26
|
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid Redox Signal 2018; 29:1092-1107. [PMID: 28969427 DOI: 10.1089/ars.2017.7328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress caused by overproduction of reactive oxygen species (ROS) in cells is one of the most important contributors to the pathogenesis of cardiovascular and metabolic diseases such as hypertension and atherosclerosis. Excessive accumulation of ROS impairs, while limiting oxidative stress protects cardiovascular and metabolic function through various cellular mechanisms. Recent Advances: MicroRNAs (miRNAs) are novel regulators of oxidative stress in cardiovascular cells that modulate the expression of redox-related genes. This article summarizes recent advances in our understanding of how miRNAs target major ROS generators, antioxidant signaling pathways, and effectors in cells of the cardiovascular system. CRITICAL ISSUES The role of miRNAs in regulating ROS in cardiovascular cells is complicated because miRNAs can target multiple redox-related genes, act on redox regulatory pathways indirectly, and display context-dependent pro- or antioxidant effects. The complex regulatory network of ROS and the plethora of targets make it difficult to pin point the role of miRNAs and develop them as therapeutics. Therefore, these properties should be considered when designing strategies for therapeutic or diagnostic development. FUTURE DIRECTIONS Future studies can gain a better understanding of redox-related miRNAs by investigating their own regulatory mechanisms and the dual role of ROS in the cardiovascular systems. The combination of improved study design and technical advancements will reveal newer pathophysiological importance of redox-related miRNAs.
Collapse
Affiliation(s)
- Yao-Yu Gong
- 1 School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Jiang-Yun Luo
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Li Wang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Yu Huang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
27
|
da Silveira WA, Renaud L, Simpson J, Glen WB, Hazard ES, Chung D, Hardiman G. miRmapper: A Tool for Interpretation of miRNA⁻mRNA Interaction Networks. Genes (Basel) 2018; 9:genes9090458. [PMID: 30223528 PMCID: PMC6162471 DOI: 10.3390/genes9090458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
It is estimated that 30% of all genes in the mammalian cells are regulated by microRNA (miRNAs). The most relevant miRNAs in a cellular context are not necessarily those with the greatest change in expression levels between healthy and diseased tissue. Differentially expressed (DE) miRNAs that modulate a large number of messenger RNA (mRNA) transcripts ultimately have a greater influence in determining phenotypic outcomes and are more important in a global biological context than miRNAs that modulate just a few mRNA transcripts. Here, we describe the development of a tool, “miRmapper”, which identifies the most dominant miRNAs in a miRNA–mRNA network and recognizes similarities between miRNAs based on commonly regulated mRNAs. Using a list of miRNA–target gene interactions and a list of DE transcripts, miRmapper provides several outputs: (1) an adjacency matrix that is used to calculate miRNA similarity utilizing the Jaccard distance; (2) a dendrogram and (3) an identity heatmap displaying miRNA clusters based on their effect on mRNA expression; (4) a miRNA impact table and (5) a barplot that provides a visual illustration of this impact. We tested this tool using nonmetastatic and metastatic bladder cancer cell lines and demonstrated that the most relevant miRNAs in a cellular context are not necessarily those with the greatest fold change. Additionally, by exploiting the Jaccard distance, we unraveled novel cooperative interactions between miRNAs from independent families in regulating common target mRNAs; i.e., five of the top 10 miRNAs act in synergy.
Collapse
Affiliation(s)
- Willian A da Silveira
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Ludivine Renaud
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| | - Jonathan Simpson
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - William B Glen
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Edward S Hazard
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Academic Affairs Faculty, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Gary Hardiman
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
28
|
Dewanjee S, Bhattacharjee N. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol 2018; 155:32-47. [DOI: 10.1016/j.bcp.2018.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
|
29
|
Aayadi H, Mittal SPK, Deshpande A, Gore M, Ghaskadbi SS. Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1. BMB Rep 2018; 50:560-565. [PMID: 28602161 PMCID: PMC5720469 DOI: 10.5483/bmbrep.2017.50.11.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 11/26/2022] Open
Abstract
Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta (GSK-3β). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity.
Collapse
Affiliation(s)
- Hoda Aayadi
- Department of Zoology, Savitribai Phule Pune University, Pune - 411007, India
| | - Smriti P K Mittal
- Department of Zoology, Savitribai Phule Pune University, Pune - 411007, India
| | | | | | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune - 411007, India
| |
Collapse
|
30
|
Yu R, Cai L, Chi Y, Ding X, Wu X. miR‑377 targets CUL4A and regulates metastatic capability in ovarian cancer. Int J Mol Med 2018; 41:3147-3156. [PMID: 29512715 PMCID: PMC5881808 DOI: 10.3892/ijmm.2018.3540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The incidence and recurrence rates of ovarian cancer are still high, and once the disease metastasizes, it is nearly always fatal. Cullin 4A (CUL4A) serves a significant role in tumourigenesis and tumour progression; however, the effect and mechanisms underlying CUL4A overexpression are still unknown. The role of microRNAs (miRs) in the regulation of metastatic capability in ovarian cancer cell lines was investigated. The interaction between miR‑377 and CUL4A was investigated using bioinformatics analyses and dual‑luciferase reporter assays. Furthermore, miR‑377 mRNA and protein levels were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively and cell migration and invasion were detected using a Transwell assay. Results revealed that CUL4A expression was negatively associated with miR‑377 levels in ovarian cancer tissues and cell lines. Through in silico analysis, the targeting effect of miR‑377 on CUL4A was verified. Ectopic expression of miR‑377 in SKOV3 cells downregulated the level of CUL4A, and significantly reduced the migratory ability of the cells. miR‑377 overexpression led to reduced activity of the Wnt/β‑catenin signaling pathway, and regulated the expression of matrix metalloproteinase‑2, and 9, and epithelial‑mesenchymal transition (EMT)‑associated protein. These results suggested that miR‑377 is a significant negative regulator of CUL4A that controls cancer cell progression in ovarian cancer cell lines.
Collapse
Affiliation(s)
- Rufen Yu
- Department of Obstetrics and Gynecology, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P. R. China
| | - Limei Cai
- Department of Obstetrics and Gynecology, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P. R. China
| | - Yingui Chi
- Department of Obstetrics and Gynecology, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P. R. China
| | - Xiangcui Ding
- Department of Obstetrics and Gynecology, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P. R. China
| | - Xueqing Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, The First Provincial Wenzhou Hospital of Zhejiang, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
31
|
El-Samahy MH, Adly AA, Elhenawy YI, Ismail EA, Pessar SA, Mowafy MES, Saad MS, Mohammed HH. Urinary miRNA-377 and miRNA-216a as biomarkers of nephropathy and subclinical atherosclerotic risk in pediatric patients with type 1 diabetes. J Diabetes Complications 2018; 32:185-192. [PMID: 29175120 DOI: 10.1016/j.jdiacomp.2017.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Urinary microRNAs (miRNAs) play a role in the pathogenesis of chronic kidney disease (CKD). AIM To identify the expression of urinary miR-377 and miR-216a in 50 children and adolescents with type 1 diabetes (T1DM) compared with 50 healthy controls and assess their relation to the degree of albuminuria, glycemic control and carotid intimal thickness (CIMT) as an index of atherosclerosis. METHODS Diabetic subjects were divided into normoalbuminuric and microalbuminuric groups according to urinary albumin creatinine ration (UACR). Urinary miRNAs were assessed using real time polymerase chain reaction. CIMT was measured using high resolution carotid ultrasound. RESULTS The expression of urinary miR-377 was significantly higher in patients with microalbumiuria (median, 3.8) compared with 2.65 and 0.98 in normoalbuminic patients and healthy controls, respectively (p<0.05). Urinary miR-216a was significantly lower in all patients with type 1 diabetes and the lowest levels were among the microalbumiuric group. Significant positive correlations were found between urinary miR-377 and HbA1C, UACR and CIMT while urinary miR-216a was negatively correlated to these variables. CONCLUSIONS Urinary miR-377 and miR-216a can be considered early biomarkers of nephropathy in pediatric type 1 diabetes. Their correlation with CIMT provides insights on the subclinical atherosclerotic process that occurs in diabetic nephropathy.
Collapse
Affiliation(s)
| | - A A Adly
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - E A Ismail
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Mohammed Salah Saad
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
32
|
Bo X, Chen Y, Sheng W, Gong Y, Wang H, Gao W, Zhang B. The regulation and function of microRNA-377/RASSF8 signaling axis in gastric cancer. Oncol Lett 2018; 15:3630-3638. [PMID: 29456730 PMCID: PMC5795907 DOI: 10.3892/ol.2018.7740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is a major cause of cancer-associated mortality worldwide. The aberrant expression of microRNA (miRNA) is involved in tumorigenesis. Ras proteins transfer information from the extracellular environment to internal cellular compartments and are essential in numerous signal transduction pathways. To investigate the regulation, function and clinical significance of the miRNA377/Ras association domain family (RASSF) 8 signaling axis in gastric cancer, reverse transcription-quantitative polymerase chain reaction, immunohistochemistry, cell counting kit-8, western blotting, and Transwell assays were used. The results revealed that expression of RASSF8 was significantly upregulated in normal gastric tissues compared with gastric cancer, which was further confirmed by immunohistochemical analysis, and its expression level was increased in normal gastric cells compared with gastric cancer cell lines. However, the expression of miR-377 was significantly upregulated in gastric cancer compared with normal gastric tissues. In addition, RASSF8 overexpression in BGC-823 gastric cancer cells significantly inhibited the proliferation, apoptosis and invasive abilities of cells. Whereas miR-377 attenuated these effects due to downregulated RASSF8 expression by directly targeting its 3′-untranslated region. Furthermore, in the current study, miR-377 was not able to reverse the effects of RASSF8 overexpression on gastric cancer cells. Collectively, the RASSF8 gene may represent a novel molecular target involved in gastric cancer development and may be useful in targeted therapy of patients with gastric cancer.
Collapse
Affiliation(s)
- Xiaobo Bo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yusheng Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weizhong Sheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuda Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Haiyu Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weidong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
33
|
Pu M, Li C, Qi X, Chen J, Wang Y, Gao L, Miao L, Ren J. MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth. PLoS Genet 2017; 13:e1006896. [PMID: 28749936 PMCID: PMC5549757 DOI: 10.1371/journal.pgen.1006896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/08/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, which direct post-transcriptional gene silencing (PTGS) and function in a vast range of biological events including cancer development. Most miRNAs pair to the target sites through seed region near the 5’ end, leading to mRNA cleavage and/or translation repression. Here, we demonstrated a miRNA-induced dual regulation of heme oxygenase-1 (HO-1) via seed region and non-seed region, consequently inhibited tumor growth of NSCLC. We identified miR-1254 as a negative regulator inhibiting HO-1 translation by directly targeting HO-1 3’UTR via its seed region, and suppressing HO-1 transcription via non-seed region-dependent inhibition of transcriptional factor AP-2 alpha (TFAP2A), a transcriptional activator of HO-1. MiR-1254 induced cell apoptosis and cell cycle arrest in human non-small cell lung carcinoma (NSCLC) cells by inhibiting the expression of HO-1, consequently suppressed NSCLC cell growth. Consistently with the in vitro studies, mouse xenograft studies validated that miR-1254 suppressed NSCLC tumor growth in vivo. Moreover, we found that HO-1 expression was inversely correlated with miR-1254 level in human NSCLC tumor samples and cell lines. Overall, these findings identify the dual inhibition of HO-1 by miR-1254 as a novel functional mechanism of miRNA, which results in a more effective inhibition of oncogenic mRNA, and leads to a tumor suppressive effect. It is generally accepted that miRNAs bind to 3`UTR of target mRNAs and direct post-transcriptional gene silencing (PTGS) via its seed sequence. Here we report a new dual regulatory mechanism of miRNA. We described that miR-1254 repressed HO-1 at post-transcriptional level by directly targeting HO-1 3’UTR via its seed sequence and also inhibited HO-1 transcription by suppressing the transcriptional factor AP-2 alpha (TFAP2A) via its non-seed sequence. MiR-1254 induced cell apoptosis and cell cycle arrest in human non-small cell lung carcinoma (NSCLC) cells by inhibiting the expression of HO-1, consequently suppressed NSCLC cell growth. Moreover, in vivo mouse xenograft studies also supported the inhibitory effect of miR-1254 on NSCLC growth. These findings identify the dual regulation of miR-1254 on HO-1 as a novel functional mechanism of miRNA, which results in a more effective inhibition on the oncogenic mRNA, and leads to a suppressive effect on NSCLC growth, thus significantly advance our understanding of miRNA-directed gene regulation.
Collapse
Affiliation(s)
- Mengfan Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lulu Gao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Miao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LM); (JR)
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LM); (JR)
| |
Collapse
|
34
|
Zhao G, Hou J, Xu G, Xiang A, Kang Y, Yan Y, Zhang X, Yang G, Xiao S, Sun S. Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14. J Gen Virol 2017; 98:624-632. [PMID: 28086075 DOI: 10.1099/jgv.0.000708] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. MicroRNAs have recently been demonstrated to play vital roles in virus-host interactions. Our previous research on small RNA deep sequencing showed that the expression level of miR-10a increased during the viral life cycle. The present study sought to determine the function of miR-10a and its molecular mechanism during PRRSV infection. In the current study, the result of PRRSV infection inducing miR-10a expression was validated by quantitative reverse transcriptase PCR. Overexpression of miR-10a-5p using its mimics markedly reduced the expression level of intracellular PRRSV ORF7 mRNA and N protein. Simultaneously, overexpression of miR-10a-5p also significantly decreased the expression level of extracellular viral RNA and virus titres in the supernatants. These results demonstrated that miR-10a-5p could suppress the replication of PRRSV. A direct interaction between miR-10a-5p and signal recognition particle 14 (SRP14) was confirmed using bioinformatic prediction and experimental verification. miR-10a-5p could directly target the 3'UTR of pig SRP14 mRNA in a sequence-specific manner and decrease SRP14 expression through translational repression but not mRNA degradation. Further, knockdown of SRP14 by small interfering RNA also inhibits the replication of PRRSV. Collectively, these results suggested that miR-10a-5p inhibits PRRSV replication through suppression of SRP14 expression, which not only provides new insights into virus-host interactions during PRRSV infection but also suggests potential new antiviral strategies against PRRSV infection.
Collapse
Affiliation(s)
- Guangwei Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Jianye Hou
- Chuying Agro-Pastoral Group Co., Ltd, No. 1 Century Avenue, Zhengzhou Airport Development Zone, Zhengzhou, Henan 451162, PR China
| | - Gaoxiao Xu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Aoqi Xiang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yanmei Kang
- Department of Animal Science and Technology, Guangdong Vocational College of Science and Trade, No. 388 Shiqing Road, Baiyun, Guangzhou, Guangdong 510640, PR China
| | - Yunhuan Yan
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xiaobin Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Shiduo Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
35
|
Espinoza JA, González PA, Kalergis AM. Modulation of Antiviral Immunity by Heme Oxygenase-1. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:487-493. [PMID: 28082120 DOI: 10.1016/j.ajpath.2016.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/05/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
Abstract
Heme oxygenase-1 (HO-1) is a stress-inducible, anti-inflammatory, and cytoprotective enzyme expressed in most cell types in the organism. Under several stress stimuli, HO-1 expression and activity is up-regulated to catalyze the rate-limiting enzymatic step of heme degradation into carbon monoxide, free iron, and biliverdin. Besides its effects on cell metabolism, HO-1 is also capable of modulating host innate and adaptive immune responses in response to sepsis, transplantation, and autoimmunity, and preventing oxidative damage associated with inflammation. In addition, recent studies have reported that HO-1 can exert a significant antiviral activity against a wide variety of viruses, including HIV, hepatitis C virus, hepatitis B virus, enterovirus 71, influenza virus, respiratory syncytial virus, dengue virus, and Ebola virus, among others. Herein, we address the current understanding of the functional significance of HO-1 against a variety of viruses and its potential as a therapeutic strategy to prevent and control viral infections. Furthermore, we review the most important features of the immunoregulatory functions for this enzyme.
Collapse
Affiliation(s)
- Janyra A Espinoza
- Department of Molecular Genetics and Microbiology, Millennium Institute on Immunology and Immunotherapy, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Department of Molecular Genetics and Microbiology, Millennium Institute on Immunology and Immunotherapy, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Department of Molecular Genetics and Microbiology, Millennium Institute on Immunology and Immunotherapy, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, Combined Research Unit 1064, Nantes University Hospital Nantes, Institute for Transplantation-Urology-Nephrology, Université de Nantes, Faculty of Medicine, Nantes, France; Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
36
|
Rodrigues CE, Capcha JMC, de Bragança AC, Sanches TR, Gouveia PQ, de Oliveira PAF, Malheiros DMAC, Volpini RA, Santinho MAR, Santana BAA, Calado RDT, Noronha IDL, Andrade L. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res Ther 2017; 8:19. [PMID: 28129785 PMCID: PMC5273809 DOI: 10.1186/s13287-017-0475-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 01/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) represent an option for the treatment of acute kidney injury (AKI). It is known that young stem cells are better than are aged stem cells at reducing the incidence of the senescent phenotype in the kidneys. The objective of this study was to determine whether AKI leads to premature, stress-induced senescence, as well as whether human umbilical cord-derived MSCs (huMSCs) can prevent ischaemia/reperfusion injury (IRI)-induced renal senescence in rats. Methods By clamping both renal arteries for 45 min, we induced IRI in male rats. Six hours later, some rats received 1 × 106 huMSCs or human adipose-derived MSCs (aMSCs) intraperitoneally. Rats were euthanised and studied on post-IRI days 2, 7 and 49. Results On post-IRI day 2, the kidneys of huMSC-treated rats showed improved glomerular filtration, better tubular function and higher expression of aquaporin 2, as well as less macrophage infiltration. Senescence-related proteins (β-galactosidase, p21Waf1/Cip1, p16INK4a and transforming growth factor beta 1) and microRNAs (miR-29a and miR-34a) were overexpressed after IRI and subsequently downregulated by the treatment. The IRI-induced pro-oxidative state and reduction in Klotho expression were both reversed by the treatment. In comparison with huMSC treatment, the treatment with aMSCs improved renal function to a lesser degree, as well as resulting in a less pronounced increase in the renal expression of Klotho and manganese superoxide dismutase. Treatment with huMSCs ameliorated long-term kidney function after IRI, minimised renal fibrosis, decreased β-galactosidase expression and increased the expression of Klotho. Conclusions Our data demonstrate that huMSCs attenuate the inflammatory and oxidative stress responses occurring in AKI, as well as reducing the expression of senescence-related proteins and microRNAs. Our findings broaden perspectives for the treatment of AKI. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0475-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Eleuterio Rodrigues
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil.
| | - José Manuel Condor Capcha
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Ana Carolina de Bragança
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Talita Rojas Sanches
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Priscila Queiroz Gouveia
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | | | | | - Rildo Aparecido Volpini
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | | | - Bárbara Amélia Aparecida Santana
- Department of Internal Medicine, Division of Haematology, University of São Paulo at Ribeirão Preto School of Medicine, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - Rodrigo do Tocantins Calado
- Department of Internal Medicine, Division of Haematology, University of São Paulo at Ribeirão Preto School of Medicine, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - Irene de Lourdes Noronha
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Lúcia Andrade
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| |
Collapse
|
37
|
Bolisetty S, Zarjou A, Agarwal A. Heme Oxygenase 1 as a Therapeutic Target in Acute Kidney Injury. Am J Kidney Dis 2017; 69:531-545. [PMID: 28139396 DOI: 10.1053/j.ajkd.2016.10.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/22/2016] [Indexed: 01/06/2023]
Abstract
A common clinical condition, acute kidney injury (AKI) significantly influences morbidity and mortality, particularly in critically ill patients. The pathophysiology of AKI is complex and involves multiple pathways, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Recent evidence suggests that a single insult to the kidney significantly enhances the propensity to develop chronic kidney disease. Therefore, the generation of effective therapies against AKI is timely. In this context, the cytoprotective effects of heme oxygenase 1 (HO-1) in animal models of AKI are well documented. HO-1 modulates oxidative stress, autophagy, and inflammation and regulates the progression of cell cycle via direct and indirect mechanisms. These beneficial effects of HO-1 induction during AKI are mediated in part by the by-products of the HO reaction (iron, carbon monoxide, and bile pigments). This review highlights recent advances in the molecular mechanisms of HO-1-mediated cytoprotection and discusses the translational potential of HO-1 induction in AKI.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL; Birmingham Veterans Administration Medical Center, Birmingham, AL.
| |
Collapse
|
38
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
39
|
MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. Acta Pharmacol Sin 2017; 38:110-119. [PMID: 27641735 DOI: 10.1038/aps.2016.92] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/24/2016] [Indexed: 12/25/2022]
Abstract
Previous studies have shown that microRNA-1304 (miR-1304) is dysregulated in certain types of cancers, including non-small cell lung cancer (NSCLC), and might be involved in tumor survival and/or growth. In this study we investigated the direct target of miR-1304 and its function in NSCLC in vitro. Human lung adenocarcinoma cell lines (A549 and NCI-H1975) were studied. The cell proliferation and survival were investigated via cell counting, MTT and colony-formation assays. Cell apoptosis and cell cycle were examined using annexin V-PE/7-AAD and PI staining assays, respectively. The dual-luciferase reporter assay was used to verify post-transcriptional regulation of heme oxygenase-1 (HO-1) by miR-1304. CRISPR/Cas9 was used to deplete endogenous miR-1304. Overexpression of MiR-1304 significantly decreased the number and viability of NSCLC cells and colony formation, and induced cell apoptosis and G0/G1 phase cell cycle arrest. HO-1 was demonstrated to be a direct target of miR-1304 in NSCLC cells. Restoration of HO-1 expression by hemin (20 μmol/L) abolished the inhibition of miR-1304 on cell growth and rescued miR-1304-induced apoptosis in A549 cells. Suppression of endogenous miR-1304 with anti-1304 significantly increased HO-1 expression and promoted cell growth and survival in A549 cells. In 17 human NSCLC tissue samples, miR-1304 expression was significantly decreased, while HO-1 expression was significantly increased as compared to normal lung tissues. MicroRNA-1304 is a tumor suppressor and HO-1 is its direct target in NSCLC. The results suggest the potential for miR-1304 as a therapeutic target for NSCLC.
Collapse
|
40
|
miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 2016; 7:10297-321. [PMID: 26863629 PMCID: PMC4891121 DOI: 10.18632/oncotarget.7185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA array analysis revealed that miR-217 expression was decreased in anti-cancer drug-resistant Malme3MR cancer cells. CAGE, a cancer/testis antigen, was predicted as a target of miR-217. Luciferase activity and ChIP assays revealed a negative feedback relationship between CAGE and miR-217. miR-217 and CAGE oppositely regulated the response to anti-cancer drugs such as taxol, gefitinib and trastuzumab, an inhibitor of HER2. miR-217 negatively regulated the tumorigenic, metastatic, angiogenic, migration and invasion potential of cancer cells. The xenograft of Malme3MR cells showed an increased expression of pEGFRY845. CAGE and miR-217 inhibitor regulated the expression of pEGFRY845. CAGE showed interactions with EGFR and HER2 and regulated the in vivo sensitivity to trastuzumab. The down-regulation of EGFR or HER2 enhanced the sensitivity to anti-cancer drugs. CAGE showed direct regulation of HER2 and was necessary for the interaction between EGFR and HER2 in Malme3MR cells. miR-217 inhibitor induced interactions of CAGE with EGFR and HER2 in Malme3M cells. The inhibition of EGFR by CAGE-binding GTGKT peptide enhanced the sensitivity to gefitinib and trastuzumab and prevented interactions of EGFR with CAGE and HER2. Our results show that miR-217-CAGE feedback loop serves as a target for overcoming resistance to various anti-cancer drugs, including EGFR and HER2 inhibitors.
Collapse
|
41
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
42
|
Zou C, Zou C, Cheng W, Li Q, Han Z, Wang X, Jin J, Zou J, Liu Z, Zhou Z, Zhao W, Du Z. Heme oxygenase-1 retards hepatocellular carcinoma progression through the microRNA pathway. Oncol Rep 2016; 36:2715-2722. [PMID: 27571925 DOI: 10.3892/or.2016.5056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Heme metabolism system is involved in microRNA (miRNA) biogenesis. The complicated interplay between heme oxygenase-1 (HO-1) and miRNA has been observed in various tissues and diseases, including human malignancy. In the present study, our data showed that stable HO-1 overexpression in hepatocellular carcinoma (HCC) cells downregulated several oncomiRs. The most stably downregulated are miR-30d and miR-107. Iron, one of HO-1 catalytic products, was an important mediator in this regulation. Cell function analysis demonstrated that HO-1 inhibited the proliferation and metastasis of HepG2 cells, whereas miR-30d/miR-107 improved the proliferative and migratory ability of HepG2 cells. The beneficial effect of HO-1 in HCC inhibition could be reversed by upregulating miR-30d and miR-107. Akt and ERK pathways may be involved in the regulation of HO-1/miR-30d/miR-107 in HCC. These data indicate that HO-1 significantly suppresses HCC progression by regulating the miR-30d/miR-107 level, suggesting miR-30d/miR-107 regulation as a new molecular mechanism of HO-1 anticancer effect.
Collapse
Affiliation(s)
- Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Wanpeng Cheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhongjing Han
- Department of Hemopathology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang, P.R. China
| | - Xiaona Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jianfeng Jin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jiaqi Zou
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhiyan Liu
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhongqiu Zhou
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weiming Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
43
|
Abstract
SIGNIFICANCE Acute kidney injury (AKI) and chronic kidney disease (CKD) represent a considerable burden in healthcare. The heme oxygenase (HO) system plays an important role in regulating oxidative stress and is protective in a variety of human and animal models of kidney disease. Preclinical studies of the HO system have led to the development of several clinical trials targeting the enzyme or its products. RECENT ADVANCES Connection of HO, ferritin, and other proteins involved in iron regulation has provided important insight into mechanisms of damage in AKI. Also, HO-1 expression is important in the pathogenesis of hypertension, diabetic kidney disease, and progression to end-stage renal disease. CRITICAL ISSUES Despite intriguing discoveries, no drugs targeting the HO system have been translated to the clinic. Meanwhile, treatments for AKI and CKD are urgently needed. Many factors have likely contributed to challenges in clinical translation, including variation in animal models, difficulties in obtaining human tissue, and complexity of the disease processes being studied. FUTURE DIRECTIONS The HO system represents a promising avenue of investigation that may lead to targeted therapeutics. Tissue-specific gene modulation, widening the scope of animal studies, and continued clinical research will provide valuable insight into the role HO plays in kidney homeostasis and disease. Antioxid. Redox Signal. 25, 165-183.
Collapse
Affiliation(s)
- Jeremie M Lever
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ravindra Boddu
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - James F George
- 2 Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama.,3 Birmingham Veterans Administration Medical Center , Birmingham, Alabama
| |
Collapse
|
44
|
Go H, La P, Namba F, Ito M, Yang G, Brydun A, Igarashi K, Dennery PA. MiR-196a regulates heme oxygenase-1 by silencing Bach1 in the neonatal mouse lung. Am J Physiol Lung Cell Mol Physiol 2016; 311:L400-11. [PMID: 27343195 DOI: 10.1152/ajplung.00428.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/18/2016] [Indexed: 12/30/2022] Open
Abstract
In the lung, heme oxygenase-1 (HO-1) is developmentally regulated, with its highest expression in the first days of life. In addition, neonatal mice have limited HO-1 induction in hyperoxia compared with adults. However, few reports have addressed the functional effect of microRNAs (miRNAs) in the regulation of HO-1 in vivo. The aims of the present study were to characterize changes in lung miRNA expression during postnatal development and in response to hyperoxic exposure, and to identify miRNAs that target lung HO-1 gene expression. Neonatal (<12 h old) and adult (2 mo old) mice were exposed to room air or hyperoxia (95% oxygen) for 72 h. TaqMan low-density array rodent miRNA assays were used to calculate miRNA expression changes between control and hyperoxia groups in neonatal and adult lungs. In neonates, we identified miR-196a, which binds to the 3'-untranslated region of the transcriptional repressor BTB and CNC homology 1 (Bach1) and regulates its expression, and subsequently leads to higher levels of lung HO-1 mRNA compared with levels in adults. Despite the increase at baseline, miR-196a was degraded in hyperoxia resulting in limited HO-1 induction in neonatal mice lungs. Furthermore, the developmental differences in lung HO-1 gene expression can be explained in part by the variation in miRNA-196a and its effect on Bach1. This report is the first to show developmental differences in lung miR-196a and its effect on Bach1 and HO-1 expression at baseline and in hyperoxia.
Collapse
Affiliation(s)
- Hayato Go
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ping La
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fumihiko Namba
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Saitama Medical Center, Saitama, Japan
| | - Masato Ito
- Department of Pediatrics, Saitama Medical Center, Saitama, Japan
| | - Guang Yang
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrey Brydun
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Phyllis A Dennery
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and Alpert Medical School at Brown University, Providence, Rhode Island; and
| |
Collapse
|
45
|
Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M, Gumpert AM, Bhimaraj A, Youker KA, Uribe C, Suresh Babu S, Jeyabal P, Kishore R, Krishnamurthy P. Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury: Role of Human CD34+ Cells Deficient in MicroRNA-377. J Am Coll Cardiol 2016; 66:2214-2226. [PMID: 26564600 DOI: 10.1016/j.jacc.2015.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNA (miR) dysregulation in the myocardium has been implicated in cardiac remodeling after injury or stress. OBJECTIVES The aim of this study was to explore the role of miR in human CD34(+) cell (hCD34(+)) dysfunction in vivo after transplantation into the myocardium under ischemia-reperfusion (I-R) conditions. METHODS In response to inflammatory stimuli, the miR array profile of endothelial progenitor cells was analyzed using a polymerase chain reaction-based miR microarray. miR-377 expression was assessed in myocardial tissue from human patients with heart failure (HF). We investigated the effect of miR-377 inhibition on an hCD34(+) cell angiogenic proteome profile in vitro and on cardiac repair and function after I-R injury in immunodeficient mice. RESULTS The miR array data from endothelial progenitor cells in response to inflammatory stimuli indicated changes in numerous miR, with a robust decrease in the levels of miR-377. Human cardiac biopsies from patients with HF showed significant increases in miR-377 expression compared with nonfailing control hearts. The proteome profile of hCD34(+) cells transfected with miR-377 mimics showed significant decrease in the levels of proangiogenic proteins versus nonspecific control-transfected cells. We also validated that serine/threonine kinase 35 is a target of miR-377 using a dual luciferase reporter assay. In a mouse model of myocardial I-R, intramyocardial transplantation of miR-377 silenced hCD34(+) cells in immunodeficient mice, promoting neovascularization (at 28 days, post-I-R) and lower interstitial fibrosis, leading to improved left ventricular function. CONCLUSIONS These findings indicate that HF increased miR-377 expression in the myocardium, which is detrimental to stem cell function, and transplantation of miR-377 knockdown hCD34(+) cells into ischemic myocardium promoted their angiogenic ability, attenuating left ventricular remodeling and cardiac fibrosis.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | | | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Suresh K Verma
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Alexander R Mackie
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois
| | - Mohsin Khan
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Anna M Gumpert
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Arvind Bhimaraj
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Keith A Youker
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Cesar Uribe
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Sahana Suresh Babu
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Prince Jeyabal
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas; Department of Cell and Developmental Biology, Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
46
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
47
|
Ke K, Sul OJ, Rajasekaran M, Choi HS. MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone 2015; 81:237-246. [PMID: 26163109 DOI: 10.1016/j.bone.2015.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that microRNAs (miRs) influence skeletal structure by modulating osteoclastogenesis and bone resorption. We have demonstrated previously that the up-regulation of heme oxygenase-1 (HO-1) attenuated osteoclastogenesis in bone marrow-derived macrophages (BMMs). RANKL-induced osteoclastogenesis elevates microRNA-183 (miR-183) in BMM. We show here that HO-1 is a target gene of miR-183 and that this miRNA binds to the 3'-UTR of HO-1. We find that a synthetic inhibitor that binds to miR-183 decreases osteoclast (OC) differentiation and increases the expression of HO-1, while a mimic of endogenous mature miR-183 has the opposite effect. Moreover, the HO-1 inducers, resveratrol and piceatannol decrease the expression of miR-183, resulting in attenuated osteoclastogenesis. Our findings reveal how miR-183 affects OC formation.
Collapse
Affiliation(s)
- Ke Ke
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea
| | - Ok-Joo Sul
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea
| | - Monisha Rajasekaran
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea.
| |
Collapse
|
48
|
Wen X, Wu JQ, Peng W, Feng JF, Tang JH. MicroRNA-377 predicts poor clinical outcome of gastric cancer and induces tumorigenesis by targeting multiple tumor-suppressor genes. Oncol Rep 2015; 34:203-10. [PMID: 25998046 DOI: 10.3892/or.2015.3981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/27/2015] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is a major cause of cancer mortality worldwide. MicroRNAs are evolutionally conserved small non-coding RNAs that are critical for the regulation of gene expression. The aberrant expression of microRNA (miRNA) is involved in tumorigenesis and prognosis. In the present study, the clinical significance of miR-377 was assessed using RT-qPCR and MTT assay. The results showed that the expression of miR-377 was upregulated in GC compared with normal gastric tissues, and its expression level was increased in GC cell lines compared with normal gastric cells. In addition, there was a significant association between miR-377 expression and clinicopathological characteristics, in particular distant metastasis, TNM stage and early recurrence. GC patients with a higher miR-377 expression showed significantly poorer overall survival (OR) and shorter time to recurrence than those with a lower miR-377 expression. The Cox regression analysis identified miR-377 overexpression as an independent prognostic factor for GC. Overexpression of miR-377 in MKN-45 GC cells significantly promoted cell proliferation, whereas the suppression of miR-377 inhibited these effects. Furthermore, miR-377 downregulated p53, PTEN and TIMP1 expression by directly targeting the 3'-untranslated region of these target genes. Collectively, miR-377 potentially served as a new molecular predictive biomarker of GC tumorigenesis and prognosis, which may be useful in targeted therapy and the prognosis of GC patients.
Collapse
Affiliation(s)
- Xu Wen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Jian-Qiu Wu
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Wei Peng
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Ji-Feng Feng
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| |
Collapse
|
49
|
Yin H, Liang X, Jogasuria A, Davidson NO, You M. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1286-96. [PMID: 25797648 DOI: 10.1016/j.ajpath.2015.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
Ethanol-mediated injury, combined with gut-derived lipopolysaccharide (LPS), provokes generation of proinflammatory cytokines in Kupffer cells, causing hepatic inflammation. Among the mediators of these effects, miR-217 aggravates ethanol-induced steatosis in hepatocytes. However, the role of miR-217 in ethanol-induced liver inflammation process is unknown. Here, we examined the role of miR-217 in the responses to ethanol, LPS, or a combination of ethanol and LPS in RAW 264.7 macrophages and in primary Kupffer cells. In macrophages, ethanol substantially exacerbated LPS-mediated induction of miR-217 and production of proinflammatory cytokines compared with LPS or ethanol alone. Consistently, ethanol administration to mice led to increases in miR-217 abundance and increased production of inflammatory cytokines in isolated primary Kupffer cells exposed to the combination of ethanol and LPS. miR-217 promoted combined ethanol and LPS-mediated inhibition of sirtuin 1 expression and activity in macrophages. Moreover, miR-217-mediated sirtuin 1 inhibition was accompanied by increased activities of two vital inflammatory regulators, NF-κB and the nuclear factor of activated T cells c4. Finally, adenovirus-mediated overexpression of miR-217 led to steatosis and inflammation in mice. These findings suggest that miR-217 is a pivotal regulator involved in ethanol-induced hepatic inflammation. Strategies to inhibit hepatic miR-217 could be a viable approach in attenuating alcoholic hepatitis.
Collapse
Affiliation(s)
- Huquan Yin
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, Tampa, Florida
| | - Xiaomei Liang
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, Tampa, Florida
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Min You
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio.
| |
Collapse
|
50
|
Chen G, Lu L, Liu C, Shan L, Yuan D. MicroRNA-377 suppresses cell proliferation and invasion by inhibiting TIAM1 expression in hepatocellular carcinoma. PLoS One 2015; 10:e0117714. [PMID: 25739101 PMCID: PMC4349803 DOI: 10.1371/journal.pone.0117714] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has suggested that microRNAs (miRNAs) play an important role in the initiation and progression of hepatocellular carcinoma (HCC). Here, we identified a novel tumor suppressive miRNA, miR-377, and investigated its role in HCC. The expression of miR-377 in HCC tissues and cell lines was detected by real-time reverse-transcription PCR. The effects of miR-377 on HCC cell proliferation and invasion were also investigated. Western blot and luciferase reporter assay were used to identify the direct and functional target of miR-377. The expression of miR-377 was markedly downregulated in human HCC tissues and cell lines. MiR-377 can dramatically inhibit cell growth and invasion in HCC cells. Subsequent investigation revealed that T lymphoma invasion and metastasis 1 (TIAM1) was a direct and functional target of miR-377 in HCC cells. Overexpression of miR-377 impaired TIAM1-induced promotion of proliferation and invasion in HCC cells. Finally, miR-377 is inversely correlated with TIAM1 expression in human HCC tissues. These findings reveal that miR-377 functions as a tumor suppressor and inhibits the proliferation and invasion of HCC cells by targeting TIAM1, which may consequently serve as a therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Guolin Chen
- The First Ward of Infection Department, the First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Lu Lu
- Department of Medical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chang Liu
- The First Ward of Infection Department, the First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Shan
- The First Ward of Infection Department, the First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Di Yuan
- Clinical Laboratory, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|