1
|
Feng Y, Mao T, Yi J, Zhang N, Gu Y, Shen H, Chen J. Runt-related transcription factors: from pathogenesis to therapeutic targets in multiple-organ fibrosis. Front Cell Dev Biol 2025; 13:1528645. [PMID: 40356603 PMCID: PMC12066561 DOI: 10.3389/fcell.2025.1528645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Fibrosis is a partially manageable process that leads to scarring and tissue hardening by prompting myofibroblasts to deposit significant amounts of extracellular matrix (ECM) following injury. It results in detrimental consequences and pathological characteristics, which hinder the functioning of associated organs and increase mortality rates. Runt-related transcription factors (RUNX) are part of a highly conserved family of heterodimer transcription factors, comprising RUNX1, RUNX2, and RUNX3. They are involved in several biological processes and undergo various forms of post-translational modification. RUNX regulates multiple targets and pathways to impact fibrosis, indicating promise for clinical application. Therefore, its significance in the fibrosis process should not be disregarded. The review begins with an objective description of the structure, transcriptional mechanism, and biological function of RUNX1, RUNX2, and RUNX3. A subsequent analysis is made of their physiological relationship with heart, lung, kidney, and liver, followed by a focus on the signaling mechanism of RUNX in regulating fibrosis of these organs. Furthermore, potential agents or drugs targeting RUNX for treating organ fibrosis are summarized, along with an evaluation of the therapeutic prospects and potential value of RUNX in fibrosis. Further research into RUNX could contribute to the development of novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Yuan Feng
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Tianshi Mao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jifei Yi
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Na Zhang
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yinying Gu
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Huifen Shen
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Jie Chen
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Datta RR, Akdogan D, Tezcan EB, Onal P. Versatile roles of disordered transcription factor effector domains in transcriptional regulation. FEBS J 2025. [PMID: 39888268 DOI: 10.1111/febs.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transcription, a crucial step in the regulation of gene expression, is tightly controlled and involves several essential processes, such as chromatin organization, recognition of the specific genomic sequences, DNA binding, and ultimately recruiting the transcriptional machinery to facilitate transcript synthesis. At the center of this regulation are transcription factors (TFs), which comprise at least one DNA-binding domain (DBD) and an effector domain (ED). Although the structure and function of DBDs have been well studied, our knowledge of the structure and function of effector domains is limited. EDs are of particular importance in generating distinct transcriptional responses between protein members of the same TF family that have similar DBDs and specificities. The study of transcriptional activity conferred by effector domains has traditionally been conducted through examining protein-protein interactions. However, recent research has uncovered alternative mechanisms by which EDs regulate gene expression, such as the formation of condensates that increase the local concentration of transcription factors, cofactors, and coregulated genes, as well as DNA binding. Here, we provide a comprehensive overview of the known roles of transcription factor EDs, with a specific focus on disordered regions. Additionally, we emphasize the significance of intrinsically disordered regions (IDRs) during transcriptional regulation. We examine the mechanisms underlying the establishment and maintenance of transcriptional specificity through the structural properties of predominantly disordered EDs. We then provide a comprehensive overview of the current understanding of these domains, including their physical and chemical characteristics, as well as their functional roles.
Collapse
Affiliation(s)
| | - Dilan Akdogan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Elif B Tezcan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Pinar Onal
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
3
|
Li Y, Yan Y, Gong B, Zheng Q, Zhou H, Sun J, Li M, Wang Z, Li Y, Wan Y, Chen W, Qi S, Mo X, Meng A, Xiang B, Chen J. A Huluwa phosphorylation switch regulates embryonic axis induction. Nat Commun 2024; 15:10028. [PMID: 39562571 PMCID: PMC11576741 DOI: 10.1038/s41467-024-54450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Embryonic axis formation is essential for patterning and morphogenesis in vertebrates and is tightly regulated by the dorsal organizer. Previously, we demonstrated that maternally derived Huluwa (Hwa) acts as a dorsal determinant, dictating axis formation by activating β-catenin signaling in zebrafish and Xenopus. However, the mechanism of activation and fine regulation of the Hwa protein remains unclear. Through candidate screening we identified a mutation at Ser168 in the PPNSP motif of Hwa that dramatically abolishes its axis-inducing activity. Mechanistically, mutating the Ser168 residue reduced its binding affinity to Tankyrase 1/2 and the degradation of the Axin protein, weakening β-catenin signaling activation. We confirmed that Ser168 is phosphorylated and that phosphorylation increases Hwa activity in β-catenin signaling and axis induction. Several kinases including Cdk16, Cdk2, and GSK3β, were found to enhance Ser168 phosphorylation in vitro and in vivo. Both dominant-negative Cdk16 expression and pHwa (Ser168) antibody treatment reduce Hwa function. Lastly, a knock-in allele mutating Ser168 to alanine resulted in embryos lacking body axes, demonstrating that Ser168 is essential to axis formation. In summary, Ser168 acts as a phosphorylation switch in Hwa/β-catenin signaling for embryonic axis induction, regulated by multiple kinases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yan
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Gong
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Qianwen Zheng
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haiyan Zhou
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiarui Sun
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingpeng Li
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhao Wang
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaohui Li
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunjing Wan
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weixi Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Kwon N, Lu YC, Thompson EN, Mancuso RI, Wang L, Zhang PX, Krause DS. CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors. Blood 2024; 144:1800-1812. [PMID: 39102635 PMCID: PMC11530366 DOI: 10.1182/blood.2024023963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
ABSTRACT The specification of megakaryocytic (Mk) or erythroid (E) lineages from primary human megakaryocytic-erythroid progenitors (MEPs) is crucial for hematopoietic homeostasis, yet the underlying mechanisms regulating fate specification remain elusive. In this study, we identify RUNX1 as a key modulator of gene expression during MEP fate specification. Overexpression of RUNX1 in primary human MEPs promotes Mk specification, whereas pan-RUNX inhibition favors E specification. Although total RUNX1 levels do not differ between Mk progenitors (MkPs) and E progenitors (ErPs), there are higher levels of serine-phosphorylated RUNX1 in MkPs than ErPs, and mutant RUNX1 with phosphorylated-serine/threonine mimetic mutations (RUNX1-4D) significantly enhances the functional efficacy of RUNX1. To model the effects of RUNX1 variants, we use human erythroleukemia (HEL) cell lines expressing wild-type (WT), phosphomimetic (RUNX1-4D), and nonphosphorylatable (RUNX1-4A) mutants showing that the 3 forms of RUNX1 differentially regulate expression of 2625 genes. Both WT and RUNX1-4D variants increase expression in 40%, and decrease expression in another 40%, with lesser effects of RUNX1-4A. We find a significant overlap between the upregulated genes in WT and RUNX1-4D-expressing HEL cells and those upregulated in primary human MkPs vs MEPs. Although inhibition of known RUNX1 serine/threonine kinases does not affect phosphoserine RUNX1 levels in primary MEPs, specific inhibition of cyclin dependent kinase 9 (CDK9) in MEPs leads to both decreased RUNX1 phosphorylation and increased E commitment. Collectively, our findings show that serine/threonine phosphorylation of RUNX1 promotes Mk fate specification and introduce a novel kinase for RUNX1 linking the fundamental transcriptional machinery with activation of a cell type-specific transcription factor.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Rubia Isler Mancuso
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Lin Wang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Ping-Xia Zhang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
5
|
Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep 2024; 43:114436. [PMID: 38968069 PMCID: PMC11345852 DOI: 10.1016/j.celrep.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.
Collapse
Affiliation(s)
- Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeanna Sheen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathan Jayne
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Yonezawa T, Takahashi H, Hao Y, Furukawa C, Tsuchiya A, Zhang W, Fukushima T, Fukuyama T, Sawasaki T, Kitamura T, Goyama S. The E3 ligase DTX2 inhibits RUNX1 function by binding its C terminus and prevents the growth of RUNX1-dependent leukemia cells. FEBS J 2023; 290:5141-5157. [PMID: 37500075 DOI: 10.1111/febs.16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/25/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.
Collapse
Affiliation(s)
- Taishi Yonezawa
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | | | - Yangying Hao
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Chie Furukawa
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| |
Collapse
|
7
|
Yang J, Liu Y, Yin H, Xie S, Zhang L, Dong X, Ni H, Bu W, Ma H, Liu P, Zhu H, Guo R, Sun L, Wu Y, Qin J, Sun B, Li D, Luo HR, Liu M, Xuan C, Zhou J. HDAC6 deacetylates IDH1 to promote the homeostasis of hematopoietic stem and progenitor cells. EMBO Rep 2023; 24:e56009. [PMID: 37642636 PMCID: PMC10561360 DOI: 10.15252/embr.202256009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Songbo Xie
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xifeng Dong
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Weiwen Bu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo Ma
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Peng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Haiyan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lei Sun
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Yue Wu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo R Luo
- Department of Pathology, Department of Laboratory Medicine, Harvard Medical SchoolChildren's Hospital Boston, Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjinChina
| | - Chenghao Xuan
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| |
Collapse
|
8
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
9
|
The roles of Runx1 in skeletal development and osteoarthritis: A concise review. Heliyon 2022; 8:e12656. [PMID: 36636224 PMCID: PMC9830174 DOI: 10.1016/j.heliyon.2022.e12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/12/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022] Open
Abstract
Runt-related transcription factor-1 (Runx1) is well known for its functions in hematopoiesis and leukemia but recent research has focused on its role in skeletal development and osteoarthritis (OA). Deficiency of the Runx1 gene is fatal in early embryonic development, and specific knockout of Runx1 in cell lineages of cartilage and bone leads to delayed cartilage formation and impaired bone calcification. Runx1 can regulate genes including collagen type II (Col2a1) and X (Col10a1), SRY-box transcription factor 9 (Sox9), aggrecan (Acan) and matrix metalloproteinase 13 (MMP-13), and the up-regulation of Runx1 improves the homeostasis of the whole joint, even in the pathological state. Moreover, Runx1 is activated as a response to mechanical compression, but impaired in the joint with the pathological progress associated with osteoarthritis. Therefore, interpretation about the role of Runx1 could enlarge our understanding of key marker genes in the skeletal development and an increased understanding of Runx1 could be helpful to identify treatments for osteoarthritis. This review provides the most up-to-date advances in the roles and bio-mechanisms of Runx1 in healthy joints and osteoarthritis from all currently published articles and gives novel insights in therapeutic approaches to OA based on Runx1.
Collapse
|
10
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Identification of the Potential Molecular Mechanisms Linking RUNX1 Activity with Nonalcoholic Fatty Liver Disease, by Means of Systems Biology. Biomedicines 2022; 10:biomedicines10061315. [PMID: 35740337 PMCID: PMC9219880 DOI: 10.3390/biomedicines10061315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disease; nevertheless, no definitive diagnostic method exists yet, apart from invasive liver biopsy, and nor is there a specific approved treatment. Runt-related transcription factor 1 (RUNX1) plays a major role in angiogenesis and inflammation; however, its link with NAFLD is unclear as controversial results have been reported. Thus, the objective of this work was to determine the proteins involved in the molecular mechanisms between RUNX1 and NAFLD, by means of systems biology. First, a mathematical model that simulates NAFLD pathophysiology was generated by analyzing Anaxomics databases and reviewing available scientific literature. Artificial neural networks established NAFLD pathophysiological processes functionally related to RUNX1: hepatic insulin resistance, lipotoxicity, and hepatic injury-liver fibrosis. Our study indicated that RUNX1 might have a high relationship with hepatic injury-liver fibrosis, and a medium relationship with lipotoxicity and insulin resistance motives. Additionally, we found five RUNX1-regulated proteins with a direct involvement in NAFLD motives, which were NFκB1, NFκB2, TNF, ADIPOQ, and IL-6. In conclusion, we suggested a relationship between RUNX1 and NAFLD since RUNX1 seems to regulate NAFLD molecular pathways, posing it as a potential therapeutic target of NAFLD, although more studies in this field are needed.
Collapse
|
12
|
Pan S, Sun S, Liu B, Hou Y. Pan-cancer Landscape of the RUNX Protein Family Reveals their Potential as Carcinogenic Biomarkers and the Mechanisms Underlying their Action. J Transl Int Med 2022; 10:156-174. [PMID: 35959452 PMCID: PMC9328034 DOI: 10.2478/jtim-2022-0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The RUNX family of transcription factors plays an important regulatory role in tumor development. Although the importance of RUNX in certain cancer types is well known, the pan-cancer landscape remains unclear. MATERIALS AND METHODS Data from The Cancer Genome Atlas (TCGA) provides a pan-cancer overview of the RUNX genes. Hence, herein, we performed a pan-cancer analysis of abnormal RUNX expression and deciphered the potential regulatory mechanism. Specifically, we used TCGA multi-omics data combined with multiple online tools to analyze transcripts, genetic alterations, DNA methylation, clinical prognoses, miRNA networks, and potential target genes. RESULTS RUNX genes are consistently overexpressed in esophageal, gastric, pancreatic, and pan-renal cancers. The total protein expression of RUNX1 in lung adenocarcinoma, kidney renal clear cell carcinoma (KIRC), and uterine corpus endometrial carcinoma (UCEC) is consistent with the mRNA expression results. Moreover, increased phosphorylation on the T14 and T18 residues of RUNX1 may represent potential pathogenic factors. The RUNX genes are significantly associated with survival in pan-renal cancer, brain lower-grade glioma, and uveal melanoma. Meanwhile, various mutations and posttranscriptional changes, including the RUNX1 D96 mutation in invasive breast carcinoma, the co-occurrence of RUNX gene mutations in UCEC, and methylation changes in the RUNX2 promoter in KIRC, may be associated with cancer development. Finally, analysis of epigenetic regulator co-expression, miRNA networks, and target genes revealed the carcinogenicity, abnormal expression, and direct regulation of RUNX genes. CONCLUSIONS We successfully analyzed the pan-cancer abnormal expression and prognostic value of RUNX genes, thereby providing potential biomarkers for various cancers. Further, mutations revealed via genetic alteration analysis may serve as a basis for personalized patient therapies.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang110004, Liaoning Province, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang110004, Liaoning Province, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang110004, Liaoning Province, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang110004, Liaoning Province, China
| |
Collapse
|
13
|
Schmitt M, Sinnberg T, Bratl K, Zittlau K, Garbe C, Macek B, Nalpas NC. Proteogenomics Reveals Perturbed Signaling Networks in Malignant Melanoma Cells Resistant to BRAF Inhibition. Mol Cell Proteomics 2021; 20:100163. [PMID: 34673281 PMCID: PMC8603206 DOI: 10.1016/j.mcpro.2021.100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Analysis of nucleotide variants is a cornerstone of cancer medicine. Although only 2% of the genomic sequence is protein coding, mutations occurring in these regions have the potential to influence protein structure or modification status and may have severe impact on disease aetiology. Proteogenomics enables the analysis of sample-specific nonsynonymous nucleotide variants with regard to their effect at the proteome and phosphoproteome levels. Here, we developed a proof-of-concept proteogenomics workflow and applied it to the malignant melanoma cell line A375. Initially, we studied the resistance to serine/threonine-protein kinase B-raf (BRAF) inhibitor (BRAFi) vemurafenib in A375 cells. This allowed identification of several oncogenic nonsynonymous nucleotide variants, including a gain-of-function variant on aurora kinase A (AURKA) at F31I. We also detected significant changes in abundance among (phospho)proteins, which led to reactivation of the MAPK signaling pathway in BRAFi-resistant A375 cells. Upon reconstruction of the multiomic integrated signaling networks, we predicted drug therapies with the potential to disrupt BRAFi resistance mechanism in A375 cells. Notably, we showed that AURKA inhibition is effective and specific against BRAFi-resistant A375 cells. Subsequently, we investigated amino acid variants that interfere with protein posttranslational modification (PTM) status and potentially influence A375 cell signaling irrespective of BRAFi resistance. Mass spectrometry (MS) measurements confirmed variant-driven PTM changes in 12 proteins. Among them was the runt-related transcription factor 1 (RUNX1) displaying a variant on a known phosphorylation site S(Ph)276L. We confirmed the loss of phosphorylation site by MS and demonstrated the impact of this variant on RUNX1 interactome.
Collapse
Affiliation(s)
- Marisa Schmitt
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - Katrin Bratl
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Katharina Zittlau
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Claus Garbe
- Division of Dermatooncology, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany.
| | - Nicolas C Nalpas
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
14
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
15
|
Expression patterns and prognostic value of RUNX genes in kidney cancer. Sci Rep 2021; 11:14934. [PMID: 34294773 PMCID: PMC8298387 DOI: 10.1038/s41598-021-94294-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney cancer is the third most common malignancy of the urinary system, of which, kidney renal clear cell carcinoma (KIRC) accounts for the vast majority. Runt-related transcription factors (RUNX) are involved in multiple cellular functions. However, the diverse expression patterns and prognostic values of RUNX genes in kidney cancer remained to be elucidated. In our study, we mined the DNA methylation, transcriptional and survival data of RUNX genes in patients with different kinds of kidney cancer through Oncomine, Gene Expression Profiling Interactive Analysis, UALCAN, Kaplan–Meier Plotter, cBioPortal and LinkedOmics. We found that RUNX1 and RUNX3 were upregulated in KIRC tissues compared with those in normal tissues. The survival analysis results indicated a high transcription level of RUNX1 was associated with poor overall survival (OS) in KIRC patients. Furthermore, KIRC tumor tissues had significantly lower levels of RUNX1 promoter methylation than that in paracancerous tissues, with decreased DNA methylation of RUNX1 notably associated with poor OS in KIRC. In conclusion, our results revealed that RUNX1 may be a potential therapeutic target for treating KIRC, and RUNX1 promoter methylation level shows promise as a novel diagnostic and prognostic biomarker, which laid a foundation for further study.
Collapse
|
16
|
Lin A, Elbezanti WO, Schirling A, Ahmed A, Van Duyne R, Cocklin S, Klase Z. Alprazolam Prompts HIV-1 Transcriptional Reactivation and Enhances CTL Response Through RUNX1 Inhibition and STAT5 Activation. Front Neurol 2021; 12:663793. [PMID: 34367046 PMCID: PMC8339301 DOI: 10.3389/fneur.2021.663793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 pandemic is a significant challenge to the field of medicine. Despite advancements in antiretroviral (ART) development, 38 million people worldwide still live with this disease without a cure. A significant barrier to the eradication of HIV-1 lies in the persistently latent pool that establishes early in the infection. The “shock and kill” strategy relies on the discovery of a latency-reversing agent (LRA) that can robustly reactivate the latent pool and not limit immune clearance. We have found that a benzodiazepine (BDZ), that is commonly prescribed for panic and anxiety disorder, to be an ideal candidate for latency reversal. The BDZ Alprazolam functions as an inhibitor of the transcription factor RUNX1, which negatively regulates HIV-1 transcription. In addition to the displacement of RUNX1 from the HIV-1 5′LTR, Alprazolam potentiates the activation of STAT5 and its recruitment to the viral promoter. The activation of STAT5 in cytotoxic T cells may enable immune activation which is independent of the IL-2 receptor. These findings have significance for the potential use of Alprazolam in a curative strategy and to addressing the neuroinflammation associated with neuroHIV-1.
Collapse
Affiliation(s)
- Angel Lin
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Weam Othman Elbezanti
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexis Schirling
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,HIV-1 Dynamics and Replication Program, National Cancer Institute, Frederick, MD, United States
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
17
|
Cordonnier G, Mandoli A, Cagnard N, Hypolite G, Lhermitte L, Verhoeyen E, Asnafi V, Dillon N, Macintyre E, Martens JHA, Bond J. CBFβ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia. Cell Rep 2021; 30:299-307.e3. [PMID: 31940477 DOI: 10.1016/j.celrep.2019.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/16/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
Abstract
Mutations and deletions of polycomb repressive complex (PRC) components are increasingly recognized to affect tumor biology in a range of cancers. However, little is known about how genetic alterations of PRC-interacting molecules such as the core binding factor (CBF) complex influence polycomb activity. We report that the acute myeloid leukemia (AML)-associated CBFβ-SMMHC fusion oncoprotein physically interacts with the PRC1 complex and that these factors co-localize across the AML genome in an apparently PRC2-independent manner. Depletion of CBFβ-SMMHC caused substantial increases in genome-wide PRC1 binding and marked changes in the association between PRC1 and the CBF DNA-binding subunit RUNX1. PRC1 was more likely to be associated with actively transcribed genes in CBFβ-SMMHC-expressing cells. CBFβ-SMMHC depletion had heterogeneous effects on gene expression, including significant reductions in transcription of ribosomal loci occupied by PRC1. Our results provide evidence that CBFβ-SMMHC markedly and diversely affects polycomb recruitment and transcriptional regulation across the AML genome.
Collapse
Affiliation(s)
- Gaëlle Cordonnier
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Amit Mandoli
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nicolas Cagnard
- Sorbonne Universités, Université Paris Descartes, Bioinformatics Platform, Paris, France
| | - Guillaume Hypolite
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, INSERM U1111, Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Jonathan Bond
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland.
| |
Collapse
|
18
|
Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020; 116:1410-1423. [PMID: 32154891 PMCID: PMC7314639 DOI: 10.1093/cvr/cvaa034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Martin McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1BD, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
19
|
Zheng Y, Wu C, Yang J, Zhao Y, Jia H, Xue M, Xu D, Yang F, Fu D, Wang C, Hu B, Zhang Z, Li T, Yan S, Wang X, Nelson PJ, Bruns C, Qin L, Dong Q. Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduct Target Ther 2020; 5:53. [PMID: 32398667 PMCID: PMC7217878 DOI: 10.1038/s41392-020-0146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Enolase 2 (ENO2) is a key glycolytic enzyme in the metabolic process of glycolysis, but its potential function in pancreatic ductal adenocarcinoma (PDAC) is unclear. In this study, we observed a significant overexpression of ENO2 in PDAC tissues, and its expression was correlated with metastasis and poor prognosis in PDAC patients. K394 was identified as a major acetylation site in ENO2 that regulates its enzymatic activity, cell metabolism and PDAC progression. Knockdown of ENO2 suppressed tumor growth and liver metastasis in PDAC. Re-expression of wild-type (WT) ENO2, but not the K394 acetylation mimetic mutant, could reverse the decreased tumor malignancy. We further characterized histone deacetylase 3 (HDAC3) and P300/CBP-associated factor (PCAF) as the potential deacetylase and acetyltransferase for ENO2, respectively. HDAC3-mediated deacetylation was shown to lead to ENO2 activation and enhancement of glycolysis. Importantly, insulin-like growth factor-1 (IGF-1) was found to decrease K394 acetylation and stimulate ENO2 activity in a dose- and time-dependent manner. The PI3K/AKT/mTOR pathway facilitated the phosphorylation of HDAC3 on S424, which promoted K394 deacetylation and activation of ENO2. Linsitinib, an oral small-molecule inhibitor of IGF-1R, could inhibit IGF-1-induced ENO2 deacetylation by HDAC3 and the PI3K/AKT/mTOR pathway. Furthermore, linsitinib showed a different effect on the growth and metastasis of PDAC depending on the overexpression of WT versus K394-mutant ENO2. Our results reveal a novel mechanism by which acetylation negatively regulates ENO2 activity in the metastasis of PDAC by modulating glycolysis. Blockade of IGF-1-induced ENO2 deacetylation represents a promising strategy to prevent the development of PDAC.
Collapse
Affiliation(s)
- Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Chao Wu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, 50937, Germany
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Min Xue
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Da Xu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaoqun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Beiyuan Hu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Ze Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Tianen Li
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Shican Yan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Xuan Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Peter J Nelson
- Medical Clinic and Policlinic IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, 50937, Germany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
20
|
Guo C, Li J, Steinauer N, Wong M, Wu B, Dickson A, Kalkum M, Zhang J. Histone deacetylase 3 preferentially binds and collaborates with the transcription factor RUNX1 to repress AML1-ETO-dependent transcription in t(8;21) AML. J Biol Chem 2020; 295:4212-4223. [PMID: 32071087 PMCID: PMC7105303 DOI: 10.1074/jbc.ra119.010707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/11/2020] [Indexed: 01/26/2023] Open
Abstract
In up to 15% of acute myeloid leukemias (AMLs), a recurring chromosomal translocation, termed t(8;21), generates the AML1-eight-twenty-one (ETO) leukemia fusion protein, which contains the DNA-binding domain of Runt-related transcription factor 1 (RUNX1) and almost all of ETO. RUNX1 and the AML1-ETO fusion protein are coexpressed in t(8;21) AML cells and antagonize each other's gene-regulatory functions. AML1-ETO represses transcription of RUNX1 target genes by competitively displacing RUNX1 and recruiting corepressors such as histone deacetylase 3 (HDAC3). Recent studies have shown that AML1-ETO and RUNX1 co-occupy the binding sites of AML1-ETO-activated genes. How this joined binding allows RUNX1 to antagonize AML1-ETO-mediated transcriptional activation is unclear. Here we show that RUNX1 functions as a bona fide repressor of transcription activated by AML1-ETO. Mechanistically, we show that RUNX1 is a component of the HDAC3 corepressor complex and that HDAC3 preferentially binds to RUNX1 rather than to AML1-ETO in t(8;21) AML cells. Studying the regulation of interleukin-8 (IL8), a newly identified AML1-ETO-activated gene, we demonstrate that RUNX1 and HDAC3 collaboratively repress AML1-ETO-dependent transcription, a finding further supported by results of genome-wide analyses of AML1-ETO-activated genes. These and other results from the genome-wide studies also have important implications for the mechanistic understanding of gene-specific coactivator and corepressor functions across the AML1-ETO/RUNX1 cistrome.
Collapse
MESH Headings
- Cell Line, Tumor
- Core Binding Factor Alpha 2 Subunit/genetics
- Gene Expression Regulation, Neoplastic
- Genome, Human/genetics
- Histone Deacetylases/genetics
- Humans
- Interleukin-8/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein/genetics
- Transcriptional Activation/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Jian Li
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Nickolas Steinauer
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Madeline Wong
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Brent Wu
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Alexandria Dickson
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104.
| |
Collapse
|
21
|
Seo W, Taniuchi I. The Roles of RUNX Family Proteins in Development of Immune Cells. Mol Cells 2020; 43:107-113. [PMID: 31926543 PMCID: PMC7057832 DOI: 10.14348/molcells.2019.0291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023] Open
Abstract
The Runt-related transcription factors (RUNX) transcription factors have been known for their critical roles in numerous developmental processes and diseases such as autoimmune disorders and cancer. Especially, RUNX proteins are best known for their roles in hematopoiesis, particularly during the development of T cells. As scientists discover more types of new immune cells, the functional diversity of RUNX proteins also has been increased over time. Furthermore, recent research has revealed complicated transcriptional networks involving RUNX proteins by the current technical advances. Databases established by next generation sequencing data analysis has identified ever increasing numbers of potential targets for RUNX proteins and other transcription factors. Here, we summarize diverse functions of RUNX proteins mainly on lymphoid lineage cells by incorporating recent discoveries.
Collapse
Affiliation(s)
- Wooseok Seo
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama 30-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama 30-0045, Japan
| |
Collapse
|
22
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|
23
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
24
|
Kong X, Ma L, Chen E, Shaw CA, Edelstein LC. Identification of the Regulatory Elements and Target Genes of Megakaryopoietic Transcription Factor MEF2C. Thromb Haemost 2019; 119:716-725. [PMID: 30731491 PMCID: PMC6932631 DOI: 10.1055/s-0039-1678694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Megakaryopoiesis produces specialized haematopoietic stem cells in the bone marrow that give rise to megakaryocytes which ultimately produce platelets. Defects in megakaryopoiesis can result in altered platelet counts and physiology, leading to dysfunctional haemostasis and thrombosis. Additionally, dysregulated megakaryopoiesis is also associated with myeloid pathologies. Transcription factors play critical roles in cell differentiation by regulating the temporal and spatial patterns of gene expression which ultimately decide cell fate. Several transcription factors have been described as regulating megakaryopoiesis including myocyte enhancer factor 2C (MEF2C); however, the genes regulated by MEF2C that influence megakaryopoiesis have not been reported. Using chromatin immunoprecipitation-sequencing and Gene Ontology data we identified five candidate genes that are bound by MEF2C and regulate megakaryopoiesis: MOV10, AGO3, HDAC1, RBBP5 and WASF2. To study expression of these genes, we silenced MEF2C gene expression in the Meg01 megakaryocytic cell line and in induced pluripotent stem cells by CRISPR/Cas9 editing. We also knocked down MEF2C expression in cord blood-derived haematopoietic stem cells by siRNA. We found that absent or reduced MEF2C expression resulted in defects in megakaryocytic differentiation and reduced levels of the candidate target genes. Luciferase assays confirmed that genomic sequences within the target genes are regulated by MEF2C levels. Finally, we demonstrate that small deletions linked to a platelet count-associated single nucleotide polymorphism alter transcriptional activity, suggesting a mechanism by which genetic variation in MEF2C alters platelet production. These data help elucidate the mechanism behind MEF2C regulation of megakaryopoiesis and genetic variation driving platelet production.
Collapse
Affiliation(s)
- Xianguo Kong
- Cardeza Foundation for Hematologic Research and Department of Medicine, Sidney Kimmel Medical School at Thomas Jefferson University, Philadelphia, PA
| | - Lin Ma
- Cardeza Foundation for Hematologic Research and Department of Medicine, Sidney Kimmel Medical School at Thomas Jefferson University, Philadelphia, PA
| | - Edward Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - Chad A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - Leonard C. Edelstein
- Cardeza Foundation for Hematologic Research and Department of Medicine, Sidney Kimmel Medical School at Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
25
|
Yang R, Wang H, Wen J, Ma K, Chen D, Chen Z, Huang C. Regulation of microglial process elongation, a featured characteristic of microglial plasticity. Pharmacol Res 2018; 139:286-297. [PMID: 30476531 DOI: 10.1016/j.phrs.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/08/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Microglia, a type of glia within the brain characterized by a ramified morphology, are essential for removing neuronal debris and restricting the expansion of a lesion site. Upon moderate activation, they undergo a transformation in morphology inducing beneficial responses. However, upon strong stimulation, they mediate neuronal damage via production of pro-inflammatory cytokines. The inhibition of this cascade is considered an effective strategy for neuroinflammation-associated disorder therapy. During this pathological activation microglia also undergo a shortening of process length which contributes to the pathogenesis of such disorders. Thus, microglial plasticity should be considered to have two components: one is the production of inflammatory mediators, and the other is the dynamic changes in their processes. The former role has been well-documented in previous studies, while the latter one remains largely unknown. Recently, we and others have reported that the elongation of microglial process is associated with the transformation of microglia from a pro-inflammatory to an anti-inflammatory state, suggesting that the shortening of process length would make the microglia lose their ability to restrict pathological injury, while the elongation of microglial process would help attenuate neuroinflammation. Compared with the traditional anti-neuroinflammatory strategy, stimulating elongation of microglial process not only reduces the production of pro-inflammatory cytokines, but restores the ability of microglia to scan their surrounding environments, thus rendering their homeostasis regulation more effective. In this review, we provide a discussion of the factors that regulate microglial process elongation in vitro and in vivo, aiming to further drive the understanding of microglial process plasticity.
Collapse
Affiliation(s)
- Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854, NJ, United States
| | - Jie Wen
- Beijing Allwegene Health, B-607 Wanlin Technology Mansion, 8 Malianwa North Road, Beijing 100094, China
| | - Kai Ma
- Probiotics Australia, 24-30 Blanck Street, Ormeau, QLD, 4208, Australia
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
26
|
Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J, O'Hagan K, Ou J, Muller-Tidow C, Wolfe SA, Zhu LJ, Dekker J, Bushweller JH, Castilla LH. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell 2018; 174:172-186.e21. [PMID: 29958106 PMCID: PMC6211564 DOI: 10.1016/j.cell.2018.05.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Abstract
The fusion oncoprotein CBFβ-SMMHC, expressed in leukemia cases with chromosome 16 inversion, drives leukemia development and maintenance by altering the activity of the transcription factor RUNX1. Here, we demonstrate that CBFβ-SMMHC maintains cell viability by neutralizing RUNX1-mediated repression of MYC expression. Upon pharmacologic inhibition of the CBFβ-SMMHC/RUNX1 interaction, RUNX1 shows increased binding at three MYC distal enhancers, where it represses MYC expression by mediating the replacement of the SWI/SNF complex component BRG1 with the polycomb-repressive complex component RING1B, leading to apoptosis. Combining the CBFβ-SMMHC inhibitor with the BET inhibitor JQ1 eliminates inv(16) leukemia in human cells and a mouse model. Enhancer-interaction analysis indicated that the three enhancers are physically connected with the MYC promoter, and genome-editing analysis demonstrated that they are functionally implicated in deregulation of MYC expression. This study reveals a mechanism whereby CBFβ-SMMHC drives leukemia maintenance and suggests that inhibitors targeting chromatin activity may prove effective in inv(16) leukemia therapy.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Azepines/pharmacology
- Azepines/therapeutic use
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cell Line, Tumor
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Inversion/drug effects
- Core Binding Factor Alpha 2 Subunit/chemistry
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA/chemistry
- DNA/metabolism
- DNA Helicases/metabolism
- Disease Models, Animal
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/metabolism
- Polycomb Repressive Complex 1/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- John Anto Pulikkan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hafiz Mohd Ahmad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Houda Belaghzal
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kelsey O'Hagan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John Hackett Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lucio Hernán Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Thapa P, Manso B, Chung JY, Romera Arocha S, Xue HH, Angelo DBS, Shapiro VS. The differentiation of ROR-γt expressing iNKT17 cells is orchestrated by Runx1. Sci Rep 2017; 7:7018. [PMID: 28765611 PMCID: PMC5539328 DOI: 10.1038/s41598-017-07365-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
iNKT cells are a unique lineage of T cells that recognize glycolipid presented by CD1d. In the thymus, they differentiate into iNKT1, iNKT2 and iNKT17 effector subsets, characterized by preferential expression of Tbet, Gata3 and ROR-γt and production of IFN-γ, IL-4 and IL-17, respectively. We demonstrate that the transcriptional regulator Runx1 is essential for the generation of ROR-γt expressing iNKT17 cells. PLZF-cre Runx1 cKO mice lack iNKT17 cells in the thymus, spleen and liver. Runx1-deficient iNKT cells have altered expression of several genes important for iNKT17 differentiation, including decreased expression of IL-7Rα, BATF and c-Maf and increased expression of Bcl11b and Lef1. However, reduction of Lef1 expression or introduction of an IL-7Rα transgene is not sufficient to correct the defect in iNKT17 differentiation, demonstrating that Runx1 is a key regulator of several genes required for iNKT17 differentiation. Loss of Runx1 leads to a severe decrease in iNKT cell numbers in the thymus, spleen and liver. The decrease in cell number is due to a combined decrease in proliferation at Stage 1 during thymic development and increased apoptosis. Thus, we describe a novel role of Runx1 in iNKT cell development and differentiation, particularly in orchestrating iNKT17 differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Bryce Manso
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sinibaldo Romera Arocha
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd Iowa City, IA, 52242, USA
| | - Derek B Sant' Angelo
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Virginia Smith Shapiro
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Covalent Modifications of RUNX Proteins: Structure Affects Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:33-44. [DOI: 10.1007/978-981-10-3233-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Bonifer C, Levantini E, Kouskoff V, Lacaud G. Runx1 Structure and Function in Blood Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:65-81. [PMID: 28299651 DOI: 10.1007/978-981-10-3233-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RUNX transcription factors belong to a highly conserved class of transcriptional regulators which play various roles in the development of the majority of metazoans. In this review we focus on the founding member of the family, RUNX1, and its role in the transcriptional control of blood cell development in mammals. We summarize data showing that RUNX1 functions both as activator and repressor within a chromatin environment, a feature that requires its interaction with multiple other transcription factors and co-factors. Furthermore, we outline how RUNX1 works together with other factors to reshape the epigenetic landscape and the three-dimensional structure of gene loci within the nucleus. Finally, we review how aberrant forms of RUNX1 deregulate blood cell development and cause hematopoietic malignancies.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Elena Levantini
- Beth Israel Diaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Richerche, Pisa, Italy
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Nanou A, Toumpeki C, Lavigne MD, Lazou V, Demmers J, Paparountas T, Thanos D, Katsantoni E. The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions. Nucleic Acids Res 2016; 45:142-154. [PMID: 27651463 PMCID: PMC5224505 DOI: 10.1093/nar/gkw832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 12/31/2022] Open
Abstract
STAT5 interacts with other factors to control transcription, and the mechanism of regulation is of interest as constitutive active STAT5 has been reported in malignancies. Here, LSD1 and HDAC3 were identified as novel STAT5a interacting partners in pro-B cells. Characterization of STAT5a, LSD1 and HDAC3 target genes by ChIP-seq and RNA-seq revealed gene subsets regulated by independent or combined action of the factors and LSD1/HDAC3 to play dual role in their activation or repression. Genes bound by STAT5a alone or in combination with weakly associated LSD1 or HDAC3 were enriched for the canonical STAT5a GAS motif, and such binding induced activation or repression. Strong STAT5 binding was seen more frequently in intergenic regions, which might function as distal enhancer elements. Groups of genes bound weaker by STAT5a and stronger by LSD1/HDAC3 showed an absence of the GAS motif, and were differentially regulated based on their genomic binding localization and binding affinities. These genes exhibited increased binding frequency in promoters, and in conjunction with the absence of GAS sites, the data indicate a requirement for stabilization by additional factors, which might recruit LSD1/HDAC3. Our study describes an interaction network of STAT5a/LSD1/HDAC3 and a dual function of LSD1/HDAC3 on STAT5-dependent transcription, defined by protein–protein interactions, genomic binding localization/affinity and motifs.
Collapse
Affiliation(s)
- Aikaterini Nanou
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27 Athens, Greece
| | - Chrisavgi Toumpeki
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27 Athens, Greece
| | - Matthieu D Lavigne
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27 Athens, Greece
| | - Vassiliki Lazou
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27 Athens, Greece
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Triantafillos Paparountas
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27 Athens, Greece
| | - Dimitris Thanos
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27 Athens, Greece
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27 Athens, Greece
| |
Collapse
|
31
|
The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1652417. [PMID: 27073801 PMCID: PMC4814634 DOI: 10.1155/2016/1652417] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.
Collapse
|
32
|
Palma CDS, Grassi ML, Thomé CH, Ferreira GA, Albuquerque D, Pinto MT, Ferreira Melo FU, Kashima S, Covas DT, Pitteri SJ, Faça VM. Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells. Mol Cell Proteomics 2016; 15:906-17. [PMID: 26764010 DOI: 10.1074/mcp.m115.052910] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT)(1) occurs naturally during embryogenesis, tissue repair, cancer progression, and metastasis. EMT induces cellular and microenvironmental changes resulting in loss of epithelial and acquisition of mesenchymal phenotypes, which promotes cellular invasive and migratory capabilities. EMT can be triggered by extracellular factors, including TGF-β, HGF, and EGF. Overexpression of transcription factors, such as SNAIL, SLUG, ZEB1/2, and TWIST1, also induces EMT and is correlated to cancer aggressiveness. Here, the breast adenocarcinoma cell line MCF7 was transduced with SNAIL to identify specific mechanisms controlled by this transcription factor during EMT. Overexpression of SNAIL led to EMT, which was thoroughly validated by molecular, morphological, and functional experiments. Subcellular proteome enrichment followed by GEL-LC-MS/MS was performed to provide extensive protein fractionation and in-depth proteomic analysis. Quantitative analysis relied on a SILAC strategy, using the invasive breast cancer cell line MDA-MB-231 as a reference for quantitation. Subsets of proteins enriched in each subcellular compartment led to a complementary list of 4289 proteins identified with high confidence. A subset of differentially expressed proteins was validated by Western blot, including regulation in specific cellular compartments, potentially caused by protein translocation. Protein network analysis highlighted complexes involved in cell cycle control and epigenetic regulation. Flow cytometry analysis indicated that SNAIL overexpression led to cell cycle arrest in G0/G1 phases. Furthermore, down-regulation of HDAC1 was observed, supporting the involvement of epigenetic processes in SNAIL-induced EMT. When HDAC1 activity was inhibited, MCF7 not only apparently initiated EMT but also up-regulated SNAIL, indicating the cross-talk between these two proteins. Both HDAC1 inhibition and SNAIL overexpression activated the AKT pathway. These molecular mechanisms appear to be essential to EMT and therefore for cancer metastasis. Specific control of such epigenetic processes might then represent effective approaches for clinical management of metastatic cancer.
Collapse
Affiliation(s)
- Camila de Souza Palma
- From the Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Mariana Lopes Grassi
- From the Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Carolina Hassibe Thomé
- From the Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Germano Aguiar Ferreira
- the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Daniele Albuquerque
- From the Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil
| | - Mariana Tomazini Pinto
- the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Fernanda Ursoli Ferreira Melo
- the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Simone Kashima
- the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Dimas Tadeu Covas
- the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| | - Sharon J Pitteri
- the Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, California 94305-5101
| | - Vitor M Faça
- From the Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; the Cell-based Therapy Center, Ribeirao Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP/Brazil; and
| |
Collapse
|
33
|
Li Y, Ke Q, Shao Y, Zhu G, Li Y, Geng N, Jin F, Li F. GATA1 induces epithelial-mesenchymal transition in breast cancer cells through PAK5 oncogenic signaling. Oncotarget 2015; 6:4345-56. [PMID: 25726523 PMCID: PMC4414194 DOI: 10.18632/oncotarget.2999] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions, resulting in the acquisition of migratory and invasive properties. E-cadherin is a major component of intercellular junctions and the reduction or loss of its expression is a hallmark of EMT. Transcription factor GATA1 has a critical anti-apoptotic role in breast cancer, but its function for metastasis has not been investigated. Here, we found that GATA1, as a novel E-cadherin repressor, promotes EMT in breast cancer cells. GATA1 binds to E-cadherin promoter, down-regulates E-cadherin expression, disrupts intercellular junction and promotes metastasis of breast cancer cell in vivo. Moreover, GATA1 is a new substrate of p21-activated kinase 5 (PAK5), which is phosphorylated on serine 161 and 187 (S161 and S187). GATA1 recruits HDAC3/4 to E-cadherin promoter, which is reduced by GATA1 S161A S187A mutant. These data indicate that phosphorylated GATA1 recruits more HDAC3/4 to promote transcriptional repression of E-cadherin, leading to the EMT of breast cancer cells. Our findings provide insights into the novel function of GATA1, contributing to a better understanding of the EMT, indicating that GATA1 and its phosphorylation may play an important role in the metastasis of breast cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiang Ke
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ge Zhu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Nanxi Geng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
34
|
Leong WY, Guo H, Ma O, Huang H, Cantor AB, Friedman AD. Runx1 Phosphorylation by Src Increases Trans-activation via Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased DNA Affinity, and Activated Runx1 Favors Granulopoiesis. J Biol Chem 2015; 291:826-36. [PMID: 26598521 DOI: 10.1074/jbc.m115.674234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Src phosphorylates Runx1 on one central and four C-terminal tyrosines. We find that activated Src synergizes with Runx1 to activate a Runx1 luciferase reporter. Mutation of the four Runx1 C-terminal tyrosines to aspartate or glutamate to mimic phosphorylation increases trans-activation of the reporter in 293T cells and allows induction of Cebpa or Pu.1 mRNAs in 32Dcl3 myeloid cells, whereas mutation of these residues to phenylalanine to prevent phosphorylation obviates these effects. Three mechanisms contribute to increased Runx1 activity upon tyrosine modification as follows: increased stability, reduced histone deacetylase (HDAC) interaction, and increased DNA binding. Mutation of the five modified Runx1 tyrosines to aspartate markedly reduced co-immunoprecipitation with HDAC1 and HDAC3, markedly increased stability in cycloheximide or in the presence of co-expressed Cdh1, an E3 ubiquitin ligase coactivator, with reduced ubiquitination, and allowed DNA-binding in gel shift assay similar to wild-type Runx1. In contrast, mutation of these residues to phenylalanine modestly increased HDAC interaction, modestly reduced stability, and markedly reduced DNA binding in gel shift assays and as assessed by chromatin immunoprecipitation with the -14-kb Pu.1 or +37-kb Cebpa enhancers after stable expression in 32Dcl3 cells. Affinity for CBFβ, the Runx1 DNA-binding partner, was not affected by these tyrosine modifications, and in vitro translated CBFβ markedly increased DNA affinity of both the translated phenylalanine and aspartate Runx1 variants. Finally, further supporting a positive role for Runx1 tyrosine phosphorylation during granulopoiesis, mutation of the five Src-modified residues to aspartate but not phenylalanine allows Runx1 to increase Cebpa and granulocyte colony formation by Runx1-deleted murine marrow.
Collapse
Affiliation(s)
- Wan Yee Leong
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| | - Hong Guo
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| | - Ou Ma
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| | - Hui Huang
- the Department of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Alan B Cantor
- the Department of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Alan D Friedman
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| |
Collapse
|
35
|
Brettingham-Moore KH, Taberlay PC, Holloway AF. Interplay between Transcription Factors and the Epigenome: Insight from the Role of RUNX1 in Leukemia. Front Immunol 2015; 6:499. [PMID: 26483790 PMCID: PMC4586508 DOI: 10.3389/fimmu.2015.00499] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/14/2015] [Indexed: 01/13/2023] Open
Abstract
The genome has the ability to respond in a precise and co-ordinated manner to cellular signals. It achieves this through the concerted actions of transcription factors and the chromatin platform, which are targets of the signaling pathways. Our understanding of the molecular mechanisms through which transcription factors and the chromatin landscape each control gene activity has expanded dramatically over recent years, and attention has now turned to understanding the complex, multifaceted interplay between these regulatory layers in normal and disease states. It has become apparent that transcription factors as well as the components and modifiers of the epigenetic machinery are frequent targets of genomic alterations in cancer cells. Through the study of these factors, we can gain unique insight into the dynamic interplay between transcription factors and the epigenome, and how their dysregulation leads to aberrant gene expression programs in cancer. Here, we will highlight how these factors normally co-operate to establish and maintain the transcriptional and epigenetic landscape of cells, and how this is reprogramed in cancer, focusing on the RUNX1 transcription factor and oncogenic derivative RUNX1–ETO in leukemia as paradigms of transcriptional and epigenetic reprograming.
Collapse
Affiliation(s)
| | - Phillippa C Taberlay
- Genomics and Epigenetics Program, The Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Adele F Holloway
- School of Medicine, University of Tasmania , Hobart, TAS , Australia
| |
Collapse
|
36
|
Abstract
RUNX proteins belong to a family of metazoan transcription factors that serve as master regulators of development. They are frequently deregulated in human cancers, indicating a prominent and, at times, paradoxical role in cancer pathogenesis. The contextual cues that direct RUNX function represent a fast-growing field in cancer research and could provide insights that are applicable to early cancer detection and treatment. This Review describes how RUNX proteins communicate with key signalling pathways during the multistep progression to malignancy; in particular, we highlight the emerging partnership of RUNX with p53 in cancer suppression.
Collapse
Affiliation(s)
- Yoshiaki Ito
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| | - Suk-Chul Bae
- 1] Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, 361763, South Korea. [2]
| | - Linda Shyue Huey Chuang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| |
Collapse
|
37
|
Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene 2014; 34:3483-92. [PMID: 25263451 DOI: 10.1038/onc.2014.305] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022]
Abstract
The transcription factor RUNX1 is a master regulator of hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Recent studies also highlight the importance of RUNX1 in solid tumors both as a tumor promoter and a suppressor. Given its central role in cancer development, RUNX1 is an excellent candidate for targeted therapy. A potential strategy to target RUNX1 is through modulation of its posttranslational modifications (PTMs). Numerous studies have shown that RUNX1 activity is regulated by PTMs, including phosphorylation, acetylation, methylation and ubiquitination. These PTMs regulate RUNX1 activity either positively or negatively by altering RUNX1-mediated transcription, promoting protein degradation and affecting protein interactions. In this review, we first summarize the available data on the context- and dosage-dependent roles of RUNX1 in various types of neoplasms. We then provide a comprehensive overview of RUNX1 PTMs from biochemical and biologic perspectives. Finally, we discuss how aberrant PTMs of RUNX1 might contribute to tumorigenesis and also strategies to develop anticancer therapies targeting RUNX1 PTMs.
Collapse
|
38
|
Wells AD, Morawski PA. New roles for cyclin-dependent kinases in T cell biology: linking cell division and differentiation. Nat Rev Immunol 2014; 14:261-70. [PMID: 24603166 PMCID: PMC10114933 DOI: 10.1038/nri3625] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proliferation of a few antigen-reactive lymphocytes into a large population of effector cells is a fundamental property of adaptive immunity. The cell division that fuels this process is driven by signals from antigen, co-stimulatory molecules and growth factor receptors, and is controlled by the cyclin-dependent kinase (CDK) cascade. In this Opinion article, we discuss how the CDK cascade provides one potential link between cell division and differentiation through the phosphorylation of immunologically relevant transcription factors, and how components of this pathway might ultimately participate in the decision between tolerance and immunity.
Collapse
Affiliation(s)
- Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, USA; and The Children's Hospital of Philadelphia Research Institute, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Peter A Morawski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, USA; and The Children's Hospital of Philadelphia Research Institute, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
ISLAM RABIA, YOON WONJOON, WOO KYUNGMI, BAEK JEONGHWA, RYOO HYUNMO. Pin1-Mediated Prolyl Isomerization of Runx1 Affects PU.1 Expression in Pre-Monocytes. J Cell Physiol 2013; 229:443-52. [DOI: 10.1002/jcp.24462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Affiliation(s)
- RABIA ISLAM
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - WON-JOON YOON
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - KYUNG-MI WOO
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - JEONG-HWA BAEK
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - HYUN-MO RYOO
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| |
Collapse
|
40
|
Transcriptional regulation of haematopoietic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:187-212. [PMID: 23696358 DOI: 10.1007/978-94-007-6621-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell population found in the bone marrow of adult mammals and are responsible for maintaining the entire haematopoietic system. Definitive HSCs are produced from mesoderm during embryonic development, from embryonic day 10 in the mouse. HSCs seed the foetal liver before migrating to the bone marrow around the time of birth. In the adult, HSCs are largely quiescent but have the ability to divide to self-renew and expand, or to proliferate and differentiate into any mature haematopoietic cell type. Both the specification of HSCs during development and their cellular choices once formed are tightly controlled at the level of transcription. Numerous transcriptional regulators of HSC specification, expansion, homeostasis and differentiation have been identified, primarily from analysis of mouse gene knockout experiments and transplantation assays. These include transcription factors, epigenetic modifiers and signalling pathway effectors. This chapter reviews the current knowledge of these HSC transcriptional regulators, predominantly focusing on the transcriptional regulation of mouse HSCs, although transcriptional regulation of human HSCs is also mentioned where relevant. Due to the breadth and maturity of this field, we have prioritised recently identified examples of HSC transcriptional regulators. We go on to highlight additional layers of control that regulate expression and activity of HSC transcriptional regulators and discuss how chromosomal translocations that result in fusion proteins of these HSC transcriptional regulators commonly drive leukaemias through transcriptional dysregulation.
Collapse
|
41
|
Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood 2013; 121:2038-50. [PMID: 23327920 DOI: 10.1182/blood-2012-08-450916] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic erasers of lysine-acetyl marks. Inhibition of HDACs using small molecule inhibitors (HDACi) is a potential strategy in the treatment of various diseases and is approved for treating hematological malignancies. Harnessing the therapeutic potential of HDACi requires knowledge of HDAC-function in vivo. Here, we generated a thymocyte-specific gradient of HDAC-activity using compound conditional knockout mice for Hdac1 and Hdac2. Unexpectedly, gradual loss of HDAC-activity engendered a dosage-dependent accumulation of immature thymocytes and correlated with the incidence and latency of monoclonal lymphoblastic thymic lymphomas. Strikingly, complete ablation of Hdac1 and Hdac2 abrogated lymphomagenesis due to a block in early thymic development. Genomic, biochemical and functional analyses of pre-leukemic thymocytes and tumors revealed a critical role for Hdac1/Hdac2-governed HDAC-activity in regulating a p53-dependent barrier to constrain Myc-overexpressing thymocytes from progressing into lymphomas by regulating Myc-collaborating genes. One Myc-collaborating and p53-suppressing gene, Jdp2, was derepressed in an Hdac1/2-dependent manner and critical for the survival of Jdp2-overexpressing lymphoma cells. Although reduced HDAC-activity facilitates oncogenic transformation in normal cells, resulting tumor cells remain highly dependent on HDAC-activity, indicating that a critical level of Hdac1 and Hdac2 governed HDAC-activity is required for tumor maintenance.
Collapse
|
42
|
Chuang LSH, Ito K, Ito Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 2012. [PMID: 23180629 DOI: 10.1002/ijc.27964] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Runt-related transcription factors (RUNX) belong to an ancient family of metazoan genes involved in developmental processes. Through multiple protein-interacting partners, RUNX proteins have been implicated in diverse signaling pathways and cellular processes. The frequent inactivation of RUNX genes in cancer indicates crucial roles for RUNX in tumor suppression. This review discusses the abilities of RUNX proteins, in particular RUNX3, to integrate oncogenic signals or environmental cues and to initiate appropriate tumor suppressive responses.
Collapse
|
43
|
|
44
|
Wu D, Ozaki T, Yoshihara Y, Kubo N, Nakagawara A. Runt-related transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. J Biol Chem 2012; 288:1353-64. [PMID: 23148227 DOI: 10.1074/jbc.m112.402594] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Representative tumor suppressor p53 plays a critical role in the regulation of proper DNA damage response. In this study, we have found for the first time that Runt-related transcription factor 1 (RUNX1) contributes to p53-dependent DNA damage response. Upon adriamycin (ADR) exposure, p53 as well as RUNX1 were strongly induced in p53-proficient HCT116 and U2OS cells, which were closely associated with significant transactivation of p53 target genes, such as p21(WAF)(1), BAX, NOXA, and PUMA. RUNX1 was exclusively expressed in the cell nucleus and formed a complex with p53 in response to ADR. Chromatin immunoprecipitation assay demonstrated that p53 together with RUNX1 are efficiently recruited onto p53 target gene promoters following ADR exposure, indicating that RUNX1 is involved in p53-mediated transcriptional regulation. Indeed, forced expression of RUNX1 stimulated the transcriptional activity of p53 in response to ADR. Consistent with these observations, knockdown of RUNX1 attenuated ADR-mediated induction of p53 target genes and suppressed ADR-dependent apoptosis. Furthermore, RUNX1 was associated with p300 histone acetyltransferase, and ADR-dependent acetylation of p53 at Lys-373/382 was markedly inhibited in RUNX1 knockdown cells. In addition, knockdown of RUNX1 resulted in a significant decrease in the amount of p53-p300 complex following ADR exposure. Taken together, our present results strongly suggest that RUNX1 is required for the stimulation of p53 in response to DNA damage and also provide novel insight into understanding the molecular mechanisms behind p53-dependent DNA damage response.
Collapse
Affiliation(s)
- Dan Wu
- Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chiba 260-8717, Japan
| | | | | | | | | |
Collapse
|
45
|
Chunder N, Wang L, Chen C, Hancock WW, Wells AD. Cyclin-dependent kinase 2 controls peripheral immune tolerance. THE JOURNAL OF IMMUNOLOGY 2012; 189:5659-66. [PMID: 23136201 DOI: 10.4049/jimmunol.1202313] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adaptive immunity requires signals from both the TCR and the costimulatory molecule CD28. These receptors activate multiple signaling pathways, including the cyclin-dependent kinase (CDK) cascade, and antigenic signals in the absence of costimulation result in a tolerant state that is enforced by the CDK inhibitory protein p27kip1. We find that CDK2, the major target of p27kip1, is highly active in T cells that infiltrate and reject cardiac allografts. We used mice genetically deficient for CDK2 to determine whether CDK2 is required for T cell alloimmunity. Blockade of CD28 costimulation alone was unable to inhibit the rejection of cardiac allografts by wild-type recipients. However, targeting this pathway in CDK2-deficient recipients led to long-term allograft survival. CDK2-deficient CD4(+) T cells proliferated normally in response to stimulation in vitro and in vivo, however, genetic, short hairpin RNA, or small molecule-mediated antagonism of CDK2 resulted in decreased production of IL-2 and IFN-γ. In addition, surviving grafts from CDK2-deficient recipients showed increased infiltration of Foxp3(+) regulatory T cells (Treg), and Treg from CDK2-deficient mice exhibited increased suppressive activity in vitro and in an in vivo model of inflammatory bowel disease. These data suggest that p27kip1 promotes peripheral tolerance through its ability to inhibit CDK2, which otherwise acts to promote conventional T cell differentiation and restrict Treg function.
Collapse
Affiliation(s)
- Neelanjana Chunder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
46
|
Tijchon E, Havinga J, van Leeuwen FN, Scheijen B. B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 2012; 27:541-52. [PMID: 23047478 DOI: 10.1038/leu.2012.293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Differentiation of hematopoietic stem cells into B lymphocytes requires the concerted action of specific transcription factors, such as RUNX1, IKZF1, E2A, EBF1 and PAX5. As key determinants of normal B-cell development, B-lineage transcription factors are frequently deregulated in hematological malignancies, such as B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and affected by either chromosomal translocations, gene deletions or point mutations. However, genetic aberrations in this developmental pathway are generally insufficient to induce BCP-ALL, and often complemented by genetic defects in cytokine receptors and tyrosine kinases (IL-7Rα, CRLF2, JAK2 and c-ABL1), transcriptional cofactors (TBL1XR1, CBP and BTG1), as well as the regulatory pathways that mediate cell-cycle control (pRB and INK4A/B). Here we provide a detailed overview of the genetic pathways that interact with these B-lineage specification factors, and describe how mutations affecting these master regulators together with cooperating lesions drive leukemia development.
Collapse
Affiliation(s)
- E Tijchon
- Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
47
|
Abstract
The Runx1 transcription factor is post-translationally modified by seryl/threonyl phosphorylation, acetylation, and methylation that control its interactions with transcription factor partners and epigenetic coregulators. In this issue of Genes & Development, Huang and colleagues (pp. 1587-1601) describe how the regulation of Runx1 tyrosyl phosphorylation by Src family kinases and the Shp2 phosphatase toggle Runx1's interactions between different coregulatory molecules.
Collapse
Affiliation(s)
- Benjamin G Neel
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | |
Collapse
|
48
|
Lam K, Zhang DE. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci (Landmark Ed) 2012; 17:1120-39. [PMID: 22201794 DOI: 10.2741/3977] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RUNX1 is a transcription factor that regulates critical processes in many aspects of hematopoiesis. RUNX1 is also integral in defining the definitive hematopoietic stem cell. In addition, many hematological diseases like myelodysplastic syndrome and myeloproliferative neoplasms have been associated with mutations in RUNX1. Located on chromosomal 21, the RUNX1 gene is involved in many forms of chromosomal translocations in leukemia. t(8;21) is one of the most common chromosomal translocations found in acute myeloid leukemia (AML), where it results in a fusion protein between RUNX1 and ETO. The RUNX1-ETO fusion protein is found in approximately 12% of all AML patients. In this review, we detail the structural features, functions, and models used to study both RUNX1 and RUNX1-ETO in hematopoiesis over the past two decades.
Collapse
Affiliation(s)
- Kentson Lam
- Moores Cancer Center, Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
49
|
Zape JP, Zovein AC. Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol 2011; 22:1036-47. [PMID: 22001113 DOI: 10.1016/j.semcdb.2011.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 12/31/2022]
Abstract
The study of endothelial development has been intertwined with hematopoiesis since the early 20th century when a bi-potential cell (hemangioblast) was noted to produce both endothelial and hematopoietic cells. Since then, ideas regarding the nature of connection between the vascular and hematopoietic systems have ranged from a tenuous association to direct lineage origination. In this review, historical data that spans hematopoietic development is examined within the context of hemogenic endothelium. Hemogenic endothelium, a specialized endothelial population capable of hematopoiesis, is an emerging theory that has recently gained momentum. Evidence across species and decades are reviewed, as are the possible modulators of the phenomenon, which include pathways that specify definitive hematopoiesis (Runx1), arterial identity (Notch1), as well as physiological and developmental factors.
Collapse
Affiliation(s)
- Joan P Zape
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
50
|
Bradley EW, McGee-Lawrence ME, Westendorf JJ. Hdac-mediated control of endochondral and intramembranous ossification. Crit Rev Eukaryot Gene Expr 2011; 21:101-13. [PMID: 22077150 PMCID: PMC3218555 DOI: 10.1615/critreveukargeneexpr.v21.i2.10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (Hdacs) remove acetyl groups (CH3CO-) from ε-amino groups in lysine residues within histones and other proteins. This posttranslational (de) modification alters protein stability, protein-protein interactions, and chromatin structure. Hdac activity plays important roles in the development of all organs and tissues, including the mineralized skeleton. Bone is a dynamic tissue that forms and regenerates by two processes: endochondral and intramembranous ossification. Chondrocytes and osteoblasts are responsible for producing the extracellular matrices of skeletal tissues. Several Hdacs contribute to the molecular pathways and chromatin changes that regulate tissue-specific gene expression during chondrocyte and osteoblast specification, maturation, and terminal differentiation. In this review, we summarize the roles of class I and class II Hdacs in chondrocytes and osteoblasts. The effects of small molecule Hdac inhibitors on the skeleton are also discussed.
Collapse
|