1
|
Baskin A, Soudah N, Gilad N, Halevi N, Darlyuk-Saadon I, Schoffman H, Engelberg D. All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 2025; 301:108509. [PMID: 40222547 DOI: 10.1016/j.jbc.2025.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
The extracellular-activated kinases 1 & 2 (Erk1/2) are catalytically active when dually phosphorylated on a TEY motif located at the activation loop. In human patients with cardiac hypertrophy, Erk1/2 are phosphorylated on yet another activation loop's residue, T207/188. Intrinsically active variants of Erk1/2, mutated at R84/65, are also (auto)phosphorylated on T207/188. It is not known whether T207/188 phosphorylation is restricted to these cases, nor how it affects Erks' activity. We report that T207/188 phosphorylation is not rare, as we found that: 1) All known auto-activated Erk1/2 variants are phosphorylated on T207/188. 2) It occurs in various cell lines and mouse tissues. 3) It is extremely high in patients with skeletal muscle atrophies or myopathies. We propose that T207/188 controls the permissiveness of the TEY motif for phosphorylation because T207/188-mutated Erk1/2 and the yeast Erk/Mpk1 were efficiently dually phosphorylated when expressed in HEK293 or yeast cells, respectively. The T207/188-mutated Mpk1 was not TEY-phosphorylated in cells knocked out for MEKs, suggesting that its enhanced phosphorylation in wild-type cells is MEK-dependent. Thus, as T207/188-mutated Erk1/2 and Mpk1 recruit MEKs, the role of T207/188 is to impede MEKs' ability to phosphorylate Erks. T207/188 also impedes autophosphorylation as recombinant Erk2 mutated at T188 is spontaneously autophosphorylated, although exclusively on Y185. The role of T207/188 in regulating activation loop phosphorylation may be common to most Ser/Thr kinases, as 86% of them (in the human kinome) possess T207/188 orthologs, and 160 of them were already reported to be phosphorylated on this residue.
Collapse
Affiliation(s)
- Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Neriya Halevi
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Hanan Schoffman
- Stein Family Mass Spectrometry Unit, The Research Infrastructure Center, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Yi X, Wen B, Ji S, Saltzman AB, Jaehnig EJ, Lei JT, Gao Q, Zhang B. Deep Learning Prediction Boosts Phosphoproteomics-Based Discoveries Through Improved Phosphopeptide Identification. Mol Cell Proteomics 2024; 23:100707. [PMID: 38154692 PMCID: PMC10831110 DOI: 10.1016/j.mcpro.2023.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/06/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023] Open
Abstract
Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples. One of the primary challenges associated with this technology is the relatively low rate of phosphopeptide identification during data analysis. This limitation hampers the full realization of the potential offered by shotgun phosphoproteomics. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19% to 46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.
Collapse
Affiliation(s)
- Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, Shanghai, China
| | - Alexander B Saltzman
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, Shanghai, China
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
3
|
Ojha M, Verma D, Chakraborty N, Pal A, Bhagat PK, Singh A, Verma N, Sinha AK, Chattopadhyay S. MKKK20 works as an upstream triple-kinase of MKK3-MPK6-MYC2 module in Arabidopsis seedling development. iScience 2023; 26:106049. [PMID: 36818282 PMCID: PMC9929681 DOI: 10.1016/j.isci.2023.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is involved in several signal transduction processes in eukaryotes. Here, we report a mechanistic function of MAP kinase kinase kinase 20 (MKKK20) in light signal transduction pathways. We show that MKKK20 acts as a negative regulator of photomorphogenic growth at various wavelengths of light. MKKK20 not only regulates the expression of light signaling pathway regulatory genes but also gets regulated by the same pathway genes. The atmyc2 mkkk20 double mutant analysis shows that MYC2 works downstream to MKKK20 in the regulation of photomorphogenic growth. MYC2 directly binds to the promoter of MKKK20 to modulate its expression. The protein-protein interaction study indicates that MKKK20 physically interacts with MYC2, and this interaction likely suppresses the MYC2-mediated promotion of MKKK20 expression. Further, the protein phosphorylation studies demonstrate that MKKK20 works as the upstream kinase of MKK3-MPK6-MYC2 module in photomorphogenesis.
Collapse
Affiliation(s)
- Madhusmita Ojha
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nibedita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anshuman Singh
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India,Corresponding author
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
4
|
Yi X, Wen B, Ji S, Saltzman A, Jaehnig EJ, Lei JT, Gao Q, Zhang B. Deep learning prediction boosts phosphoproteomics-based discoveries through improved phosphopeptide identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523329. [PMID: 36711982 PMCID: PMC9882090 DOI: 10.1101/2023.01.11.523329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples, but low phosphopeptide identification rate in data analysis limits the potential of this technology. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19%-46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.
Collapse
|
5
|
Chowdhury MAN, Wang SW, Suen CS, Hwang MJ, Hsueh YA, Shieh SY. JAK2-CHK2 signaling safeguards the integrity of the mitotic spindle assembly checkpoint and genome stability. Cell Death Dis 2022; 13:619. [PMID: 35851582 PMCID: PMC9293949 DOI: 10.1038/s41419-022-05077-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
Checkpoint kinase 2 (CHK2) plays an important role in safeguarding the mitotic progression, specifically the spindle assembly, though the mechanism of regulation remains poorly understood. Here, we identified a novel mitotic phosphorylation site on CHK2 Tyr156, and its responsible kinase JAK2. Expression of a phospho-deficient mutant CHK2 Y156F or treatment with JAK2 inhibitor IV compromised mitotic spindle assembly, leading to genome instability. In contrast, a phospho-mimicking mutant CHK2 Y156E restored mitotic normalcy in JAK2-inhibited cells. Mechanistically, we show that this phosphorylation is required for CHK2 interaction with and phosphorylation of the spindle assembly checkpoint (SAC) kinase Mps1, and failure of which results in impaired Mps1 kinetochore localization and defective SAC. Concordantly, analysis of clinical cancer datasets revealed that deletion of JAK2 is associated with increased genome alteration; and alteration in CHEK2 and JAK2 is linked to preferential deletion or amplification of cancer-related genes. Thus, our findings not only reveal a novel JAK2-CHK2 signaling axis that maintains genome integrity through SAC but also highlight the potential impact on genomic stability with clinical JAK2 inhibition.
Collapse
Affiliation(s)
- Md Al Nayem Chowdhury
- grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Wei Wang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-An Hsueh
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheau-Yann Shieh
- grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Boonen RA, Wiegant WW, Celosse N, Vroling B, Heijl S, Kote-Jarai Z, Mijuskovic M, Cristea S, Solleveld-Westerink N, van Wezel T, Beerenwinkel N, Eeles R, Devilee P, Vreeswijk MP, Marra G, van Attikum H. Functional Analysis Identifies Damaging CHEK2 Missense Variants Associated with Increased Cancer Risk. Cancer Res 2022; 82:615-631. [PMID: 34903604 PMCID: PMC9359737 DOI: 10.1158/0008-5472.can-21-1845] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.
Collapse
Affiliation(s)
- Rick A.C.M. Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W. Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nandi Celosse
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bas Vroling
- Bio-Prodict, Nijmegen, the Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Martina Mijuskovic
- The Institute of Cancer Research, London, United Kingdom
- Illumina Cambridge Ltd., Cambridge, United Kingdom
| | - Simona Cristea
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Rosalind Eeles
- The Institute of Cancer Research, London, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike P.G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Shevchenko E, Poso A, Pantsar T. The autoinhibited state of MKK4: Phosphorylation, putative dimerization and R134W mutant studied by molecular dynamics simulations. Comput Struct Biotechnol J 2020; 18:2687-2698. [PMID: 33101607 PMCID: PMC7550801 DOI: 10.1016/j.csbj.2020.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Protein kinases are crucial components of the cell-signalling machinery that orchestrate and convey messages to their downstream targets. Most often, kinases are activated upon a phosphorylation to their activation loop, which will shift the kinase into the active conformation. The Dual specificity mitogen-activated protein kinase kinase 4 (MKK4) exists in a unique conformation in its inactive unphosphorylated state, where its activation segment appears in a stable α-helical conformation. However, the precise role of this unique conformational state of MKK4 is unknown. Here, by all-atom molecular dynamics simulations (MD simulations), we show that this inactive state is unstable as monomer even when unphosphorylated and that the phosphorylation of the activation segment further destabilizes the autoinhibited α-helix. The specific phosphorylation pattern of the activation segment has also a unique influence on MKK4 dynamics. Furthermore, we observed that this specific inactive state is stable as a dimer, which becomes destabilized upon phosphorylation. Finally, we noticed that the most frequent MKK4 mutation observed in cancer, R134W, which role has not been disclosed to date, contributes to the dimer stability. Based on these data we postulate that MKK4 occurs as a dimer in its inactive autoinhibited state, providing an additional layer for its activity regulation.
Collapse
Affiliation(s)
- Ekaterina Shevchenko
- Dept of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Antti Poso
- Dept of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Corresponding author.
| |
Collapse
|
8
|
A pathway linking translation stress to checkpoint kinase 2 signaling in Neurospora crassa. Proc Natl Acad Sci U S A 2019; 116:17271-17279. [PMID: 31413202 PMCID: PMC6717302 DOI: 10.1073/pnas.1815396116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR) pathway and its activation mechanism is evolutionarily conserved. We show that PERIOD-4 (PRD-4), the CHK-2 ortholog of Neurospora crassa, is part of an additional signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by an upstream kinase distinct from those of the DDR pathway. We present evidence that the activating kinase is mTOR. Translation stress is sensed via a decrease in levels of an unstable inhibitor that antagonizes phosphorylation of PRD-4. Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR). CHK-2 is activated by the PIP3-kinase-like kinases (PI3KKs) ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), and in metazoan also by DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These DNA damage-dependent activation pathways are conserved and additional activation pathways of CHK-2 are not known. Here we show that PERIOD-4 (PRD-4), the CHK-2 ortholog of Neurospora crassa, is part of a signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by a PI3KK distinct from ATM and ATR. Our data indicate that the activating PI3KK is mechanistic target of rapamycin (mTOR). We provide evidence that translation stress is sensed by unbalancing the expression levels of an unstable protein phosphatase that antagonizes phosphorylation of PRD-4 by mTOR complex 1 (TORC1). Hence, Neurospora mTOR and PRD-4 appear to coordinate metabolic state and cell cycle progression.
Collapse
|
9
|
McGinnis JE, Kay BK. Generation of recombinant affinity reagents against a two-phosphosite epitope of ATF2. N Biotechnol 2018; 45:45-50. [PMID: 29107187 DOI: 10.1016/j.nbt.2017.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
Abstract
Activating Transcription Factor 2 (ATF2) plays an important role in mammalian cell proliferation, apoptosis and DNA repair. Its activation is dependent on the sequential phosphorylation of residue threonine 71 (T71) followed by threonine 69 (T69) in its transactivation domain. While these modifications can be directed by a variety of kinases, the time to reach full phosphorylation is dependent on which signaling pathway has been activated, which is thought to be important for proper temporal regulation. To explore this phenomenon further, there have been ongoing efforts to generate affinity reagents for monitoring phosphorylation events in cellular assays. While phospho-specific antibodies have been valuable tools for monitoring cell signaling events, those raised against a peptide containing two or more adjacent phosphosites tend to cross-react with that peptide's various phospho-states, rendering such reagents unusable for studying sequential phosphorylation. As an alternative, we have employed the N-terminal Forkhead-associated 1 (FHA1) domain of yeast Rad53p as a scaffold to generate recombinant affinity reagents via phage display and were successful in generating a set of reagents that can distinguish between the dual-phosphorylated epitope, 63-IVADQpTPpTPTRFLK-77, and the mono-phosphorylated epitope, 63-IVADQpTPTPTRFLK-77, in the human ATF2 transactivation domain.
Collapse
Affiliation(s)
- Jennifer E McGinnis
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., MBRB 4318, MC 567, Chicago, IL 60607 USA.
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., MBRB 4318, MC 567, Chicago, IL 60607 USA
| |
Collapse
|
10
|
Šalovská B, Janečková H, Fabrik I, Karlíková R, Čecháková L, Ondrej M, Link M, Friedecký D, Tichý A. Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells. PLoS One 2018; 13:e0199349. [PMID: 30001349 PMCID: PMC6042708 DOI: 10.1371/journal.pone.0199349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Current anti-cancer strategy takes advantage of tumour specific abnormalities in DNA damage response to radio- or chemo-therapy. Inhibition of the ATR/Chk1 pathway has been shown to be synthetically lethal in cells with high levels of oncogene-induced replication stress and in p53- or ATM- deficient cells. In the presented study, we aimed to elucidate molecular mechanisms underlying radiosensitization of T-lymphocyte leukemic MOLT-4 cells by VE-821, a higly potent and specific inhibitor of ATR. We combined multiple approaches: cell biology techniques to reveal the inhibitor-induced phenotypes, and quantitative proteomics, phosphoproteomics, and metabolomics to comprehensively describe drug-induced changes in irradiated cells. VE-821 radiosensitized MOLT-4 cells, and furthermore 10 μM VE-821 significantly affected proliferation of sham-irradiated MOLT-4 cells. We detected 623 differentially regulated phosphorylation sites. We revealed changes not only in DDR-related pathways and kinases, but also in pathways and kinases involved in maintaining cellular metabolism. Notably, we found downregulation of mTOR, the main regulator of cellular metabolism, which was most likely caused by an off-target effect of the inhibitor, and we propose that mTOR inhibition could be one of the factors contributing to the phenotype observed after treating MOLT-4 cells with 10 μM VE-821. In the metabolomic analysis, 206 intermediary metabolites were detected. The data indicated that VE-821 potentiated metabolic disruption induced by irradiation and affected the response to irradiation-induced oxidative stress. Upon irradiation, recovery of damaged deoxynucleotides might be affected by VE-821, hampering DNA repair by their deficiency. Taken together, this is the first study describing a complex scenario of cellular events that might be ATR-dependent or triggered by ATR inhibition in irradiated MOLT-4 cells. Data are available via ProteomeXchange with identifier PXD008925.
Collapse
Affiliation(s)
- Barbora Šalovská
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Janečková
- Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - Ivo Fabrik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital, Hradec Králové, Czech Republic
| | - Radana Karlíková
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lucie Čecháková
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
| | - Martin Ondrej
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital, Hradec Králové, Czech Republic
- * E-mail:
| |
Collapse
|
11
|
Cobbaut M, Derua R, Döppler H, Lou HJ, Vandoninck S, Storz P, Turk BE, Seufferlein T, Waelkens E, Janssens V, Van Lint J. Differential regulation of PKD isoforms in oxidative stress conditions through phosphorylation of a conserved Tyr in the P+1 loop. Sci Rep 2017; 7:887. [PMID: 28428613 PMCID: PMC5430542 DOI: 10.1038/s41598-017-00800-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
Protein kinases are essential molecules in life and their crucial function requires tight regulation. Many kinases are regulated via phosphorylation within their activation loop. This loop is embedded in the activation segment, which additionally contains the Mg2+ binding loop and a P + 1 loop that is important in substrate binding. In this report, we identify Abl-mediated phosphorylation of a highly conserved Tyr residue in the P + 1 loop of protein kinase D2 (PKD2) during oxidative stress. Remarkably, we observed that the three human PKD isoforms display very different degrees of P + 1 loop Tyr phosphorylation and we identify one of the molecular determinants for this divergence. This is paralleled by a different activation mechanism of PKD1 and PKD2 during oxidative stress. Tyr phosphorylation in the P + 1 loop of PKD2 increases turnover for Syntide-2, while substrate specificity and the role of PKD2 in NF-κB signaling remain unaffected. Importantly, Tyr to Phe substitution renders the kinase inactive, jeopardizing its use as a non-phosphorylatable mutant. Since large-scale proteomics studies identified P + 1 loop Tyr phosphorylation in more than 70 Ser/Thr kinases in multiple conditions, our results do not only demonstrate differential regulation/function of PKD isoforms under oxidative stress, but also have implications for kinase regulation in general.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sandy Vandoninck
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Veerle Janssens
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium. .,Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Caron D, Byrne DP, Thebault P, Soulet D, Landry CR, Eyers PA, Elowe S. Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1). Sci Signal 2016; 9:rs14. [PMID: 27965426 DOI: 10.1126/scisignal.aah3525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tyrosine phosphorylation is closely associated with cell proliferation. During the cell cycle, serine and threonine phosphorylation plays the leading role, and such phosphorylation events are most dynamic during the mitotic phase of the cell cycle. However, mitotic phosphotyrosine is not well characterized. Although a few functionally-relevant mitotic phosphotyrosine sites have been characterized, evidence suggests that this modification may be more prevalent than previously appreciated. Here, we examined tyrosine phosphorylation in mitotic human cells including those on spindle-associated proteins.? Database mining confirmed ~2000 mitotic phosphotyrosine sites, and network analysis revealed a number of subnetworks that were enriched in tyrosine-phosphorylated proteins, including components of the kinetochore or spindle and SRC family kinases. We identified Polo-like kinase 1 (PLK1), a major signaling hub in the spindle subnetwork, as phosphorylated at the conserved Tyr217 in the kinase domain. Substitution of Tyr217 with a phosphomimetic residue eliminated PLK1 activity in vitro and in cells. Further analysis showed that Tyr217 phosphorylation reduced the phosphorylation of Thr210 in the activation loop, a phosphorylation event necessary for PLK1 activity. Our data indicate that mitotic tyrosine phosphorylation regulated a key serine/threonine kinase hub in mitotic cells and suggested that spatially separating tyrosine phosphorylation events can reveal previously unrecognized regulatory events and complexes associated with specific structures of the cell cycle.
Collapse
Affiliation(s)
- Danielle Caron
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Philippe Thebault
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Denis Soulet
- Department of Psychiatry et Neurosciences, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Department of Biology, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada.
| |
Collapse
|
13
|
Laiho JE, Oikarinen M, Richardson SJ, Frisk G, Nyalwidhe J, Burch TC, Morris MA, Oikarinen S, Pugliese A, Dotta F, Campbell-Thompson M, Nadler J, Morgan NG, Hyöty H. Relative sensitivity of immunohistochemistry, multiple reaction monitoring mass spectrometry, in situ hybridization and PCR to detect Coxsackievirus B1 in A549 cells. J Clin Virol 2016; 77:21-8. [PMID: 26875099 PMCID: PMC5364806 DOI: 10.1016/j.jcv.2016.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/14/2015] [Accepted: 01/28/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Enteroviruses (EVs) have been linked to the pathogenesis of several diseases and there is a collective need to develop improved methods for the detection of these viruses in tissue samples. OBJECTIVES This study evaluates the relative sensitivity of immunohistochemistry (IHC), proteomics, in situ hybridization (ISH) and RT-PCR to detect one common EV, Coxsackievirus B1 (CVB1), in acutely infected human A549 cells in vitro. STUDY DESIGN A549 cells were infected with CVB1 and diluted with uninfected A549 cells to produce a limited dilution series in which the proportion of infected cells ranged from 10(-1) to 10(-8). Analyses were carried out by several laboratories using IHC with different anti-EV antibodies, ISH with both ViewRNA and RNAScope systems, liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM/MS/MS), and two modifications of RT-PCR. RESULTS RT-PCR was the most sensitive method for EV detection yielding positive signals in the most diluted sample (10(-8)). LC/MRM/MS/MS detected viral peptides at dilutions as high as 10(-7). The sensitivity of IHC depended on the antibody used, and the most sensitive antibody (Dako clone 5D8/1) detected virus proteins at a dilution of 10(-6), while ISH detected the virus at dilutions of 10(-4). CONCLUSIONS All methods were able to detect CVB1 in infected A549 cells. RT-PCR was most sensitive followed by LC/MRM/MS/MS and then IHC. The results from this in vitro survey suggest that all methods are suitable tools for EV detection but that their differential sensitivities need to be considered when interpreting the results from such studies.
Collapse
Affiliation(s)
- Jutta E Laiho
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.
| | - Maarit Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.
| | | | - Gun Frisk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Julius Nyalwidhe
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA; Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, USA.
| | - Tanya C Burch
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA; Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, USA.
| | - Margaret A Morris
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA; Internal Medicine, Eastern Virginia Medical School, Norfolk, USA.
| | - Sami Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.
| | - Alberto Pugliese
- Diabetes Research Institute and Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA.
| | - Francesco Dotta
- Diabetes Unit, Dept. of Medicine Surgery and Neurosciences, University of Siena; Fondazione Umberto Di Mario ONLUS-Toscana Life Sciences, Siena, Italy,.
| | | | - Jerry Nadler
- Internal Medicine, Eastern Virginia Medical School, Norfolk, USA.
| | - Noel G Morgan
- University of Exeter Medical School, Exeter, Devon, UK.
| | - Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland; Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland.
| |
Collapse
|
14
|
Lai S, Pelech S. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1. Mol Biol Cell 2016; 27:1040-50. [PMID: 26823016 PMCID: PMC4791125 DOI: 10.1091/mbc.e15-07-0527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/20/2016] [Indexed: 02/05/2023] Open
Abstract
The catalytic domains of most eukaryotic protein kinases are highly conserved in their primary structures. Their phosphorylation within the well-known activation T-loop, a variable region between protein kinase catalytic subdomains VII and VIII, is a common mechanism for stimulation of their phosphotransferase activities. Extracellular signal-regulated kinase 1 (ERK1), a member of the extensively studied mitogen-activated protein kinase (MAPK) family, serves as a paradigm for regulation of protein kinases in signaling modules. In addition to the well-documented T202 and Y204 stimulatory phosphorylation sites in the activation T-loop of ERK1 and its closest relative, ERK2, three additional flanking phosphosites have been confirmed (T198, T207, and Y210 from ERK1) by high-throughput mass spectrometry. In vitro kinase assays revealed the functional importance of T207 and Y210, but not T198, in negatively regulating ERK1 catalytic activity. The Y210 site could be important for proper conformational arrangement of the active site, and a Y210F mutant could not be recognized by MEK1 for phosphorylation of T202 and Y204 in vitro. Autophosphorylation of T207 reduces the catalytic activity and stability of activated ERK1. We propose that after the activation of ERK1 by MEK1, subsequent slower phosphorylation of the flanking sites results in inhibition of the kinase. Because the T207 and Y210 phosphosites of ERK1 are highly conserved within the eukaryotic protein kinase family, hyperphosphorylation within the kinase activation T-loop may serve as a general mechanism for protein kinase down-regulation after initial activation by their upstream kinases.
Collapse
Affiliation(s)
- Shenshen Lai
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Steven Pelech
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada Kinexus Bioinformatics Corporation, Vancouver, BC V6P 6T3, Canada
| |
Collapse
|
15
|
García-Limones C, Lara-Chica M, Jiménez-Jiménez C, Pérez M, Moreno P, Muñoz E, Calzado MA. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2. Oncogene 2016; 35:4289-301. [PMID: 26751770 DOI: 10.1038/onc.2015.495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023]
Abstract
The serine threonine checkpoint kinase 2 (CHK2) is a critical protein involved in the DNA damage-response pathway, which is activated by phosphorylation inducing cellular response such as DNA repair, cell-cycle regulation or apoptosis. Although CHK2 activation mechanisms have been amply described, very little is known about degradation control processes. In the present study, we identify the ubiquitin E3 ligase SIAH2 as an interaction partner of CHK2, which mediates its ubiquitination and proteasomal degradation. CHK2 degradation is independent of both its activation and its kinase activity, but also of the phosphorylation in S456. We show that SIAH2-deficient cells present CHK2 accumulation together with lower ubiquitination levels. Accordingly, SIAH2 depletion by siRNA increases CHK2 levels. In response to DNA damage induced by etoposide, interaction between both proteins is disrupted, thus avoiding CHK2 degradation and promoting its stabilization. We also found that CHK2 phosphorylates SIAH2 at three residues (Thr26, Ser28 and Thr119), modifying its ability to regulate certain substrates. Cellular arrest in the G2/M phase induced by DNA damage is reverted by SIAH2 expression through the control of CHK2 levels. We observed that hypoxia decreases CHK2 levels in parallel to SIAH2 induction. Similarly, we provide evidence suggesting that resistance to apoptosis induced by genotoxic agents in cells subjected to hypoxia could be partly explained by the mutual regulation between both proteins. These results indicate that SIAH2 regulates CHK2 basal turnover, with important consequences on cell-cycle control and on the ability of hypoxia to alter the DNA damage-response pathway in cancer cells.
Collapse
Affiliation(s)
- C García-Limones
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Lara-Chica
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - C Jiménez-Jiménez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Pérez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - P Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - E Muñoz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M A Calzado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
16
|
Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol 2014; 6:442-57. [PMID: 25404613 PMCID: PMC4296918 DOI: 10.1093/jmcb/mju045] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase CHK2 is a key component of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates >20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In particular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy.
Collapse
Affiliation(s)
- Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
17
|
Sethi V, Raghuram B, Sinha AK, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2014; 26:3343-57. [PMID: 25139007 PMCID: PMC4371833 DOI: 10.1105/tpc.114.128702] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis.
Collapse
Affiliation(s)
- Vishmita Sethi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
18
|
Chen ESW, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Mol Cell Proteomics 2013; 13:551-65. [PMID: 24302356 PMCID: PMC3916653 DOI: 10.1074/mcp.m113.034058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cell cycle checkpoint kinases play central roles in the genome maintenance of eukaryotes. Activation of the yeast checkpoint kinase Rad53 involves Rad9 or Mrc1 adaptor-mediated phospho-priming by Mec1 kinase, followed by auto-activating phosphorylation within its activation loop. However, the mechanisms by which these adaptors regulate priming phosphorylation of specific sites and how this then leads to Rad53 activation remain poorly understood. Here we used quantitative mass spectrometry to delineate the stepwise phosphorylation events in the activation of endogenous Rad53 in response to S phase alkylation DNA damage, and we show that the two Rad9 and Mrc1 adaptors, the four N-terminal Mec1-target TQ sites of Rad53 (Rad53-SCD1), and Rad53-FHA2 coordinate intimately for optimal priming phosphorylation to support substantial Rad53 auto-activation. Rad9 or Mrc1 alone can mediate surprisingly similar Mec1 target site phosphorylation patterns of Rad53, including previously undetected tri- and tetraphosphorylation of Rad53-SCD1. Reducing the number of TQ motifs turns the SCD1 into a proportionally poorer Mec1 target, which then requires the presence of both Mrc1 and Rad9 for sufficient priming and auto-activation. The phosphothreonine-interacting Rad53-FHA domains, particularly FHA2, regulate phospho-priming by interacting with the checkpoint mediators but do not seem to play a major role in the phospho-SCD1-dependent auto-activation step. Finally, mutation of all four SCD1 TQ motifs greatly reduces Rad53 activation but does not eliminate it, and residual Rad53 activity in this mutant is dependent on Rad9 but not Mrc1. Altogether, our results provide a paradigm for how phosphorylation site clusters and checkpoint mediators can be involved in the regulation of signaling relay in protein kinase cascades in vivo and elucidate an SCD1-independent Rad53 auto-activation mechanism through the Rad9 pathway. The work also demonstrates the power of mass spectrometry for in-depth analyses of molecular mechanisms in cellular signaling in vivo.
Collapse
Affiliation(s)
- Eric S-W Chen
- Institute of Biological Chemistry, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Hair PS, Echague CG, Rohn RD, Krishna NK, Nyalwidhe JO, Cunnion KM. Hyperglycemic conditions inhibit C3-mediated immunologic control of Staphylococcus aureus. J Transl Med 2012; 10:35. [PMID: 22390383 PMCID: PMC3328285 DOI: 10.1186/1479-5876-10-35] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/05/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic patients are at increased risk for bacterial infections; these studies provide new insight into the role of the host defense complement system in controlling bacterial pathogens in hyperglycemic environments. METHODS The interactions of complement C3 with bacteria in elevated glucose were assayed for complement activation to opsonic forms, phagocytosis and bacterial killing. C3 was analyzed in euglycemic and hyperglycemic conditions by mass spectrometry to measure glycation and structural differences. RESULTS Elevated glucose inhibited S. aureus activation of C3 and deposition of C3b and iC3b on the bacterial surface. S. aureus-generated C5a and serum-mediated phagocytosis by neutrophils were both decreased in elevated glucose conditions. Interestingly, elevated glucose increased the binding of unactivated C3 to S. aureus, which was reversible on return to normal glucose concentrations. In a model of polymicrobial infection, S. aureus in elevated glucose conditions depleted C3 from serum resulting in decreased complement-mediated killing of E. coli. To investigate the effect of differing glucose concentration on C3 structure and glycation, purified C3 incubated with varying glucose concentrations was analyzed by mass spectrometry. Glycation was limited to the same three lysine residues in both euglycemic and hyperglycemic conditions over one hour, thus glycation could not account for observed changes between glucose conditions. However, surface labeling of C3 with sulfo-NHS-biotin showed significant changes in the surface availability of seven lysine residues in response to increasing glucose concentrations. These results suggest that the tertiary structure of C3 changes in response to hyperglycemic conditions leading to an altered interaction of C3 with bacterial pathogens. CONCLUSIONS These results demonstrate that hyperglycemic conditions inhibit C3-mediated complement effectors important in the immunological control of S. aureus. Mass spectrometric analysis reveals that the glycation state of C3 is the same regardless of glucose concentration over a one-hour time period. However, in conditions of elevated glucose C3 appears to undergo structural changes.
Collapse
Affiliation(s)
- Pamela S Hair
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gordon J, Hwang J, Carrier KJ, Jones CA, Kern QL, Moreno CS, Karas RH, Pallas DC. Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3. BMC BIOCHEMISTRY 2011; 12:54. [PMID: 21985334 PMCID: PMC3217859 DOI: 10.1186/1471-2091-12-54] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022]
Abstract
Background Striatin, a putative protein phosphatase 2A (PP2A) B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM), which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit) heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3) protein, the mammalian Mps one binder (MOB) homolog, Mob3/phocein, the mammalian sterile 20-like (Mst) kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via residues lying between striatin's calmodulin-binding and WD-domains and recruits the PP2A A/C heterodimer to its coiled-coil/oligomerization domain. Residues outside the previously reported coiled-coil domain of striatin are necessary for its oligomerization. Striatin-associated PP2A is critical for Mst3 dephosphorylation and inactivation. Upon inhibition of PP2A, Mst3 activation appears to involve autophosphorylation of multiple activation loop phosphorylation sites. Mob3 can associate with striatin sequences C-terminal to the Mst3 binding site but also with sequences proximal to striatin-associated PP2A, consistent with a possible role for Mob 3 in the regulation of Mst3 by PP2A.
Collapse
Affiliation(s)
- Johnthan Gordon
- Department of Biochemistry and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|