1
|
Kawagishi Y, Murase K, Grebenshchikova A, Iibushi J, Ma C, Kimeu TM, Minowa-Nozawa A, Nozawa T, Nakagawa I. Bacterial extracellular vesicles target different bacterial species, impairing cell division and diminishing their pathogenicity. Proc Natl Acad Sci U S A 2025; 122:e2416652122. [PMID: 40299696 PMCID: PMC12067206 DOI: 10.1073/pnas.2416652122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/21/2025] [Indexed: 05/01/2025] Open
Abstract
Extracellular vesicles (EVs) produced by bacteria contain many bacterial-derived molecules, which play an important role in host interactions and as mediators of bacterial communication. However, the role of EVs in interspecies interactions and their physiological and ecological significance are not well understood. In this study, we found that Escherichia coli EVs inhibit the growth of group A Streptococcus (GAS; Streptococcus pyogenes) by inducing defective cell division via the following processes. E. coli EVs first attach to the cell surface of GAS. In EV-attached GAS cells, multiple septa and Z-rings form in close proximity, which clearly differs from the typical cell division process. This is due to inhibition of peptidoglycan (PG) remodeling in the process after septum formation, in which the next cell division is initiated without completion of peripheral PG synthesis. Therefore, cell division proceeds while inducing cell elongation and cell separation failure, leading to growth inhibition. Furthermore, EV alters the expression of approximately 10% of all genes encoded on the GAS genome, and the diverse functions of these gene sets, which include replication, division, and metabolism, suggest that EVs have a variety of biological effects on the targeted bacterial cells. Notably, E. coli EVs significantly decreased the expression of genes involved in representative GAS virulence, such as slo, nga, and hasA, and also markedly attenuated the pathogenicity of GAS in mice. Our findings provide insight into the competitive functions of EVs between different bacterial species, expanding current knowledge on EV-mediated interspecies interactions.
Collapse
Affiliation(s)
- Yu Kawagishi
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Kazunori Murase
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Anna Grebenshchikova
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Junpei Iibushi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo162-8640, Japan
| | - Chang Ma
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Teresia M. Kimeu
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Takashi Nozawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
- Center for Health Security, Kyoto University Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| |
Collapse
|
2
|
Thapa R, Goh KGK, Desai D, Copeman E, Acharya D, Sullivan MJ, Ulett GC. Alterations in cell arrangements of group B streptococcus due to virulence factor expression can bias estimates of bacterial populations based on colony count measures. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001453. [PMID: 38656296 PMCID: PMC11084685 DOI: 10.1099/mic.0.001453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Group B streptococcus (GBS) is a chain-forming commensal bacterium and opportunistic pathogen that resides in the gastrointestinal and genitourinary tract of healthy adults. GBS can cause various infections and related complications in pregnant and nonpregnant women, adults, and newborns. Investigations of the mechanisms by which GBS causes disease pathogenesis often utilize colony count assays to estimate bacterial population size in experimental models. In other streptococci, such as group A streptococcus and pneumococcus, variation in the chain length of the bacteria that can occur naturally or due to mutation can affect facets of pathogenesis, such as adherence to or colonization of a host. No studies have reported a relationship between GBS chain length and pathogenicity. Here, we used GBS strain 874391 and several derivative strains displaying longer chain-forming phenotypes (874391pgapC, 874391ΔcovR, 874391Δstp1) to assess the impact of chain length on bacterial population estimates based on the colony-forming unit (c.f.u.) assay. Disruption of GBS chains via bead beating or sonication in conjunction with fluorescence microscopy was used to compare chaining phenotypes pre- and post-disruption to detect long- and short-chain forms, respectively. We used a murine model of GBS colonization of the female reproductive tract to assess whether chaining may affect bacterial colonization dynamics in the host during chronic infection in vivo. Overall, we found that GBS exhibiting long-chain form can significantly affect population size estimates based on the colony count assay. Additionally, we found that the length of chaining of GBS can affect virulence in the reproductive tract colonization model. Collectively, these findings have implications for studies of GBS that utilize colony count assays to measure GBS populations and establish that chain length can affect infection dynamics and disease pathogenesis for this important opportunistic pathogen.
Collapse
Affiliation(s)
- Ruby Thapa
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Kelvin G. K. Goh
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Ellen Copeman
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J. Sullivan
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
3
|
Tang J, Guo M, Chen M, Xu B, Ran T, Wang W, Ma Z, Lin H, Fan H. A link between STK signalling and capsular polysaccharide synthesis in Streptococcus suis. Nat Commun 2023; 14:2480. [PMID: 37120581 PMCID: PMC10148854 DOI: 10.1038/s41467-023-38210-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Synthesis of capsular polysaccharide (CPS), an important virulence factor of pathogenic bacteria, is modulated by the CpsBCD phosphoregulatory system in Streptococcus. Serine/threonine kinases (STKs, e.g. Stk1) can also regulate CPS synthesis, but the underlying mechanisms are unclear. Here, we identify a protein (CcpS) that is phosphorylated by Stk1 and modulates the activity of phosphatase CpsB in Streptococcus suis, thus linking Stk1 to CPS synthesis. The crystal structure of CcpS shows an intrinsically disordered region at its N-terminus, including two threonine residues that are phosphorylated by Stk1. The activity of phosphatase CpsB is inhibited when bound to non-phosphorylated CcpS. Thus, CcpS modulates the activity of phosphatase CpsB thereby altering CpsD phosphorylation, which in turn modulates the expression of the Wzx-Wzy pathway and thus CPS production.
Collapse
Affiliation(s)
- Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Xu
- National Research Center of Veterinary Biologicals Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210000, China
| | - Tingting Ran
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Kant S, Pancholi V. Novel Tyrosine Kinase-Mediated Phosphorylation With Dual Specificity Plays a Key Role in the Modulation of Streptococcus pyogenes Physiology and Virulence. Front Microbiol 2021; 12:689246. [PMID: 34950110 PMCID: PMC8689070 DOI: 10.3389/fmicb.2021.689246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) genomes do not contain a gene encoding a typical bacterial-type tyrosine kinase (BY-kinase) but contain an orphan gene-encoding protein Tyr-phosphatase (SP-PTP). Hence, the importance of Tyr-phosphorylation is underappreciated and not recognized for its role in GAS pathophysiology and pathogenesis. The fact that SP-PTP dephosphorylates Abl-tyrosine kinase-phosphorylated myelin basic protein (MBP), and SP-STK (S. pyogenes Ser/Thr kinase) also autophosphorylates its Tyr101-residue prompted us to identify a putative tyrosine kinase and Tyr-phosphorylation in GAS. Upon a genome-wide search of kinases possessing a classical Walker motif, we identified a non-canonical tyrosine kinase M5005_Spy_1476, a ∼17 kDa protein (153 aa) (SP-TyK). The purified recombinant SP-TyK autophosphorylated in the presence of ATP. In vitro and in vivo phosphoproteomic analyses revealed two key phosphorylated tyrosine residues located within the catalytic domain of SP-TyK. An isogenic mutant lacking SP-TyK derived from the M1T1 strain showed a retarded growth pattern. It displayed defective cell division and long chains with multiple parallel septa, often resulting in aggregates. Transcriptomic analysis of the mutant revealed 287 differentially expressed genes responsible for GAS pathophysiology and pathogenesis. SP-TyK also phosphorylated GAS CovR, WalR, SP-STP, and SDH/GAPDH proteins with dual specificity targeting their Tyr/Ser/Thr residues as revealed by biochemical and mass-spectrometric-based phosphoproteomic analyses. SP-TyK-phosphorylated CovR bound to PcovR efficiently. The mutant displayed sustained release of IL-6 compared to TNF-α during co-culturing with A549 lung cell lines, attenuation in mice sepsis model, and significantly reduced ability to adhere to and invade A549 lung cells and form biofilms on abiotic surfaces. SP-TyK, thus, plays a critical role in fine-tuning the regulation of key cellular functions essential for GAS pathophysiology and pathogenesis through post-translational modifications and hence, may serve as a promising target for future therapeutic developments.
Collapse
|
5
|
Passot FM, Cantlay S, Flärdh K. Protein phosphatase SppA regulates apical growth and dephosphorylates cell polarity determinant DivIVA in Streptomyces coelicolor. Mol Microbiol 2021; 117:411-428. [PMID: 34862689 DOI: 10.1111/mmi.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
Members of the Actinobacteria, including mycobacteria and streptomycetes, exhibit a distinctive mode of polar growth, with cell wall synthesis occurring in zones at cell poles and directed by the essential cell polarity determinant DivIVA. Streptomyces coelicolor modulates polar growth via the Ser/Thr protein kinase AfsK, which phosphorylates DivIVA. Here, we show that the phosphoprotein phosphatase SppA has strong effects on polar growth and cell shape and that it reverses the AfsK-mediated phosphorylation of DivIVA. SppA affects hyphal branching and the rate of tip extension. The sppA mutant hyphae also exhibit a high frequency of spontaneous growth arrests, indicating problems with maintenance of tip extension. The phenotypic effects are partially suppressed in an afsK sppA double mutant, indicating that AfsK and SppA to some extent share target proteins. Strains with a nonphosphorylatable mutant DivIVA confirm that the effect of afsK on hyphal branching during normal growth is mediated by DivIVA phosphorylation. However, the phenotypic effects of sppA deletion are independent of DivIVA phosphorylation and must be mediated via other substrates. This study adds a PPP-family protein phosphatase to the proteins involved in the control of polar growth and cell shape determination in S. coelicolor.
Collapse
Affiliation(s)
| | | | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Angeletti A, Migliorini P, Bruschi M, Pratesi F, Candiano G, Prunotto M, Verrina E, Ghiggeri GM. Anti-alpha enolase multi-antibody specificity in human diseases. Clinical significance and molecular mechanisms. Autoimmun Rev 2021; 20:102977. [PMID: 34718161 DOI: 10.1016/j.autrev.2021.102977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Alpha-enolase (Eno) is an ubiquitary glycolytic enzyme playing multiple functions that go well beyond its principal metabolic role of energy supplier during glycolysis. Eno is localized in the cytoplasm, but also expressed on the cell membrane, where it binds plasminogen allowing its activation. Its shorter form, in the nucleus, acts as transcription factor. In inflammatory conditions, Eno undergoes post-translational modifications, such as citrullination, oxidation and phosphorylation. Eno is also an autoantigen in different disorders. In fact, autoantibodies to Eno have been detected in rheumatoid arthritis, lupus nephritis, primary glomerulonephritis, cancer, infections and other disorders, and in many cases they represent specific markers to be utilized in clinical practice. Anti-Eno antibodies in the different clinical conditions are not equal: they differ in isotype and often recognize different epitopes on the enzyme. IgG1 and IgG3 are prevalent in Rheumatoid Arthritis, IgG2 in Lupus nephritis and IgG4 in primary autoimmune glomerulopathy. This review analyzes the characteristics of anti-Eno autoantibodies in autoimmune disorders and cancer, describing their fine specificity and isotype restriction. The post-translational modifications that are target of autoantibodies are also discussed, as they represent the basis for elucidating the molecular mechanisms responsible for epitope generation. Despite an impressive amount of experimental work on anti-Eno antibodies, it is still necessary to validate the use of anti-Eno antibodies as biomarkers of selected diseases and extend the knowledge on the mechanisms of anti-Eno autoantibody production. Strategies that downmodulate the immune response to Eno may represent in the future novel approaches in the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy.
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Enrico Verrina
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy.
| |
Collapse
|
7
|
Another Breaker of the Wall: the Biological Function of the Usp45 Protein of Lactococcus lactis. Appl Environ Microbiol 2020; 86:AEM.00903-20. [PMID: 32532874 DOI: 10.1128/aem.00903-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is a Gram-positive bacterium that is widely used as a cell factory for the expression of heterologous proteins that are relevant in the pharmaceutical and nutraceutical fields. The signal peptide of the major secreted protein of L. lactis, Usp45, has been employed extensively in engineering strategies to secrete proteins of interest. However, the biological function of Usp45 has remained obscure despite more than 25 years of research. Studies on Usp45 homologs in other Gram-positive bacteria suggest that Usp45 may play a role in cell wall turnover processes. Here, we show the effect of inactivation and overexpression of the usp45 gene on L. lactis growth, phenotype, and cell division. Our results are in agreement with those obtained in streptococci and demonstrate that the L. lactis Usp45 protein is essential for proper cell division. We also show that the usp45 promoter is highly activated by galactose. Overall, our results indicate that Usp45 mediates cell separation, probably by acting as a peptidoglycan hydrolase.IMPORTANCE The cell wall, composed mainly of peptidoglycan, is key to maintaining the cell shape and protecting the cell from bursting. Peptidoglycan degradation by peptidoglycan hydrolysis and autolysins occurs during growth and cell division. Since peptidoglycan hydrolases are important for virulence, envelope integrity, and regulation of cell division, it is valuable to investigate their function and regulation. Notably, PcsB-like proteins such as Usp45 have been proposed as new targets for antimicrobial drugs and could also be target for the development of food-grade suicide systems. In addition, although various other expression and secretion systems have been developed for use in Lactococcus lactis, the most-used signal peptide for protein secretion in this bacterium is that of the Usp45 protein. Thus, elucidating the biological function of Usp45 and determining the factors affecting its expression would contribute to optimize several applications.
Collapse
|
8
|
Khara P, Biswas S, Biswas I. Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans. MICROBIOLOGY-SGM 2020; 166:641-653. [PMID: 32416745 DOI: 10.1099/mic.0.000920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans is one of the major bacteria of the human oral cavity that is associated with dental caries. The pathogenicity of this bacterium is attributed to its ability to rapidly respond and adapt to the ever-changing conditions of the oral cavity. The major player in this adaptive response is ClpP, an intracellular protease involved in degradation of misfolded proteins during stress responses. S. mutans encodes a single clpP gene with an upstream region uniquely containing multiple tandem repeat sequences (RSs). Here, we explored expression of clpP with respect to various stresses and report some new findings. First, we found that at sub-inhibitory concentration, certain cell-wall damaging antibiotics were able to induce clpP expression. Specifically, third- and fourth-generation cephalosporins that target penicillin-binding protein 3 (PBP3) strongly enhanced the clpP expression. However, induction of clpP was weak when the first-generation cephalosporins with lower affinity to PBP3 were used. Surprisingly, carbapenems, which primarily target PBP2, induced expression of clpP the least. Second, we found that a single RS element was capable of inducing clpP expression as efficiently as with the wild-type seven RS elements. Third, we found that the RS-element-mediated modulation of clpP expression was strain dependent, suggesting that specific host factors might be involved in the transcription. And finally, we observed that ClpP regulates its own expression, as the expression of clpP-gusA was higher in a clpP-deficient mutant. This suggests that ClpP is involved in the degradation of activator(s) involved in its own transcription.
Collapse
Affiliation(s)
- Pratick Khara
- Present address: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA.,Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
9
|
Baien SH, Seele J, Henneck T, Freibrodt C, Szura G, Moubasher H, Nau R, Brogden G, Mörgelin M, Singh M, Kietzmann M, von Köckritz-Blickwede M, de Buhr N. Antimicrobial and Immunomodulatory Effect of Gum Arabic on Human and Bovine Granulocytes Against Staphylococcus aureus and Escherichia coli. Front Immunol 2020; 10:3119. [PMID: 32082302 PMCID: PMC7005937 DOI: 10.3389/fimmu.2019.03119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023] Open
Abstract
Gum arabic (GA) is a traditional herbal medicine from Acacia Senegal (L.) Willdenow trees, which consist of a complex mixture of polysaccharides and glycoproteins. It is used in daily applications for several diseases and is considered to protect against bacterial infections. The detailed mechanisms behind these observations are still unclear. In this study, we investigated the direct antibacterial activity of GA water and ethanol extracts against Staphylococcus (S.) aureus or Escherichia (E.) coli and the immunomodulating properties of those extracts on granulocytes as a first line of defense against bacteria. Firstly, the direct antimicrobial effect of GA was tested on three different S. aureus strains and two E. coli strains. The growth of bacteria was analyzed in the presence of different GA concentrations over time. GA water as well as ethanol extracts showed a significant growth inhibition in a concentration-dependent manner in the case of S. aureus Newman, S. aureus Rd5, and E. coli 25922, but not in the case of S. aureus USA300 and E. coli K1. Transmission electron microscopic analysis confirmed an antibacterial effect of GA on the bacteria. Secondly, the immunomodulatory effect of GA on the antimicrobial activity of bovine or human blood-derived granulocytes was evaluated. Interestingly, water and ethanol extracts enhanced antimicrobial activity of granulocytes by the induction of intracellular ROS production. In line with these data, GA increased the phagocytosis rate of E. coli. No effect was seen on neutrophil extracellular trap (NET) formation that mediates killing of extracellular bacteria such as S. aureus. In conclusion, we show that GA exhibits a direct antibacterial effect against some S. aureus and E. coli strains. Furthermore, GA boosts the antimicrobial activities of granulocytes and increases intracellular ROS production, which may lead to more phagocytosis and intracellular killing. These data might explain the described putative antimicrobial activity of GA used in traditional medicine.
Collapse
Affiliation(s)
- Shima Hassan Baien
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jana Seele
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Timo Henneck
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christin Freibrodt
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - György Szura
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Hani Moubasher
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Roland Nau
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics, GmbH, Brunswick, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
10
|
Hu D, Guo Y, Guo J, Wang Y, Pan Z, Xiao Y, Wang X, Hu S, Liu M, Li Z, Bi D, Zhou Z. Deletion of the Riemerella anatipestifer type IX secretion system gene sprA results in differential expression of outer membrane proteins and virulence. Avian Pathol 2019; 48:191-203. [PMID: 30640518 DOI: 10.1080/03079457.2019.1566594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Riemerella anatipestifer (RA), the causative agent of infectious serositis that targets ducklings and other poultry, secretes protein via the type IX secretion system (T9SS). The proteins transported by T9SS are located on the bacterial cell surface or secreted into the extracellular milieu. In this study, a sprA deletion mutant was constructed encoding a core protein of T9SS to investigate its influence on outer membrane protein expression and its role in virulence. Compared with the wild-type RA-YM strain, the deletion mutant ΔsprA failed to digest gelatin, showed the same growth rate in the logarithmic phase and exhibited greater sensitivity to the bactericidal activity of duck sera, whereas the complemented strain restored these phenotypes. The outer membrane proteome of RA-YM and the ΔsprA mutant were analyzed by Tandem Mass Tags, which revealed 198 proteins with predicted localization to the cell envelope. Sixty-three of these proteins were differentially expressed in the outer membrane, with 43 up-regulated and 20 down-regulated. Among the twelve outer membrane proteins which were secreted by T9SS, four proteins were up-regulated and one protein was down-regulated. Animal experiments demonstrated that the median lethal dose of the mutant strain ΔsprA was about 500 times higher than that of the wild-type RA-YM strain, and bacterial loads in blood, brain, heart, liver and spleen of the ΔsprA-infected ducks were significantly reduced. Our results indicate that the SprA is a virulence-associated factor of RA, and its absence results in altered abundance of outer membrane proteins, and secretion disorders associated with some of the T9SS effector proteins.
Collapse
Affiliation(s)
- Di Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Yunqing Guo
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Jie Guo
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Ying Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zhe Pan
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Yuncai Xiao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Xiliang Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Sishun Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Mei Liu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zili Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Dingren Bi
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zutao Zhou
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| |
Collapse
|
11
|
A Quorum Sensing-Regulated Protein Binds Cell Wall Components and Enhances Lysozyme Resistance in Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00701-17. [PMID: 29555699 DOI: 10.1128/jb.00701-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/10/2018] [Indexed: 12/28/2022] Open
Abstract
The Rgg2/3 quorum sensing (QS) system is conserved among all sequenced isolates of group A Streptococcus (GAS; Streptococcus pyogenes). The molecular architecture of the system consists of a transcriptional activator (Rgg2) and a transcriptional repressor (Rgg3) under the control of autoinducing peptide pheromones (SHP2 and SHP3). Activation of the Rgg2/3 pathway leads to increases in biofilm formation and resistance to the bactericidal effects of the host factor lysozyme. In this work, we show that deletion of a small gene, spy49_0414c, abolished both phenotypes in response to pheromone signaling. The gene encodes a small, positively charged, secreted protein, referred to as StcA. Analysis of recombinant StcA showed that it can directly interact with GAS cell wall preparations containing phosphodiester-linked carbohydrate polymers but not with preparations devoid of them. Immunofluorescence microscopy detected antibody against StcA bound to the surface of paraformaldehyde-fixed wild-type cells. Expression of StcA in bacterial culture induced a shift in the electrostatic potential of the bacterial cell surface, which became more positively charged. These results suggest that StcA promotes phenotypes by way of ionic interactions with the GAS cell wall, most likely with negatively charged cell wall-associated polysaccharides.IMPORTANCE This study focuses on a small protein, StcA, that is expressed and secreted under induction of Rgg2/3 QS, ionically associating with negatively charged domains on the cell surface. These data present a novel mechanism of resistance to the host factor lysozyme by GAS and have implications in the relevance of this circuit in the interaction between the bacterium and the human host that is mediated by the bacterial cell surface.
Collapse
|
12
|
Kant S, Asthana S, Missiakas D, Pancholi V. A novel STK1-targeted small-molecule as an "antibiotic resistance breaker" against multidrug-resistant Staphylococcus aureus. Sci Rep 2017; 7:5067. [PMID: 28698584 PMCID: PMC5505960 DOI: 10.1038/s41598-017-05314-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/15/2017] [Indexed: 01/28/2023] Open
Abstract
Ser/Thr protein kinase (STK1) plays a critical role in cell wall biosynthesis of and drug resistance in methicillin-resistant Staphylococcus aureus (MRSA). MRSA strains lacking STK1 become susceptible to failing cephalosporins, such as Ceftriaxone and Cefotaxime. STK1, despite being nonessential protein for MRSA survival, it can serve as an important therapeutic agent for combination therapy. Here, we report a novel small molecule quinazoline compound, Inh2-B1, which specifically inhibits STK1 activity by directly binding to its ATP-binding catalytic domain. Functional analyses encompassing in vitro growth inhibition of MRSA, and in vivo protection studies in mice against the lethal MRSA challenge indicated that at high concentration neither Inh2-B1 nor Ceftriaxone or Cefotaxime alone was able to inhibit the growth of bacteria or protect the challenged mice. However, the growth of MRSA was inhibited, and a significant protection in mice against the bacterial challenge was observed at a micromolar concentration of Ceftriaxone or Cefotaxime in the presence of Inh2-B1. Cell-dependent minimal to no toxicity of Inh2-B1, and its abilities to down-regulate cell wall hydrolase genes and disrupt the biofilm formation of MRSA clearly indicated that Inh2-B1 serves as a therapeutically important “antibiotic-resistance-breaker,” which enhances the bactericidal activity of Ceftriaxone/Cefotaxime against highly pathogenic MRSA infection.
Collapse
Affiliation(s)
- Sashi Kant
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Shailendra Asthana
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, Haryana, India
| | | | - Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
13
|
Gamuyao R, Nagai K, Ayano M, Mori Y, Minami A, Kojima M, Suzuki T, Sakakibara H, Higashiyama T, Ashikari M, Reuscher S. Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth. PLANT & CELL PHYSIOLOGY 2017; 58:702-716. [PMID: 28204696 DOI: 10.1093/pcp/pcx023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 05/20/2023]
Abstract
Growth and development are tightly co-ordinated events in the lifetime of living organisms. In temperate bamboo plants, spring is the season when environmental conditions are suitable for the emergence of new shoots. Previous studies demonstrated that bamboo plants undergo an energy-consuming 'fast stem growth' phase. However, the events during the initiation of stem elongation in bamboo are poorly understood. To understand the onset of bamboo stem growth, we performed hormone and transcriptome profiling of tissue regions in newly elongating shoots of the Moso bamboo Phyllostachys edulis. The growth hormones auxins, cytokinins and gibberellins accumulated in the shoot apex, while the stress hormones ABA, salicylic acid (SA) and jasmonic acid (JA) are predominantly found in the lower part of the stem. The mature basal part of the stem showed enrichment of transcripts associated with cell wall metabolism and biosynthesis of phenylpropanoid metabolites, such as lignin. In the young upper stem region, expression of cell formation- and DNA synthesis-related genes was enriched. Moreover, the apical region showed enhanced expression of genes involved in meristem maintenance, leaf differentiation and development, abaxial/adaxial polarity and flowering. Our findings integrate the spatial regulation of hormones and transcriptome programs during the initiation of bamboo stem growth.
Collapse
Affiliation(s)
- Rico Gamuyao
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Madoka Ayano
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yoshinao Mori
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Takamasa Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Stefan Reuscher
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Vega LA, Valdes KM, Sundar GS, Belew AT, Islam E, Berge J, Curry P, Chen S, El-Sayed NM, Le Breton Y, McIver KS. The Transcriptional Regulator CpsY Is Important for Innate Immune Evasion in Streptococcus pyogenes. Infect Immun 2017; 85:e00925-16. [PMID: 27993974 PMCID: PMC5328483 DOI: 10.1128/iai.00925-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
As an exclusively human pathogen, Streptococcus pyogenes (the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene, cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators of Streptococcus mutans (MetR), Streptococcus iniae (CpsY), and Streptococcus agalactiae (MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survival in vivo Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest the in vitro phenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE, speB, spd, nga [spn], prtS [SpyCEP], and sse) and cell surface-associated factors of GAS (emm1, mur1.2, sibA [cdhA], and M5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.
Collapse
Affiliation(s)
- Luis A Vega
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kayla M Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Ganesh S Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Ashton T Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Jacob Berge
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Patrick Curry
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Steven Chen
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Najib M El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
15
|
Edgar RJ, Chen J, Kant S, Rechkina E, Rush JS, Forsberg LS, Jaehrig B, Azadi P, Tchesnokova V, Sokurenko EV, Zhu H, Korotkov KV, Pancholi V, Korotkova N. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes. Front Cell Infect Microbiol 2016; 6:126. [PMID: 27790410 PMCID: PMC5061733 DOI: 10.3389/fcimb.2016.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.
Collapse
Affiliation(s)
- Rebecca J. Edgar
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Sashi Kant
- Department of Pathology, Ohio State UniversityColumbus, OH, USA
| | - Elena Rechkina
- Department of Microbiology, University of WashingtonSeattle, WA, USA
| | - Jeffrey S. Rush
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | | | - Bernhard Jaehrig
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | | | | | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State UniversityColumbus, OH, USA
| | - Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| |
Collapse
|
16
|
Kant S, Agarwal S, Pancholi P, Pancholi V. TheStreptococcus pyogenesorphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions. Mol Microbiol 2015; 97:515-40. [DOI: 10.1111/mmi.13047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Sashi Kant
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Shivani Agarwal
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Preeti Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Vijay Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| |
Collapse
|
17
|
Wen YT, Wang JS, Tsai SH, Chuan CN, Wu JJ, Liao PC. Label-free proteomic analysis of environmental acidification-influenced Streptococcus pyogenes secretome reveals a novel acid-induced protein histidine triad protein A (HtpA) involved in necrotizing fasciitis. J Proteomics 2014; 109:90-103. [DOI: 10.1016/j.jprot.2014.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 06/11/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
18
|
Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis. PLoS Pathog 2014; 10:e1004088. [PMID: 24788524 PMCID: PMC4006921 DOI: 10.1371/journal.ppat.1004088] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that CovR is phosphorylated in vivo and elucidate how the complex interplay between CovR D53 activating phosphorylation, T65 inhibiting phosphorylation, and auto-regulation impacts streptococcal host-pathogen interaction. Group A Streptococcus (GAS) causes a variety of human diseases ranging from mild throat infections to deadly invasive infections. The capacity of GAS to cause infections at such diverse locations is dependent on its ability to precisely control the production of a broad variety of virulence factors. The control of virulence regulator (CovR) is a master regulator of GAS genes encoding virulence factors. It is known that CovR can be phosphorylated on aspartate-53 in vitro and that such phosphorylation increases its regulatory activity, but what additional factors influence CovR-mediated gene expression have not been established. Herein we show for the first time that CovR is phosphorylated in vivo and that phosphorylation of CovR on threonine-65 by the threonine/serine kinase Stk prevents aspartate-53 phosphorylation, thereby decreasing CovR regulatory activity. Further, while CovR-mediated gene repression is highly dependent on aspartate-53 phosphorylation, CovR-mediated gene activation proceeds via a phosphorylation-independent mechanism. Modifications in CovR phosphorylation sites significantly affected the expression of GAS virulence factors during infection and markedly altered the ability of GAS to cause disease in mice. These data establish that multiple inter-related pathways converge to influence CovR phosphorylation, thereby providing new insight into the complex regulatory network used by GAS during infection.
Collapse
|
19
|
Ruggiero A, De Simone P, Smaldone G, Squeglia F, Berisio R. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Curr Protein Pept Sci 2013; 13:756-66. [PMID: 23305362 PMCID: PMC3601408 DOI: 10.2174/138920312804871201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 12/17/2022]
Abstract
Recent genetic, biochemical and structural studies have established that eukaryotic-like Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases are widespread in gram-positive bacteria. These data underline a key role of reversible Ser/Thr phosphorylation in bacterial physiology and virulence. Numerous studies have revealed how phosphorylation/dephosphorylation of Ser/Thr protein-kinases governs cell division and cell wall biosynthesis and that Ser/Thr protein kinases are responsible for distinct phenotypes, dependent on different environmental signals. In this review we discuss the current understandings of Ser/Thr protein-kinases functional processes based on structural data.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructure and Bioimaging, CNR, Via Mezzocannone, 16. I-80134, Napoli, Italy.
| | | | | | | | | |
Collapse
|
20
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
21
|
Martinez MA, Das K, Saikolappan S, Materon LA, Dhandayuthapani S. A serine/threonine phosphatase encoded by MG_207 of Mycoplasma genitalium is critical for its virulence. BMC Microbiol 2013; 13:44. [PMID: 23432936 PMCID: PMC3639085 DOI: 10.1186/1471-2180-13-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/19/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacterial signal transduction systems like two component system (TCS) and Serine/Threonine kinase (STK) and Serine/Threonine phosphatase (STP) play important roles in the virulence and pathogenesis of bacterial pathogens. Mycoplasma genitalium, a mollicute that causes the urogenital diseases urethritis and cervicitis in men and women, respectively, is a pathogen which lacks TCS but possesses STK/STP. In this study, we investigated the biochemical and virulence properties of an STP protein encoded by the gene MG_207 of this species. RESULTS We overexpressed MG207 in Escherichia coli overexpression system as a recombinant His10MG207 protein and purified it with affinity chromatography. This recombinant protein readily hydrolyzed the substrate p-nitrophenyl phosphate (pNPP) in a dose-dependent manner. Additional studies using synthetic peptides as substrates revealed that the recombinant protein was able to hydrolyze the threonine phosphate. Further, a transposon insertion mutant strain of M. genitalium (TIM207) that lacks the protein MG207 showed differentially phosphorylated proteins when compared to the wild type G37 strain. Mass spectrometry revealed that some of the key proteins differentially phosphorylated in TIM207 strain were putative cytoskeletal protein encoded by the gene MG_328 and pyruvate dehydrogenase E1 α chain encoded by the gene MG_274. In addition, TIM207 was noticed to be less cytotoxic to HeLa cells and this correlated with the production of less hydrogen peroxide by this strain. This strain was also less efficient in inducing the differentiation of THP-1 cell line as compared to wild type M. genitalium. CONCLUSIONS The results of the study suggest that MG207 is an important signaling protein of M. genitalium and its presence may be crucial for the virulence of this species.
Collapse
Affiliation(s)
- Mario A Martinez
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, TX 78541, USA
| | | | | | | | | |
Collapse
|
22
|
Identification of genes contributing to the intracellular replication of Brucella abortus within HeLa and RAW 264.7 cells. Vet Microbiol 2012; 158:322-8. [DOI: 10.1016/j.vetmic.2012.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
|
23
|
Strain-specific regulatory role of eukaryote-like serine/threonine phosphatase in pneumococcal adherence. Infect Immun 2012; 80:1361-72. [PMID: 22311926 DOI: 10.1128/iai.06311-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae exploits a battery of virulence factors to colonize the host. Although the eukaryote-like Ser/Thr kinase of S. pneumoniae (StkP) has been implicated in physiology and virulence, the role of its cotranscribing phosphatase (PhpP) has remained elusive. The construction of nonpolar markerless phpP knockout mutants (ΔphpP) in two pathogenic strains, D39 (type 2) and 6A-EF3114 (type 6A), indicated that PhpP is not indispensable for pneumococcal survival. Further, PhpP also participates in the regulation of cell wall biosynthesis/division, adherence, and biofilm formation in a strain-specific manner. Additionally, we provide hitherto-unknown in vitro and in vivo evidence of a physiologically relevant biochemical link between the StkP/PhpP-mediated cognate regulation and the two-component regulatory system TCS06 (RR06/HK06) that regulates the expression of the gene encoding an important pneumococcal surface adhesin, CbpA, which was found to be significantly upregulated in ΔphpP mutants. In particular, StkP (threonine)-phosphorylated RR06 bound to the cbpA promoter with high efficiency even in the absence of the HK06-responsive and catalytically active aspartate 51 residue. Together, our findings unravel the significant contributions of PhpP in pneumococcal physiology and adherence.
Collapse
|
24
|
Agarwal S, Agarwal S, Jin H, Pancholi P, Pancholi V. Serine/threonine phosphatase (SP-STP), secreted from Streptococcus pyogenes, is a pro-apoptotic protein. J Biol Chem 2012; 287:9147-67. [PMID: 22262847 DOI: 10.1074/jbc.m111.316554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This investigation illustrates an important property of eukaryote-type serine/threonine phosphatase (SP-STP) of group A Streptococcus (GAS) in causing programmed cell death of human pharyngeal cells. The secretory nature of SP-STP, its elevated expression in the intracellular GAS, and the ability of wild-type GAS but not the GAS mutant devoid of SP-STP to cause apoptosis of the host cell both in vitro and in vivo suggest that GAS deploys SP-STP as an important virulence determinant to exploit host cell machinery for its own advantage during infection. The exogenously added SP-STP is able to enter the cytoplasm and subsequently traverses into the nucleus in a temporal fashion to cause apoptosis of the pharyngeal cells. The programmed cell death induced by SP-STP, which requires active transcription and de novo protein synthesis, is also caspase-dependent. Furthermore, the entry of SP-STP into the cytoplasm is dependent on its secondary structure as the catalytically inactive SP-STP with an altered structure is unable to internalize and cause apoptosis. The ectopically expressed wild-type SP-STP was found to be in the nucleus and conferred apoptosis of Detroit 562 pharyngeal cells. However, the catalytically inactive SP-STP was unable to cause apoptosis even when intracellularly expressed. The ability of SP-STP to activate pro-apoptotic signaling cascades both in the cytoplasm and in the nucleus resulted in mitochondrial dysfunctioning and perturbation in the phosphorylation status of histones in the nucleus. SP-STP thus not only functions as a virulence regulator but also as an important factor responsible for host-related pathogenesis.
Collapse
Affiliation(s)
- Shivani Agarwal
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio 43210-1214, USA
| | | | | | | | | |
Collapse
|
25
|
Burnside K, Rajagopal L. Regulation of prokaryotic gene expression by eukaryotic-like enzymes. Curr Opin Microbiol 2012; 15:125-31. [PMID: 22221896 DOI: 10.1016/j.mib.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
A growing body of evidence indicates that serine/threonine kinases (STKs) and phosphatases (STPs) regulate gene expression in prokaryotic organisms. As prokaryotic STKs and STPs are not DNA binding proteins, regulation of gene expression is accomplished through post-translational modification of their targets. These include two-component response regulators, DNA binding proteins and proteins that mediate transcription and translation. This review summarizes our current understanding of how STKs and STPs mediate gene expression in prokaryotes. Further studies to identify environmental signals that trigger the signaling cascade and elucidation of mechanisms that regulate crosstalk between eukaryotic-like signaling enzymes, two-component systems, and components of the transcriptional and translational machinery will facilitate a greater understanding of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, WA 98101-1304, United States
| | | |
Collapse
|
26
|
Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol 2011; 6:747-61. [PMID: 21797690 DOI: 10.2217/fmb.11.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-1304, USA
| | | |
Collapse
|
27
|
Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci U S A 2011; 108:E1061-9. [PMID: 22006325 DOI: 10.1073/pnas.1108323108] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The connection between peptidoglycan remodeling and cell division is poorly understood in ellipsoid-shaped ovococcus bacteria, such as the human respiratory pathogen Streptococcus pneumoniae. In S. pneumoniae, peptidoglycan homeostasis and stress are regulated by the WalRK (VicRK) two-component regulatory system, which positively regulates expression of the essential PcsB cysteine- and histidine-dependent aminohydrolases/peptidases (CHAP)-domain protein. CHAP-domain proteins usually act as peptidoglycan hydrolases, but purified PcsB lacks detectable enzymatic activity. To explore the functions of PcsB, its subcellular localization was determined. Fractionation experiments showed that cell-bound PcsB was located through hydrophobic interactions on the external membrane surface of pneumococcal cells. Immunofluorescent microscopy localized PcsB mainly to the septa and equators of dividing cells. Chemical cross-linking combined with immunoprecipitation showed that PcsB interacts with the cell division complex formed by membrane-bound FtsX(Spn) and cytoplasmic FtsE(Spn) ATPase, which structurally resemble an ABC transporter. Far Western blotting showed that this interaction was likely through the large extracellular loop of FtsX(Spn) and the amino terminal coiled-coil domain of PcsB. Unlike in Bacillus subtilis and Escherichia coli, we show that FtsX(Spn) and FtsE(Spn) are essential in S. pneumoniae. Consistent with an interaction between PcsB and FtsX(Spn), cells depleted of PcsB or FtsX(Spn) had strikingly similar defects in cell division, and depletion of FtsX(Spn) caused mislocalization of PcsB but not the FtsZ(Spn) early-division protein. A model is presented in which the interaction of the FtsEX(Spn) complex with PcsB activates its peptidoglycan hydrolysis activity and couples peptidoglycan remodeling to pneumococcal cell division.
Collapse
|
28
|
Agarwal S, Agarwal S, Pancholi P, Pancholi V. Role of serine/threonine phosphatase (SP-STP) in Streptococcus pyogenes physiology and virulence. J Biol Chem 2011; 286:41368-41380. [PMID: 21917918 DOI: 10.1074/jbc.m111.286690] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reversible phosphorylation is the key mechanism regulating several cellular events in prokaryotes and eukaryotes. In prokaryotes, signal transduction is perceived to occur primarily via the two-component signaling system involving histidine kinases and cognate response regulators. Although an alternative regulatory pathway controlled by the eukaryote-type serine/threonine kinase (Streptococcus pyogenes serine/threonine kinase; SP-STK) has been shown to modulate bacterial growth, division, adherence, invasion, and virulence in group A Streptococcus (GAS; S. pyogenes), the precise role of the co-transcribing serine/threonine phosphatase (SP-STP) has remained enigmatic. In this context, this is the first report describing the construction and characterization of non-polar SP-STP mutants in two different strains of Type M1 GAS. The STP knock-out mutants displayed increased bacterial chain lengths in conjunction with thickened cell walls, significantly reduced capsule and hemolysin production, and restoration of the phenotypes postcomplementation. The present study also reveals important contribution of cognately regulated-reversible phosphorylation by SP-STK/SP-STP on two major response regulators of two-component systems, WalRK and CovRS. We also demonstrate a distinct role of SP-STP in terms of expression of surface proteins and SpeB in a strain-specific manner. Further, the attenuation of virulence in the absence of STP and its restoration only in the complemented strains that were generated by the use of a low copy plasmid and not by a high copy one emphasize not only the essential role of STP in virulence but also highlight the tightly regulated SP-STP/SP-STK-mediated cognate functions. SP-STP thus is an important regulator of GAS virulence and plays a critical role in GAS pathogenesis.
Collapse
Affiliation(s)
- Shivani Agarwal
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio 43210-1214
| | - Shivangi Agarwal
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio 43210-1214
| | - Preeti Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio 43210-1214
| | - Vijay Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio 43210-1214.
| |
Collapse
|
29
|
Serine/threonine protein kinase Stk is required for virulence, stress response, and penicillin tolerance in Streptococcus pyogenes. Infect Immun 2011; 79:4201-9. [PMID: 21788381 DOI: 10.1128/iai.05360-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genes encoding one or more Ser/Thr protein kinases have been identified recently in many bacteria, including one (stk) in the human pathogen Streptococcus pyogenes (group A streptococcus [GAS]). We report that in GAS, stk is required to produce disease in a murine myositis model of infection. Using microarray and quantitative reverse transcription-PCR (qRT-PCR) studies, we found that Stk activates genes for virulence factors, osmoregulation, metabolism of α-glucans, and fatty acid biosynthesis, as well as genes affecting cell wall synthesis. Confirming these transcription studies, we determined that the stk deletion mutant is more sensitive to osmotic stress and to penicillin than the wild type. We discuss several possible Stk phosphorylation targets that might explain Stk regulation of expression of specific operons and the possible role of Stk in resuscitation from quiescence.
Collapse
|
30
|
Abstract
Genomic studies have revealed the presence of Ser/Thr kinases and phosphatases in many bacterial species, although their physiological roles have largely been unclear. Here we review bacterial Ser/Thr kinases (eSTKs) that show homology in their catalytic domains to eukaryotic Ser/Thr kinases and their partner phosphatases (eSTPs) that are homologous to eukaryotic phosphatases. We first discuss insights into the enzymatic mechanism of eSTK activation derived from structural studies on both the ligand-binding and catalytic domains. We then turn our attention to the identified substrates of eSTKs and eSTPs for a number of species and to the implications of these findings for understanding their physiological roles in these organisms.
Collapse
|
31
|
Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for Streptococcus pyogenes virulence. mBio 2011; 2:e00068-11. [PMID: 21628503 PMCID: PMC3104492 DOI: 10.1128/mbio.00068-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Streptococcal surface dehydrogenase (SDH) (glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) is an anchorless major multifunctional surface protein in group A Streptococcus (GAS) with the ability to bind important mammalian proteins, including plasmin(ogen). Although several biological properties of SDH are suggestive of its possible role in GAS virulence, its direct role in GAS pathogenesis has not been ascertained because it is essential for GAS survival. Thus, it has remained enigmatic as to “how and why” SDH/GAPDH is exported onto the bacterial surface. The present investigation highlights “why” SDH is exported onto the GAS surface. Differential microarray-based genome-wide transcript abundance analysis was carried out using a specific mutant, which was created by inserting a hydrophobic tail at the C-terminal end of SDH (M1-SDHHBtail) and thus preventing its exportation onto the GAS surface. This analysis revealed downregulation of the majority of genes involved in GAS virulence and genes belonging to carbohydrate and amino acid metabolism and upregulation of those related to lipid metabolism. The complete attenuation of this mutant for virulence in the mouse model and the decreased and increased virulence of the wild-type and mutant strains postcomplementation with SDHHBtail and SDH, respectively, indicated that the SDH surface export indeed regulates GAS virulence. M1-SDHHBtail also displayed unaltered growth patterns, increased intracellular ATP concentration and Hpr double phosphorylation, and significantly reduced pH tolerance, streptolysin S, and SpeB activities. These phenotypic and physiological changes observed in the mutant despite the unaltered expression levels of established transcriptional regulators further highlight the fact that SDH interfaces with many regulators and its surface exportation is essential for GAS virulence. Streptococcal surface dehydrogenase (SDH), a classical anchorless cytoplasmically localized glycolytic enzyme, is exported onto the group A Streptococcus (GAS) surface through a hitherto unknown mechanism(s). It has not been known why GAS or other prokaryotes should export this protein onto the surface. By genetic manipulations, we created a novel GAS mutant strain expressing SDH with a 12-amino-acid hydrophobic tail at its C-terminal end and thus were able to prevent its surface exportation without altering its enzymatic activity or growth pattern. Interestingly, the mutant was completely attenuated for virulence in a mouse peritonitis model. The global gene expression profiles of this mutant reveal that the surface exportation of SDH is mandatory to maintain GAS virulence. The ability of GAS as a successful pathogen to localize SDH in the cytoplasm as well as on the surface is physiologically relevant and dynamically obligatory to fine-tune the functions of many transcriptional regulators and also to exploit its virulence properties for infection.
Collapse
|