1
|
Niu K, Zhang C, Yang M, Maguire EM, Shi Z, Sun S, Wu J, Liu C, An W, Wang X, Gao S, Ge S, Xiao Q. Small nucleolar RNA host gene 18 controls vascular smooth muscle cell contractile phenotype and neointimal hyperplasia. Cardiovasc Res 2024; 120:796-810. [PMID: 38498586 PMCID: PMC11135647 DOI: 10.1093/cvr/cvae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/27/2023] [Indexed: 03/20/2024] Open
Abstract
AIMS Long non-coding RNA (LncRNA) small nucleolar RNA host gene 18 (SNHG18) has been widely implicated in cancers. However, little is known about its functional involvement in vascular diseases. Herein, we attempted to explore a role for SNHG18 in modulating vascular smooth muscle cell (VSMC) contractile phenotype and injury-induced neointima formation. METHODS AND RESULTS Analysis of single-cell RNA sequencing and transcriptomic datasets showed decreased levels of SNHG18 in injured and atherosclerotic murine and human arteries, which is positively associated with VSMC contractile genes. SNHG18 was upregulated in VSMCs by TGFβ1 through transcription factors Sp1 and SMAD3. SNHG18 gene gain/loss-of-function studies revealed that VSMC contractile phenotype was positively regulated by SNHG18. Mechanistic studies showed that SNHG18 promotes a contractile VSMC phenotype by up-regulating miR-22-3p. SNHG18 up-regulates miR-22 biogenesis and miR-22-3p production by competitive binding with the A-to-I RNA editing enzyme, adenosine deaminase acting on RNA-2 (ADAR2). Surprisingly, we observed that ADAR2 inhibited miR-22 biogenesis not through increasing A-to-I editing within primary miR-22, but by interfering with the binding of microprocessor complex subunit DGCR8 to primary miR-22. Importantly, perivascular SNHG18 overexpression in the injured vessels dramatically up-regulated the expression levels of miR-22-3p and VSMC contractile genes, and prevented injury-induced neointimal hyperplasia. Such modulatory effects were reverted by miR-22-3p inhibition in the injured arteries. Finally, we observed a similar regulator role for SNHG18 in human VSMCs and a decreased expression level of both SNHG18 and miR-22-3p in diseased human arteries; and we found that the expression level of SNHG18 was positively associated with that of miR-22-3p in both healthy and diseased human arteries. CONCLUSION We demonstrate that SNHG18 is a novel regulator in governing VSMC contractile phenotype and preventing injury-induced neointimal hyperplasia. Our findings have important implications for therapeutic targeting snhg18/miR-22-3p signalling in vascular diseases.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Hyperplasia
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Kaiyuan Niu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Otorhinolaryngology, Third Affiliated Hospital of Anhui Medical University, No. 390, Huaihe Road, LuYang District, Hefei, Anhui, 230061, PR China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
| | - Mei Yang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Eithne Margaret Maguire
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Zhenning Shi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shasha Sun
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianping Wu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Chenxin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Weiwei An
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Xinxin Wang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, No. 81, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, No. 81, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| |
Collapse
|
2
|
Wang Y, Abrol R, Mak JYW, Das Gupta K, Ramnath D, Karunakaran D, Fairlie DP, Sweet MJ. Histone deacetylase 7: a signalling hub controlling development, inflammation, metabolism and disease. FEBS J 2023; 290:2805-2832. [PMID: 35303381 PMCID: PMC10952174 DOI: 10.1111/febs.16437] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) catalyse removal of acetyl groups from lysine residues on both histone and non-histone proteins to control numerous cellular processes. Of the 11 zinc-dependent classical HDACs, HDAC4, 5, 7 and 9 are class IIa HDAC enzymes that regulate cellular and developmental processes through both enzymatic and non-enzymatic mechanisms. Over the last two decades, HDAC7 has been associated with key roles in numerous physiological and pathological processes. Molecular, cellular, in vivo and disease association studies have revealed that HDAC7 acts through multiple mechanisms to control biological processes in immune cells, osteoclasts, muscle, the endothelium and epithelium. This HDAC protein regulates gene expression, cell proliferation, cell differentiation and cell survival and consequently controls development, angiogenesis, immune functions, inflammation and metabolism. This review focuses on the cell biology of HDAC7, including the regulation of its cellular localisation and molecular mechanisms of action, as well as its associative and causal links with cancer and inflammatory, metabolic and fibrotic diseases. We also review the development status of small molecule inhibitors targeting HDAC7 and their potential for intervention in different disease contexts.
Collapse
Affiliation(s)
- Yizhuo Wang
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Rishika Abrol
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - David P. Fairlie
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
3
|
Zhang Q, Pan RR, Wu YT, Wei YM. MicroRNA-146a Promotes Embryonic Stem Cell Differentiation towards Vascular Smooth Muscle Cells through Regulation of Kruppel-like Factor 4. Curr Med Sci 2023; 43:223-231. [PMID: 37072613 PMCID: PMC10112997 DOI: 10.1007/s11596-023-2736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension, atherosclerosis, and restenosis. MicroRNA-146a (miR-146a) has been proven to be involved in cell proliferation, migration, and tumor metabolism. However, little is known about the functional role of miR-146a in VSMC differentiation from embryonic stem cells (ESCs). This study aimed to determine the role of miR-146a in VSMC differentiation from ESCs. METHODS Mouse ESCs were differentiated into VSMCs, and the cell extracts were analyzed by Western blotting and RT-qPCR. In addition, luciferase reporter assays using ESCs transfected with miR-146a/mimic and plasmids were performed. Finally, C57BL/6J female mice were injected with mimic or miR-146a-overexpressing ESCs, and immunohistochemistry, Western blotting, and RT-qPCR assays were carried out on tissue samples from these mice. RESULTS miR-146a was significantly upregulated during VSMC differentiation, accompanied with the VSMC-specific marker genes smooth muscle-alpha-actin (SMαA), smooth muscle 22 (SM22), smooth muscle myosin heavy chain (SMMHC), and h1-calponin. Furthermore, overexpression of miR-146a enhanced the differentiation process in vitro and in vivo. Concurrently, the expression of Kruppel-like factor 4 (KLF4), predicted as one of the top targets of miR-146a, was sharply decreased in miR-146a-overexpressing ESCs. Importantly, inhibiting KLF4 expression enhanced the VSMC-specific gene expression induced by miR-146a overexpression in differentiating ESCs. In addition, miR-146a upregulated the mRNA expression levels and transcriptional activity of VSMC differentiation-related transcription factors, including serum response factor (SRF) and myocyte enhancer factor 2c (MEF-2c). CONCLUSION Our data support that miR-146a promotes ESC-VSMC differentiation through regulating KLF4 and modulating the transcription factor activity of VSMCs.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong-Rong Pan
- Department of Cardiology, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Yu-Tao Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yu-Miao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
PDGFD switches on stem cell endothelial commitment. Angiogenesis 2022; 25:517-533. [PMID: 35859222 PMCID: PMC9519648 DOI: 10.1007/s10456-022-09847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
The critical factors regulating stem cell endothelial commitment and renewal remain not well understood. Here, using loss- and gain-of-function assays together with bioinformatic analysis and multiple model systems, we show that PDGFD is an essential factor that switches on endothelial commitment of embryonic stem cells (ESCs). PDGFD genetic deletion or knockdown inhibits ESC differentiation into EC lineage and increases ESC self-renewal, and PDGFD overexpression activates ESC differentiation towards ECs. RNA sequencing reveals a critical requirement of PDGFD for the expression of vascular-differentiation related genes in ESCs. Importantly, PDGFD genetic deletion or knockdown increases ESC self-renewal and decreases blood vessel densities in both embryonic and neonatal mice and in teratomas. Mechanistically, we reveal that PDGFD fulfills this function via the MAPK/ERK pathway. Our findings provide new insight of PDGFD as a novel regulator of ESC fate determination, and suggest therapeutic implications of modulating PDGFD activity in stem cell therapy.
Collapse
|
5
|
Li T, Wu H, Wang P, Kim AM, Jia J, Nolta JA, Zhou P. HDACs regulate the differentiation of endothelial cells from human iPSCs. Cell Biochem Funct 2022; 40:589-599. [PMID: 35789099 PMCID: PMC9391285 DOI: 10.1002/cbf.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) possess the potential to differentiate toward vascular cells including endothelial cells (ECs), pericytes, and smooth muscle cells. Epigenetic mechanisms including DNA methylation and histone modification play a crucial role in regulating lineage differentiation and specification. Herein, we utilized a three-stage protocol to induce differentiation of mesoderm, vascular progenitors, and ECs from hiPSCs and investigated the regulatory effects of histone acetylation on the differentiation processes. We found that the expression of several histone deacetylases (HDACs), including HDAC1, HDAC5, and HDAC7, were greatly upregulated at the second stage and downregulated at the third stage. Interestingly, although HDAC1 remained in the nucleus during the EC differentiation, HDAC5 and HDAC7 displayed cytosol/nuclear translocation during the differentiation process. Inhibition of HDACs with sodium butyrate (NaBt) or BML210 could hinder the differentiation of vascular progenitors at the second stage and facilitate EC induction at the third stage. Further investigation revealed that HDAC may modulate the stepwise EC differentiation via regulating the expression of endothelial transcription factors ERG, ETS1, and MEF2C. Opposite to the expression of EC markers, the smooth muscle/pericyte marker ACTA2 was upregulated at the second stage and downregulated at the third stage by NaBt. The stage-specific regulation of ACTA2 by HDAC inhibition was likely through regulating the expression of TGFβ2 and PDGFB. This study suggests that HDACs play different roles at different stages of EC induction by promoting the commitment of vascular progenitors and impeding the later stage differentiation of ECs.
Collapse
Affiliation(s)
- Tao Li
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Haopeng Wu
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Wang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Amy M Kim
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Junjing Jia
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA.,Department of Internal Medicine, Unversity of California Davis Medical Center, Sacramento, California, USA.,University of California Davis Gene Therapy Center, Sacramento, California, USA
| | - Ping Zhou
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA.,Department of Internal Medicine, Unversity of California Davis Medical Center, Sacramento, California, USA.,University of California Davis Gene Therapy Center, Sacramento, California, USA
| |
Collapse
|
6
|
Wang C, Zhang S, Ma B, Fu Y, Luo Y. TP53 mutations upregulate RCP expression via Sp1/3 to drive lung cancer progression. Oncogene 2022; 41:2357-2371. [PMID: 35256783 DOI: 10.1038/s41388-022-02260-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/10/2022]
Abstract
Mutant p53 (mtp53) can exert cancer-promoting activities via "gain-of-function", which has become a popular research target. Although lots of researchers focus on the tumor-suppressor role for p53, the regulation of mutant p53 remains unknown. Here, we report a mechanism by which mtp53 regulate the transcription of Rab coupling protein (RCP) to influence lung cancer behavior. First, we show that RCP is specifically expressed at high levels in lung cancer tissues and cells, and RCP knockout suppresses tumor growth and metastasis. Further mass spectrometry and functional analysis identify that Sp1, Sp3 and Stat3 are the transcriptional activators of RCP. Moreover, p53 is involved in modulating RCP expression in an Sp1/3 dependent manner. Mechanistically, in contrast to wild-type p53 suppression of RCP transcription by decreasing Sp1/3 proteins, TP53 mutations have changed on Sp1/3 expression via "loss-of-function". Surprisingly, the DNA contact mutants of p53 further robustly enhance their binding ability with Sp1/3 to drive RCP expression through the "gain-of-function" activity. Collectively, we reveal a mechanism by which p53 regulating the transcription of RCP to influence lung cancer progression, which provides new insights for treating p53 mutant lung cancer.
Collapse
Affiliation(s)
- Caihong Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
| | - Shaosen Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Boyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
8
|
Chen D, Zhang C, Chen J, Yang M, Afzal TA, An W, Maguire EM, He S, Luo J, Wang X, Zhao Y, Wu Q, Xiao Q. miRNA-200c-3p promotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts. J Pathol 2020; 253:209-224. [PMID: 33125708 PMCID: PMC7839516 DOI: 10.1002/path.5574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence has suggested a critical role for endothelial‐to‐mesenchymal transition (EndoMT) in a variety of pathological conditions. MicroRNA‐200c‐3p (miR‐200c‐3p) has been implicated in epithelial‐to‐mesenchymal transition. However, the functional role of miR‐200c‐3p in EndoMT and neointimal hyperplasia in artery bypass grafts remains largely unknown. Here we demonstrated a critical role for miR‐200c‐3p in EndoMT. Proteomics and luciferase activity assays revealed that fermitin family member 2 (FERM2) is the functional target of miR‐200c‐3p during EndoMT. FERMT2 gene inactivation recapitulates the effect of miR‐200c‐3p overexpression on EndoMT, and the inhibitory effect of miR‐200c‐3p inhibition on EndoMT was reversed by FERMT2 knockdown. Further mechanistic studies revealed that FERM2 suppresses smooth muscle gene expression by preventing serum response factor nuclear translocation and preventing endothelial mRNA decay by interacting with Y‐box binding protein 1. In a model of aortic grafting using endothelial lineage tracing, we observed that miR‐200c‐3p expression was dramatically up‐regulated, and that EndoMT contributed to neointimal hyperplasia in grafted arteries. MiR‐200c‐3p inhibition in grafted arteries significantly up‐regulated FERM2 gene expression, thereby preventing EndoMT and reducing neointimal formation. Importantly, we found a high level of EndoMT in human femoral arteries with atherosclerotic lesions, and that miR‐200c‐3p expression was significantly increased, while FERMT2 expression levels were dramatically decreased in diseased human arteries. Collectively, we have documented an unexpected role for miR‐200c‐3p in EndoMT and neointimal hyperplasia in grafted arteries. Our findings offer a novel therapeutic opportunity for treating vascular diseases by specifically targeting the miR‐200c‐3p/FERM2 regulatory axis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tayyab A Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yu Zhao
- Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
9
|
Li X, Xu L, Nie H, Lei L. Dexamethasone-loaded β-cyclodextrin for osteogenic induction of mesenchymal stem/progenitor cells and bone regeneration. J Biomed Mater Res A 2020; 109:1125-1135. [PMID: 32981208 DOI: 10.1002/jbm.a.37104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 01/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid commonly used as an in vitro osteogenic inducer of mesenchymal stem/progenitor cells (abbreviated MSCs). However, several studies investigating the effects of glucocorticoids on bone regeneration through systemic injections have demonstrated negative impacts of the drugs at high concentration on the healing of hard tissues. These contrasting evidences suggest that application of glucocorticoids should be limited to low dosages but at the same time a long enough treatment period is preferred, which prompted us to evaluate the effects of different local release systems of DEX on MSC differentiation and bone repair. Two types of DEX-loaded β-cyclodextrin (CD) complexes, including CD/DEX and CD/AD-DEX, were fabricated via host-guest interactions and characterized by FTIR, 1H-NMR, MS-ESI, and UV-vis. The results demonstrated that these CD-based assemblies released DEX in differentiated profiles, with CD/DEX releasing significantly faster than CD/AD-DEX. Although CD/DEX were slightly more powerful than CD/AD-DEX in inducing rat bone marrow MSCs (rBMSCs) into osteogenic lineage in vitro, CD/AD-DEX was advantageous over CD/DEX in accelerating bone regeneration over a time period of 4 weeks in a rat tibia defect model. The results suggest that DEX-loaded assemblies via host-guest interactions are flexible in modulating DEX release patterns and have great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Xing Li
- Department of Orthodontics, Central South University Xiangya Stomatological Hospital, Changsha, China
| | - Lu Xu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Lei Lei
- Department of Orthodontics, Central South University Xiangya Stomatological Hospital, Changsha, China
| |
Collapse
|
10
|
Lee SY, Yang J, Park JH, Shin HK, Kim WJ, Kim SY, Lee EJ, Hwang I, Lee CS, Lee J, Kim HS. The MicroRNA-92a/Sp1/MyoD Axis Regulates Hypoxic Stimulation of Myogenic Lineage Differentiation in Mouse Embryonic Stem Cells. Mol Ther 2019; 28:142-156. [PMID: 31606324 DOI: 10.1016/j.ymthe.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Hypoxic microenvironments exist in developing embryonic tissues and determine stem cell fate. We previously demonstrated that hypoxic priming plays roles in lineage commitment of embryonic stem cells. In the present study, we found that hypoxia-primed embryoid bodies (Hyp-EBs) efficiently differentiate into the myogenic lineage, resulting in the induction of the myogenic marker MyoD, which was not mediated by hypoxia-inducible factor 1α (HIF1α) or HIF2α, but rather by Sp1 induction and binding to the MyoD promoter. Knockdown of Sp1 in Hyp-EBs abrogated hypoxia-induced MyoD expression and myogenic differentiation. Importantly, in the cardiotoxin-muscle injury mice model, Hyp-EB transplantation facilitated muscle regeneration in vivo, whereas transplantation of Sp1-knockdown Hyp-EBs failed to do. Moreover, we compared microRNA (miRNA) expression profiles between EBs under normoxia versus hypoxia and found that hypoxia-mediated Sp1 induction was mediated by the suppression of miRNA-92a, which directly targeted the 3' untranslated region (3' UTR) of Sp1. Further, the inhibitory effect of miRNA-92a on Sp1 in luciferase assay was abolished by a point mutation in specific sequence in the Sp1 3' UTR that is required for the binding of miRNA-92a. Collectively, these results suggest that hypoxic priming enhances EB commitment to the myogenic lineage through miR-92a/Sp1/MyoD regulatory axis, suggesting a new pathway that promotes myogenic-lineage differentiation.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Jimin Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hwa Park
- Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Woo Jean Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Su-Yeon Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Injoo Hwang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Choon-Soo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaewon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Caines R, Cochrane A, Kelaini S, Vila-Gonzalez M, Yang C, Eleftheriadou M, Moez A, Stitt AW, Zeng L, Grieve DJ, Margariti A. The RNA-binding protein QKI controls alternative splicing in vascular cells, producing an effective model for therapy. J Cell Sci 2019; 132:jcs.230276. [PMID: 31331967 DOI: 10.1242/jcs.230276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) leads to ischaemia, the central pathology of cardiovascular disease. Stem cell technology will revolutionise regenerative medicine, but a need remains to understand key mechanisms of vascular differentiation. RNA-binding proteins have emerged as novel post-transcriptional regulators of alternative splicing and we have previously shown that the RNA-binding protein Quaking (QKI) plays roles in EC differentiation. In this study, we decipher the role of the alternative splicing isoform Quaking 6 (QKI-6) to induce VSMC differentiation from induced pluripotent stem cells (iPSCs). PDGF-BB stimulation induced QKI-6, which bound to HDAC7 intron 1 via the QKI-binding motif, promoting HDAC7 splicing and iPS-VSMC differentiation. Overexpression of QKI-6 transcriptionally activated SM22 (also known as TAGLN), while QKI-6 knockdown diminished differentiation capability. VSMCs overexpressing QKI-6 demonstrated greater contractile ability, and upon combination with iPS-ECs-overexpressing the alternative splicing isoform Quaking 5 (QKI-5), exhibited higher angiogenic potential in vivo than control cells alone. This study demonstrates that QKI-6 is critical for modulation of HDAC7 splicing, regulating phenotypically and functionally robust iPS-VSMCs. These findings also highlight that the QKI isoforms hold key roles in alternative splicing, giving rise to cells which can be used in vascular therapy or for disease modelling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel Caines
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Amy Cochrane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Marta Vila-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Chunbo Yang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Arya Moez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| |
Collapse
|
12
|
Lu W, Li X. PDGFs and their receptors in vascular stem/progenitor cells: Functions and therapeutic potential in retinal vasculopathy. Mol Aspects Med 2018; 62:22-32. [DOI: 10.1016/j.mam.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
|
13
|
Maguire EM, Xiao Q, Xu Q. Differentiation and Application of Induced Pluripotent Stem Cell–Derived Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 37:2026-2037. [DOI: 10.1161/atvbaha.117.309196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell–derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell–derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell–derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease.
Collapse
Affiliation(s)
- Eithne Margaret Maguire
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingbo Xu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| |
Collapse
|
14
|
Wu Y, Li Z, Yang M, Dai B, Hu F, Yang F, Zhu J, Chen T, Zhang L. MicroRNA-214 regulates smooth muscle cell differentiation from stem cells by targeting RNA-binding protein QKI. Oncotarget 2017; 8:19866-19878. [PMID: 28186995 PMCID: PMC5386729 DOI: 10.18632/oncotarget.15189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-214(miR-214) has been recently reported to regulate angiogenesis and embryonic stem cells (ESCs) differentiation. However, very little is known about its functional role in vascular smooth muscle cells (VSMCs) differentiation from ESCs. In the present study, we assessed the hypothesis that miR-214 and its target genes play an important role in VSMCs differentiation. Murine ESCs were seeded on collagen-coated flasks and cultured in differentiation medium for 2 to 8 days to allow VSMCs differentiation. miR-214 was significantly upregulated during VSMCs differentiation. miR-214 overexpression and knockdown in differentiating ESCs significantly promoted and inhibited VSMCs -specific genes expression, respectively. Importantly, miR-214 overexpression in ESCs promoted VSMCs differentiation in vivo. Quaking (QKI) was predicted as one of the major targets of miR-214, which was negatively regulated by miR-214. Luciferase assay showed miR-214 substantially inhibited wild type, but not the mutant version of QKI-3-UTR-luciferase activity in differentiating ESCs, further confirming a negative regulation role of miR-214 in QKI gene expression. Mechanistically, our data showed that miR-214 regulated VSMCs gene expression during VSMCs differentiation from ESCs through suppression of QKI. We further demonstrated that QKI down-regulated the expression of SRF, MEF2C and Myocd through transcriptional repression and direct binding to promoters of the SRF, MEF2c and Myocd genes. Taken together, we have uncovered a central role of miR-214 in ESC-VSMC differentiation, and successfully identified QKI as a functional modulating target in miR-214 mediated VSMCs differentiation.
Collapse
Affiliation(s)
- Yutao Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zhoubin Li
- Department of Lung Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Mei Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Bing Dai
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Feng Hu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Feng Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Jianhua Zhu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ting Chen
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Li Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
15
|
Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer. Oncogene 2016; 36:1707-1720. [PMID: 27694895 PMCID: PMC5364039 DOI: 10.1038/onc.2016.337] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
Abstract
Tumours are comprised of a highly heterogeneous population of cells, of which only a small subset of stem-like cells possess the ability to regenerate tumours in vivo. These cancer stem cells (CSCs) represent a significant clinical challenge as they are resistant to conventional cancer therapies and play essential roles in metastasis and tumour relapse. Despite this realization and great interest in CSCs, it has been difficult to develop CSC-targeted treatments due to our limited understanding of CSC biology. Here, we present evidence that specific histone deacetylases (HDACs) play essential roles in the CSC phenotype. Utilizing a novel CSC model, we discovered that the HDACs, HDAC1 and HDAC7, are specifically over-expressed in CSCs when compared to non-stem-tumour-cells (nsTCs). Furthermore, we determine that HDAC1 and HDAC7 are necessary to maintain CSCs, and that over-expression of HDAC7 is sufficient to augment the CSC phenotype. We also demonstrate that clinically available HDAC inhibitors (HDACi) targeting HDAC1 and HDAC7 can be used to preferentially target CSCs. These results provide actionable insights that can be rapidly translated into CSC-specific therapies.
Collapse
|
16
|
Jin M, Wu Y, Wang Y, Yu D, Yang M, Yang F, Feng C, Chen T. MicroRNA-29a promotes smooth muscle cell differentiation from stem cells by targeting YY1. Stem Cell Res 2016; 17:277-284. [PMID: 27591939 DOI: 10.1016/j.scr.2016.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 11/16/2022] Open
Abstract
MicroRNA-29a (miR-29a) has been extensively studied in tumor biology and fibrotic diseases, but little is known about its functional roles in vascular smooth muscle cell (VSMC) differentiation from embryonic stem cells (ESCs). Using well-established VSMC differentiation models, we have observed that miR-29a induces VSMC differentiation from mouse ESCs by negatively regulating YY1, a transcription factor that inhibits muscle cell differentiation and muscle-specific gene expression. Moreover, gene expression levels of three VSMC specific transcriptional factors were up-regulated by miR-29a over-expression, but down-regulated by miR-29a inhibition or YY1 over-expression. Taken together, our data demonstrate that miR-29a and its target gene, YY1, play a regulatory role in VSMC differentiation from ESCs in vitro and in vivo.
Collapse
Affiliation(s)
- Min Jin
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Yutao Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yanwei Wang
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo 315000, PR China
| | - Danqing Yu
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Mei Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Feng Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chun Feng
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Ting Chen
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
17
|
Di Giorgio E, Brancolini C. Regulation of class IIa HDAC activities: it is not only matter of subcellular localization. Epigenomics 2016; 8:251-69. [DOI: 10.2217/epi.15.106] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to environmental cues, enzymes that influence the functions of proteins, through reversible post-translational modifications supervise the coordination of cell behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to this category. Even though in vertebrates these deacetylases have discarded the core enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted to transcriptional reprogramming, including but not limited to epigenetic changes. Class IIa HDACs are subjected to variegated and interconnected layers of regulation, which reflect the wide range of biological responses under the scrutiny of this gene family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs activities.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| |
Collapse
|
18
|
Guise AJ, Cristea IM. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5). Methods Mol Biol 2016; 1436:47-84. [PMID: 27246208 PMCID: PMC5644287 DOI: 10.1007/978-1-4939-3667-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear-cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease.
Collapse
Affiliation(s)
- Amanda J Guise
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA.
| |
Collapse
|
19
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
20
|
Wang X, Karamariti E, Simpson R, Wang W, Xu Q. Dickkopf Homolog 3 Induces Stem Cell Differentiation into Smooth Muscle Lineage via ATF6 Signalling. J Biol Chem 2015; 290:19844-52. [PMID: 26105053 PMCID: PMC4528144 DOI: 10.1074/jbc.m115.641415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
Smooth muscle cells (SMCs) are a key component of healthy and tissue engineered vessels and play a crucial role in vascular development and the pathogenic events of vascular remodeling i.e. restenosis. However, the cell source from which they can be isolated is limited. Embryonic stem (ES) cells that have the remarkable capability to differentiate into vascular SMCs in response to specific stimuli provide a useful model for studying SMC differentiation. Previous studies suggested that dickkopf homolog 3 (DKK3) has a role in human partially induced pluripotent stem cell to SMC differentiation. Here, we demonstrate that the expression of DKK3 is essential for the expression of SMC markers and myocardin at both the mRNA and protein levels during mouse ES cell differentiation into SMCs (ESC-SMC differentiation). Overexpression of DKK3 leads to further up-regulation of the aforementioned markers. Further investigation indicates that DKK3 added as a cytokine activates activating transcription factor 6 (ATF6), leading to the increased binding of ATF6 on the myocardin promoter and increased its expression. In addition, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) promotes the expression of ATF6 and leads to further increase of myocardin transcription. Our findings offer a novel mechanism by which DKK3 regulates ESC-SMC differentiation by activating ATF6 and promoting myocardin expression.
Collapse
Affiliation(s)
- Xiaocong Wang
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and the Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Eirini Karamariti
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| | - Russell Simpson
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| | - Wen Wang
- the Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| |
Collapse
|
21
|
Zhao H, Wen G, Wen G, Huang Y, Yu X, Chen Q, Afzal TA, Luong LA, Zhu J, Ye S, Shu Y, Zhang L, Xiao Q. MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2. Arterioscler Thromb Vasc Biol 2015; 35:918-29. [PMID: 25722434 DOI: 10.1161/atvbaha.114.305212] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In this study, we attempted to uncover the functional impact of microRNA-22 (miR-22) and its target gene in smooth muscle cell (SMC) differentiation and delineate the molecular mechanism involved. APPROACH AND RESULTS miR-22 was found to be significantly upregulated during SMC differentiation from embryonic stem cells and adventitia stem/progenitor cells. Enforced expression of miR-22 by its mimic, while knockdown of miR-22 by its antagomiR, promotes or inhibits SMC differentiation from embryonic stem cells and adventitia stem/progenitor cells, respectively. Expectedly, miR-22 overexpression in stem cells promoted SMC differentiation in vivo. Methyl CpG-binding protein 2 (MECP2) was predicted as one of the top targets of miR-22. Interestingly, the gene expression levels of MECP2 were significantly decreased during SMC differentiation, and MECP2 was dramatically decreased in miR-22 overexpressing cells but significantly increased when miR-22 was knockdown in the differentiating stem cells. Importantly, luciferase assay showed that miR-22 substantially inhibited wild-type, but not mutant MECP2-3' untranslated region-luciferase activity. In addition, modulation of MECP2 expression levels affects multiple SMC-specific gene expression in differentiated embryonic stem cells. Mechanistically, our data showed that MECP2 could transcriptionally repress SMC gene expression through modulating various SMC transcription factors, as well as several proven SMC differentiation regulators. Evidence also revealed that enrichment of H3K9 trimethylation around the promoter regions of the SMC differentiation regulators genes were significantly increased by MECP2 overexpression. Finally, miR-22 was upregulated by platelet-derived growth factor-BB and transforming growth factor-β through a transcriptional mechanism during SMC differentiation. CONCLUSIONS miR-22 plays an important role in SMC differentiation, and epigenetic regulation through MECP2 is required for miR-22 mediated SMC differentiation.
Collapse
Affiliation(s)
- Hanqing Zhao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | | | - Guammei Wen
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Yuan Huang
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Xiaotian Yu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Qishan Chen
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Tayyab Adeel Afzal
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Le Anh Luong
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Jianhua Zhu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | | | - Ye Shu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Li Zhang
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.).
| | - Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| |
Collapse
|
22
|
Wang S, Ju W, Shang P, Lei L, Nie H. Core–shell microspheres delivering FGF-2 and BMP-2 in different release patterns for bone regeneration. J Mater Chem B 2015; 3:1907-1920. [DOI: 10.1039/c4tb01876a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential delivery of FGF-2 and BMP-2 efficiently bridged the bone defects and remodeled the bone graft.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| | - Wei Ju
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| | - Peng Shang
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Lei Lei
- Department of Orthodontics
- Xiangya Stomatological Hospital
- Central South University
- Changsha 410008
- China
| | - Hemin Nie
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
23
|
Yu X, Zhang L, Wen G, Zhao H, Luong LA, Chen Q, Huang Y, Zhu J, Ye S, Xu Q, Wang W, Xiao Q. Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells. Cell Death Differ 2014; 22:1170-80. [PMID: 25526086 DOI: 10.1038/cdd.2014.206] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevity/aging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0/G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo.
Collapse
Affiliation(s)
- X Yu
- 1] Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK [2] Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - L Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - G Wen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - H Zhao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - L A Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Q Chen
- 1] Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK [2] Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Y Huang
- 1] Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK [2] Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - J Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - S Ye
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Q Xu
- Cardiovascular Division, King's College London British Heart Foundation Centre, London SE5 9NU, UK
| | - W Wang
- Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Q Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
24
|
Luo Z, Wen G, Wang G, Pu X, Ye S, Xu Q, Wang W, Xiao Q. MicroRNA-200C and -150 play an important role in endothelial cell differentiation and vasculogenesis by targeting transcription repressor ZEB1. Stem Cells 2014; 31:1749-62. [PMID: 23765923 DOI: 10.1002/stem.1448] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
To investigate the role of miRNA in controlling human embryonic stem (hES) cell differentiation toward the endothelial lineage and chick embryonic blood vessel formation, undifferentiated hES cells were first cultured on Matrigel-coated flasks and in endothelial cell growth medium-2 (EGM-2) to initiate endothelial cell (EC) differentiation. CD146(+) cells were isolated from differentiating hES cells and expanded in vitro. The in vitro expanded CD146(+) cells were positive for EC markers, capable of Ac-LDL uptake, lectin binding, and the formation of vascular structures in vitro and in vivo. miRNA gain/loss-of-function analyses revealed that miR-150 and miR-200c were crucial in EC differentiation. Transcriptional repressor zinc finger E-box-binding homeobox 1 (ZEB1) was identified as the communal target gene of miRNA-200C and -150, and inhibition of ZEB1 was required for miRNA-200C or -150 mediated EC gene expressions. Moreover, we demonstrated that ZEB1 could transcriptionally repress EC gene expression through direct binding to promoters of EC genes. Finally, we also demonstrated that miRNA-200c and -150 played an important role in chick embryonic blood vessel formation by in vivo inhibition of miRNA-200C or -150 in developing chick embryos, and blocking ZEB1 signaling in CD146-positive cells could rescue the inhibitory effects of miR-200c inhibiton in in vivo vasculogenesis. Our findings revealed that miR-150 and miR-200c play an important role in human endothelial lineage specification and chick embryonic vasculogenesis by targeting ZEB1.
Collapse
Affiliation(s)
- Zhenling Luo
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang Y, Lin L, Yu X, Wen G, Pu X, Zhao H, Fang C, Zhu J, Ye S, Zhang L, Xiao Q. Functional involvements of heterogeneous nuclear ribonucleoprotein A1 in smooth muscle differentiation from stem cells in vitro and in vivo. Stem Cells 2014; 31:906-17. [PMID: 23335105 DOI: 10.1002/stem.1324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023]
Abstract
To investigate the functional involvements of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) in smooth muscle cell (SMC) differentiation from stem cells, embryonic stem cells were cultivated on collagen IV-coated plates to allow for SMC differentiation. We found that hnRNPA1 gene and protein expression was upregulated significantly during differentiation and coexpressed with SMC differentiation markers in the stem cell-derived SMCs as well as embryonic SMCs of 12.5 days of mouse embryos. hnRNPA1 knockdown resulted in downregulation of smooth muscle markers and transcription factors, while enforced expression of hnRNPA1 enhanced the expression of these genes. Importantly, knockdown of hnRNPA1 also resulted in impairment of SMC differentiation in vivo. Moreover, we demonstrated that hnRNPA1 could transcriptionally regulate SMC gene expression through direct binding to promoters of Acta2 and Tagln genes using luciferase and chromatin immunoprecipitation assays. We further demonstrated that the binding sites for serum response factor (SRF), a well-investigated SMC transcription factor, within the promoter region of the Acta2 and Tagln genes were responsible for hnRNPA1-mediated Acta2 and Tagln gene expression using in vitro site-specific mutagenesis and luciferase activity analyses. Finally, we also demonstrated that hnRNPA1 upregulated the expression of SRF, myocyte-specific enhancer factor 2c (MEF2c), and myocardin through transcriptional activation and direct binding to promoters of the SRF, MEF2c, and Myocd genes. Our findings demonstrated that hnRNPA1 plays a functional role in SMC differentiation from stem cells in vitro and in vivo. This indicates that hnRNPA1 is a potential modulating target for deriving SMCs from stem cells and cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yuan Huang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Over-expression of HSP47 augments mouse embryonic stem cell smooth muscle differentiation and chemotaxis. PLoS One 2014; 9:e86118. [PMID: 24454956 PMCID: PMC3894195 DOI: 10.1371/journal.pone.0086118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/10/2013] [Indexed: 01/25/2023] Open
Abstract
In the recent decade, embryonic stem cells (ESC) have emerged as an attractive cell source of smooth muscle cells (SMC) for vascular tissue engineering owing to their unlimited self-renewal and differentiation capacities. Despite their promise in therapy, their efficacy is still hampered by the lack of definitive SMC differentiation mechanisms and difficulties in successful trafficking of the ESC towards a site of injury or target tissue. Heat shock protein 47 (HSP47) is a 47-kDa molecular chaperone that is required for the maturation of various types of collagen and has been shown to be a critical modulator of different pathological and physiological processes. To date, the role of HSP47 on ESC to SMC differentiation or ESC chemotaxis is not known and may represent a potential molecular approach by which ESC can be manipulated to increase their efficacy in clinic. We provide evidence that HSP47 is highly expressed during ESC differentiation into the SMC lineage and that HSP47 reduction results in an attenuation of the differentiation. Our experiments using a HSP47 plasmid transfection system show that gene over-expression is sufficient to induce ESC-SMC differentiation, even in the absence of exogenous stimuli. Furthermore, HSP47 over-expression in ESC also increases their chemotaxis and migratory responses towards a panel of chemokines, likely via the upregulation of chemokine receptors. Our findings provide direct evidence of induced ESC migration and differentiation into SMC via the over-expression of HSP47, thus identifying a novel approach of molecular manipulation that can potentially be exploited to improve stem cell therapy for vascular repair and regeneration.
Collapse
|
27
|
Functions of heterogeneous nuclear ribonucleoproteins in stem cell potency and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:623978. [PMID: 23984388 PMCID: PMC3745930 DOI: 10.1155/2013/623978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022]
Abstract
Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.
Collapse
|
28
|
Shen WW, Zeng Z, Zhu WX, Fu GH. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl) 2013; 91:989-1000. [PMID: 23619912 DOI: 10.1007/s00109-013-1037-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 03/14/2013] [Accepted: 03/28/2013] [Indexed: 12/14/2022]
Abstract
Studies have shown that the expression of CD133, leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5), and ATP binding cassette (ABC)G2 proteins is associated with malignancy and poor prognosis in colon cancer. However, molecular regulation mechanism of the three proteins has not been elucidated. Here, we report that microRNA-142-3p (miR-142-3p) inhibits the expression of CD133, Lgr5, and ABCG2 in colon cancer cells by binding to both the 3'-untranslated region and the coding sequences of the three genes. The miR-142-3p was markedly decreased in colon cancer specimens, in which it was negatively correlated with the expression of CD133, Lgr5, and ABCG2. Reduction of miR-142-3p corresponds to poor differentiation and bigger tumor size in colon cancers. Moreover, miR-142-3p levels were reduced in cells that formed spheres compared to cells that were cultured in regular media. Transfection of miR-142-3p mimics in colon cancer cells downregulated cyclin D1 expression, induced G1 phase cell cycle arrest, and elevated the sensitivity of the cells to 5-fluorouracil. Furthermore, OCT4 suppressed miR-142-3p, and hypomethylation of the OCT4 promoter was associated with a reduction in miR-142-3p. Finally, the miR-142-3p inhibited the growth of colon cancer cells in vivo, which was accompanied by the downregulation of CD133, Lgr5, and ABCG2 in tumor tissues. Our results elucidate a novel regulation pathway in colon cancer cells and suggest a potential therapeutic approach for colon cancer therapy.
Collapse
Affiliation(s)
- Wei-Wei Shen
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Karamariti E, Margariti A, Winkler B, Wang X, Hong X, Baban D, Ragoussis J, Huang Y, Han JDJ, Wong MM, Sag CM, Shah AM, Hu Y, Xu Q. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts. Circ Res 2013; 112:1433-43. [PMID: 23529184 DOI: 10.1161/circresaha.111.300415] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Smooth muscle cells (SMCs) are a key component of tissue-engineered vessels. However, the sources by which they can be isolated are limited. OBJECTIVE We hypothesized that a large number of SMCs could be obtained by direct reprogramming of fibroblasts, that is, direct differentiation of specific cell lineages before the cells reaching the pluripotent state. METHODS AND RESULTS We designed a combined protocol of reprogramming and differentiation of human neonatal lung fibroblasts. Four reprogramming factors (OCT4, SOX2, KLF4, and cMYC) were overexpressed in fibroblasts under reprogramming conditions for 4 days with cells defined as partially-induced pluripotent stem (PiPS) cells. PiPS cells did not form tumors in vivo after subcutaneous transplantation in severe combined immunodeficiency mice and differentiated into SMCs when seeded on collagen IV and maintained in differentiation media. PiPS-SMCs expressed a panel of SMC markers at mRNA and protein levels. Furthermore, the gene dickkopf 3 was found to be involved in the mechanism of PiPS-SMC differentiation. It was revealed that dickkopf 3 transcriptionally regulated SM22 by potentiation of Wnt signaling and interaction with Kremen1. Finally, PiPS-SMCs repopulated decellularized vessel grafts and ultimately gave rise to functional tissue-engineered vessels when combined with previously established PiPS-endothelial cells, leading to increased survival of severe combined immunodeficiency mice after transplantation of the vessel as a vascular graft. CONCLUSIONS We developed a protocol to generate SMCs from PiPS cells through a dickkopf 3 signaling pathway, useful for generating tissue-engineered vessels. These findings provide a new insight into the mechanisms of SMC differentiation with vast therapeutic potential.
Collapse
Affiliation(s)
- Eirini Karamariti
- Cardiovascular Division, British Heart Foundation Centre, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Reactive oxygen species in vascular formation and development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:374963. [PMID: 23401740 PMCID: PMC3564431 DOI: 10.1155/2013/374963] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/29/2012] [Accepted: 12/29/2012] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are derived from the metabolism of oxygen and are traditionally viewed as toxic byproducts that cause damage to biomolecules. It is now becoming widely acknowledged that ROS are key modulators in a variety of biological processes and pathological states. ROS mediate key signaling transduction pathways by reversible oxidation of certain signaling components and are involved in the signaling of growth factors, G-protein-coupled receptors, Notch, and Wnt and its downstream cascades including MAPK, JAK-STAT, NF-κB, and PI3K/AKT. Vascular formation and development is one of the most important events during embryogenesis and is vital for postnasal tissue repair. In this paper, we will discuss how ROS regulate different steps in vascular development, including smooth muscle cell differentiation, angiogenesis, endothelial progenitor cells recruitment, and vascular cell migration.
Collapse
|
31
|
Zheng X, Wu Y, Zhu L, Chen Q, Zhou Y, Yan H, Chen T, Xiao Q, Zhu J, Zhang L. Angiotensin II promotes differentiation of mouse embryonic stem cells to smooth muscle cells through PI3-kinase signaling pathway and NF-κB. Differentiation 2013; 85:41-54. [DOI: 10.1016/j.diff.2012.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/30/2022]
|
32
|
Spin JM, Maegdefessel L, Tsao PS. Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling. Cardiovasc Res 2012; 95:147-55. [PMID: 22362814 DOI: 10.1093/cvr/cvs098] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Differentiated vascular smooth muscle cells (SMCs) retain the capacity to modify their phenotype in response to inflammation or injury. This phenotypic switching is a crucial component of vascular disease, and is partly dependent on epigenetic regulation. An appreciation has been building in the literature for the essential role chromatin remodelling plays both in SMC lineage determination and in influencing changes in SMC behaviour and state. This process includes numerous chromatin regulatory elements and pathways such as histone acetyltransferases, deacetylases, and methyltransferases and other factors that act at SMC-specific marker sites to silence or permit access to the cellular transcriptional machinery and on other key regulatory elements such as myocardin and Kruppel-like factor 4 (KLF4). Various stimuli known to alter the SMC phenotype, such as transforming growth factor beta (TGF-β), platelet-derived growth factor (PDGF), oxidized phospholipids, and retinoic acid, appear to act in part through effects upon SMC chromatin structure. In recent years, specific covalent histone modifications that appear to establish SMC determinacy have been identified, while others alter the differentiation state. In this article, we review the mechanisms of chromatin remodelling as it applies to the SMC phenotype.
Collapse
Affiliation(s)
- Joshua M Spin
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA 94305, USA
| | | | | |
Collapse
|
33
|
Wang G, Xiao Q, Luo Z, Ye S, Xu Q. Functional impact of heterogeneous nuclear ribonucleoprotein A2/B1 in smooth muscle differentiation from stem cells and embryonic arteriogenesis. J Biol Chem 2012; 287:2896-906. [PMID: 22144681 PMCID: PMC3268446 DOI: 10.1074/jbc.m111.297028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/22/2011] [Indexed: 01/28/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) play various roles in transcriptional and post-transcriptional modulation of gene expression. However, it remains unclear if hnRNPs are associated with smooth muscle cell (SMC) differentiation from stem cells and embryonic arteriogenesis. In this study, mouse embryonic stem (ES) cells were cultivated on collagen IV-coated plates and smooth muscle differentiation medium. We found that hnRNPA2/B1 gene and protein expression was significantly up-regulated following 3-7 days of cell differentiation. hnRNPA2/B1 knockdown resulted in down-regulation of specific smooth muscle markers and transcription factors, whereas enforced expression of hnRNPA2/B1 enhanced the expression of these genes. Moreover, we demonstrated by using luciferase and chromatin immunoprecipitation assays that hnRNPA2/B1 could transcriptionally regulate SMC gene expression through direct binding to promoters of Smαa and Sm22α genes. We further demonstrated that chromobox protein homolog gene 3, a previously identified SMC differentiation regulatory nuclear protein, is required for hnRNPA2/B1-mediated SMC differentiation gene expression. Importantly, specifically designed Hnrnpa2/b1 morpholinos for in vivo knockdown could inhibit the migration and differentiation of neural crest cells into SMCs in chick embryos. This resulted in the maldevelopment of branchial arch arteries and increased embryo lethality at a later developmental stage. Our findings demonstrated that hnRNPA2/B1 plays a functional role in SMC differentiation from stem cells in vitro and embryonic branchial arch artery development. This indicates that hnRNPA2/B1 is a potential modulating target for deriving SMCs from stem cells and cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Gang Wang
- From the Department of Cardiology, the Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Shaanxi 710004, China
- the Cardiovascular Division, King's College London British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Qingzhong Xiao
- the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom, and
| | - Zhenling Luo
- the Cardiovascular Division, King's College London British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Shu Ye
- the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom, and
| | - Qingbo Xu
- the Cardiovascular Division, King's College London British Heart Foundation Centre, London SE5 9NU, United Kingdom
| |
Collapse
|
34
|
Xiao Q, Pepe AE, Wang G, Luo Z, Zhang L, Zeng L, Zhang Z, Hu Y, Ye S, Xu Q. Nrf3-Pla2g7 interaction plays an essential role in smooth muscle differentiation from stem cells. Arterioscler Thromb Vasc Biol 2012; 32:730-44. [PMID: 22247257 DOI: 10.1161/atvbaha.111.243188] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Phospholipase A2, group 7 (Pla2g7) is an important mediator in cardiovascular development and diseases because of its divergent physiological and pathological functions in inflammation and oxidative stress. However, little is known about the functional role of Pla2g7 in smooth muscle cell (SMC) differentiation from stem cells. METHODS AND RESULTS In the present study, embryonic stem cells were cultivated on collagen IV-coated plates to allow SMC differentiation. Pla2g7 gene expression and activity were upregulated significantly following 4 to 14 days of cell differentiation and colocalized with SMC differentiation markers in the differentiated SMCs. Knockdown of Pla2g7 resulted in downregulation of smooth muscle-specific markers in vitro and impairment of SMC differentiation in vivo, whereas enforced expression of Pla2g7 enhanced SMC differentiation and increased reactive oxygen species generation. Importantly, enforced expression of Pla2g7 significantly increased the binding of serum response factor to SMC differentiation gene promoters, resulting in SMC differentiation, which was abolished by free radical scavenger and flavoprotein inhibitor of NADPH oxidase but not hydrogen peroxide inhibitor. Moreover, we demonstrated that nuclear factor erythroid 2-related factor 3 (Nrf3) regulates Pla2g7 gene expression through direct binding to the promoter regions of Pla2g7 gene. CONCLUSION Our findings demonstrated that Pla2g7 plays a crucial physiological role in SMC differentiation from stem cells, and the fine interactions between Nrf3 and Pla2g7 are essential for SMC differentiation.
Collapse
Affiliation(s)
- Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiao Q, Wang G, Yin X, Luo Z, Margariti A, Zeng L, Mayr M, Ye S, Xu Q. Chromobox Protein Homolog 3 Is Essential for Stem Cell Differentiation to Smooth Muscles In Vitro and in Embryonic Arteriogenesis. Arterioscler Thromb Vasc Biol 2011; 31:1842-52. [DOI: 10.1161/atvbaha.111.230110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Gang Wang
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Xiaoke Yin
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Zhenling Luo
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Andriani Margariti
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Lingfang Zeng
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Manuel Mayr
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Shu Ye
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Qingbo Xu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| |
Collapse
|