1
|
Kolyadko VN, Layzer JM, Perry K, Sullenger BA, Krishnaswamy S. An RNA aptamer exploits exosite-dependent allostery to achieve specific inhibition of coagulation factor IXa. Proc Natl Acad Sci U S A 2024; 121:e2401136121. [PMID: 38985762 PMCID: PMC11260126 DOI: 10.1073/pnas.2401136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function. Here, we report X-ray structures of human factor IXa without a ligand bound to the active site either in the apo-form or in complex with an inhibitory aptamer specific for factor IXa. The aptamer binds to an exosite in the catalytic domain and allosterically distorts the active site. Our studies reveal a conformational ensemble of IXa states, wherein large movements of Trp215 near the active site drive functional transitions between the closed (aptamer-bound), latent (apo), and open (substrate-bound) states. The latent state of the apo-enzyme may bear on the uniquely poor catalytic activity of IXa compared to other coagulation proteases. The exosite, to which the aptamer binds, has been implicated in binding VIIIa and heparin, both of which regulate IXa function. Our findings reveal the importance of exosite-driven allosteric modulation of IXa function and new strategies to rebalance hemostasis for therapeutic gain.
Collapse
Affiliation(s)
- Vladimir N. Kolyadko
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | | | - Kay Perry
- Northeastern Collaborative Access Team, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL60439
| | | | - Sriram Krishnaswamy
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
2
|
Knauss EA, Nieman MT. Glycoprotein V exerts local control of fibrin. NATURE CARDIOVASCULAR RESEARCH 2023; 2:335-336. [PMID: 39195957 DOI: 10.1038/s44161-023-00261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Elizabeth A Knauss
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Omarova F, Rosing J, Bertina RM, Castoldi E. Negatively charged phospholipids stimulate factor XI activation by thrombin. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2020.100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
4
|
Ruben EA, Gandhi PS, Chen Z, Koester SK, DeKoster GT, Frieden C, Di Cera E. 19F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J Biol Chem 2020; 295:8227-8235. [PMID: 32358061 PMCID: PMC7294081 DOI: 10.1074/jbc.ra120.013419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022] Open
Abstract
The conformational properties of trypsin-like proteases and their zymogen forms remain controversial because of a lack of sufficient information on their free forms. Specifically, it is unclear whether the free protease is zymogen-like and shifts to its mature form upon a ligand-induced fit or exists in multiple conformations in equilibrium from which the ligand selects the optimal fit via conformational selection. Here we report the results of 19F NMR measurements that reveal the conformational properties of a protease and its zymogen precursor in the free form. Using the trypsin-like, clotting protease thrombin as a relevant model system, we show that its conformation is quite different from that of its direct zymogen precursor prethrombin-2 and more similar to that of its fully active Na+-bound form. The results cast doubts on recent hypotheses that free thrombin is zymogen-like and transitions to protease-like forms upon ligand binding. Rather, they validate the scenario emerged from previous findings of X-ray crystallography and rapid kinetics supporting a pre-existing equilibrium between open (E) and closed (E*) forms of the active site. In this scenario, prethrombin-2 is more dynamic and exists predominantly in the E* form, whereas thrombin is more rigid and exists predominantly in the E form. Ligand binding to thrombin takes place exclusively in the E form without significant changes in the overall conformation. In summary, these results disclose the structural architecture of the free forms of thrombin and prethrombin-2, consistent with an E*-E equilibrium and providing no evidence that free thrombin is zymogen-like.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Bradford HN, Krishnaswamy S. Occlusion of anion-binding exosite 2 in meizothrombin explains its impaired ability to activate factor V. J Biol Chem 2019; 294:2422-2435. [PMID: 30578302 DOI: 10.1074/jbc.ra118.006510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The proteolytic conversion of factor V to factor Va is central for amplified flux through the blood coagulation cascade. Heterodimeric factor Va is produced by cleavage at three sites in the middle of factor V by thrombin, yielding an N terminus-derived heavy chain and a C terminus-derived light chain. Here, we show that light chain formation resulting from the C-terminal cleavage is the rate-limiting step in the formation of fully cleaved Va. This rate-limiting step also corresponded to and was sufficient for the ability of cleaved factor V to bind Xa and assemble into the prothrombinase complex. Meizothrombin, the proteinase intermediate in thrombin formation, cleaves factor V more slowly than does thrombin, resulting in a pronounced defect in the formation of the light chain. A ∼100-fold reduced rate of meizothrombin-mediated light chain formation by meizothrombin corresponded to equally slow production of active cofactor and an impaired ability to amplify flux through the coagulation cascade initiated in plasma. We show that this defect arises from the occlusion of anion-binding exosite 2 in the catalytic domain by the covalently retained propiece in meizothrombin. Our findings provide structural insights into the prominent role played by exosite 2 in the rate-limiting step of factor V activation. They also bear on how factor V is converted into a cofactor capable of assembling into prothrombinase.
Collapse
Affiliation(s)
- Harlan N Bradford
- From the Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Sriram Krishnaswamy
- From the Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and .,the Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
6
|
|
7
|
Fox JM, Zhao M, Fink MJ, Kang K, Whitesides GM. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu Rev Biophys 2018; 47:223-250. [DOI: 10.1146/annurev-biophys-070816-033743] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon—termed enthalpy/entropy (H/S) compensation—hinders efforts in biomolecular design, and its incidence—often a surprise to experimentalists—makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting—and, perhaps, avoiding or exploiting—this phenomenon in biophysical systems.
Collapse
Affiliation(s)
- Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Mengxia Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Michael J. Fink
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
- The Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
8
|
Bergmeier W, Antoniak S, Conway EM, Denis CV, George LA, Isermann B, Key NS, Krishnaswamy S, Lam WA, Lillicrap D, Liu J, Looney MR, López JA, Maas C, Peyvandi F, Ruf W, Sood AK, Versteeg HH, Wolberg AS, Wong PC, Wood JP, Weiler H. Advances in Clinical and Basic Science of Coagulation: Illustrated abstracts of the 9th Chapel Hill Symposium on Hemostasis. Res Pract Thromb Haemost 2018; 2:407-428. [PMID: 30046746 PMCID: PMC6046595 DOI: 10.1002/rth2.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This 9th Symposium on Hemostasis is an international scientific meeting held biannually in Chapel Hill, North Carolina. The meeting is in large measure the result of the close friendship between the late Dr. Harold R. Roberts of UNC Chapel Hill and Dr. Ulla Hedner of Novo Nordisk. When Novo Nordisk was developing the hemophilia therapy that would become NovoSeven, they sponsored a series of meetings to understand the basic biology and clinical applications of factor VIIa. The first meeting in Chapel Hill was held April 4-6, 2002 with Dr. Roberts as the organizer. Over the years, the conference emphasis has expanded from discussions of factor VIIa and tissue factor to additional topics in hemostasis and thrombosis. This year's meeting includes presentations by internationally renowned speakers that discuss the state-of-the-art on an array of important topics, including von Willebrand factor, engineering advances, coagulation and disease, tissue factor biology, therapeutic advances, and basic clotting factor biology. Included in this review article are illustrated abstracts provided by our speakers, which highlight the main conclusions of each invited talk. This will be the first meeting without Dr. Roberts in attendance, yet his commitment to excellent science and his focus on turning science to patient care are pervasively reflected in the presentations by our speakers.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and Biophysics University of North Carolina Chapel Hill NC USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine University of North Carolina Chapel Hill NC USA
| | | | | | - Lindsey A George
- University of Pennsylvania Children's Hospital of Philadelphia Philadelphia PA USA
| | | | - Nigel S Key
- Department of Medicine University of North Carolina Chapel Hill NC USA
| | - Sriram Krishnaswamy
- University of Pennsylvania Children's Hospital of Philadelphia Philadelphia PA USA
| | - Wilbur A Lam
- Department of Pediatrics and the Wallace H. Coulter Department of Biomedical Engineering Emory University and Georgia Institute of Technology Atlanta GA USA
| | | | - Jian Liu
- Eshelman School of Pharmacy University of North Carolina Chapel Hill NC USA
| | - Mark R Looney
- University of California San Francisco San Francisco CA USA
| | - José A López
- School of Medicine Puget Sound Blood Center Research Institute University of Washington Seattle WA USA
| | - Coen Maas
- Department of Clinical Chemistry and Haematology University Medical Center Utrecht Utrecht the Netherlands
| | | | - Wolfram Ruf
- The Scripps Research Institute La Jolla CA USA
| | - Anil K Sood
- University of Texas MD Anderson Cancer Center Houston TX USA
| | | | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine University of North Carolina Chapel Hill NC USA
| | - Pancras C Wong
- Transfusion Medicine Hematology Bristol-Meyers Squibb Pennington NJ USA
| | - Jeremy P Wood
- Gill Heart and Vascular Institute University of Kentucky Lexington KY USA
| | - Hartmut Weiler
- Blood Research Institute Blood Center of Wisconsin Milwaukee WI USA
| |
Collapse
|
9
|
Structure-function studies of prothrombin Amrita, a dysfunctional prothrombin characterized by point mutation at Arg553 → Gln. Int J Biol Macromol 2018; 110:550-557. [DOI: 10.1016/j.ijbiomac.2018.01.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 01/13/2018] [Indexed: 11/19/2022]
|
10
|
Abdel Aziz MH, Desai UR. Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 2018; 165:61-67. [PMID: 29573721 DOI: 10.1016/j.thromres.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Thrombin is a primary target of most anticoagulants. Yet, thrombin's dual and opposing role in pro- as well as anti- coagulant processes imposes considerable challenges in discovering finely tuned regulators that maintain homeostasis, rather than disproportionately changing the equilibrium to one side. In this connection, we have been studying exosite 2-mediated allosteric modulation of thrombin activity using synthetic agents called low molecular weight lignins (LMWLs). Although the aromatic scaffold of LMWLs is completely different from the polysaccharidic scaffold of heparin, the presence of multiple negatively charged groups on both ligands induces binding to exosite 2 of thrombin. This work characterizes the nature of interactions between LMWLs and thrombin to understand the energetic cooperativity between exosite 2 and active site of thrombin. MATERIALS AND METHODS The thermodynamics of thrombin-LMWL complexes was studied using spectrofluorimetric titrations as a function of ionic strength and temperature of the buffer. The contributions of enthalpy and entropy to binding were evaluated using classic thermodynamic equations. Label-free surface plasmon resonance was used to assess the role of sodium ion in LMWL binding to thrombin at a fixed ionic strength. RESULTS AND CONCLUSIONS Exosite 2-induced conformational change in thrombin's active site is strongly dependent on the structure of the ligand, which has consequences with respect to regulation of thrombin. The ionic and non-ionic contributions to binding affinity and the thermodynamic signature were highly ligand specific. Interestingly, LMWLs display preference for the sodium-bound form of thrombin, which supports the existence of an energetic coupling between exosite 2 and sodium-binding site of thrombin.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
11
|
Chakraborty P, Acquasaliente L, Pelc LA, Di Cera E. Interplay between conformational selection and zymogen activation. Sci Rep 2018; 8:4080. [PMID: 29511224 PMCID: PMC5840343 DOI: 10.1038/s41598-018-21728-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/09/2018] [Indexed: 11/09/2022] Open
Abstract
Trypsin-like proteases are synthesized as zymogens and activated through a mechanism that folds the active site for efficient binding and catalysis. Ligand binding to the active site is therefore a valuable source of information on the changes that accompany zymogen activation. Using the physiologically relevant transition of the clotting zymogen prothrombin to the mature protease thrombin, we show that the mechanism of ligand recognition follows selection within a pre-existing ensemble of conformations with the active site accessible (E) or inaccessible (E*) to binding. Prothrombin exists mainly in the E* conformational ensemble and conversion to thrombin produces two dominant changes: a progressive shift toward the E conformational ensemble triggered by removal of the auxiliary domains upon cleavage at R271 and a drastic drop of the rate of ligand dissociation from the active site triggered by cleavage at R320. Together, these effects produce a significant (700-fold) increase in binding affinity. Limited proteolysis reveals how the E*-E equilibrium shifts during prothrombin activation and influences exposure of the sites of cleavage at R271 and R320. These new findings on the molecular underpinnings of prothrombin activation are relevant to other zymogens with modular assembly involved in blood coagulation, complement and fibrinolysis.
Collapse
Affiliation(s)
- Pradipta Chakraborty
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Laura Acquasaliente
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
12
|
Chen K, Stafford AR, Wu C, Yeh CH, Kim PY, Fredenburgh JC, Weitz JI. Exosite 2-Directed Ligands Attenuate Protein C Activation by the Thrombin–Thrombomodulin Complex. Biochemistry 2017; 56:3119-3128. [DOI: 10.1021/acs.biochem.7b00250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Chen
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alan R. Stafford
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Chengliang Wu
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Calvin H. Yeh
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Y. Kim
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - James C. Fredenburgh
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I. Weitz
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
A cluster of aspartic residues in the extracellular loop II of PAR 4 is important for thrombin interaction and activation of platelets. Thromb Res 2017; 154:84-92. [DOI: 10.1016/j.thromres.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
|
14
|
Stavenuiter F, Ebberink EHTM, Mertens K, Meijer AB. Role of glycine 221 in catalytic activity of hyaluronan-binding protein 2. J Biol Chem 2017; 292:6381-6388. [PMID: 28246168 DOI: 10.1074/jbc.m116.757849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/25/2017] [Indexed: 11/06/2022] Open
Abstract
HABP2 (hyaluronan-binding protein 2) is a Ca2+-dependent serine protease with putative roles in blood coagulation and fibrinolysis. A G221E substitution, known as the Marburg I polymorphism, reportedly affects HABP2 function and has been associated with increased risk for cardiovascular disease. However, the importance of Gly-221 for HABP2 activity is unclear. Here, we used G221E, G221A, and G221S mutants to assess the role of Gly-221 in HABP2 catalysis. The G221E variant failed to activate the single-chain urokinase-type plasminogen activator, and the G221A and G221S variants displayed moderately reduced single-chain urokinase-type plasminogen activator activation. Activity toward the peptide substrate S-2288 was markedly decreased in all HABP2 variants, with G221E being the most defective and G221A being the least defective. In the absence of Ca2+, S-2288 cleavage by wild-type HABP2 was Na+-dependent, with Km decreasing from 3.0 to 0.6 mm upon titration from 0 to 0.3 m Na+ In the presence of 5 mm Ca2+, Km was further reduced to 0.05 mm, but without an appreciable contribution of Na+ At physiological concentrations of Na+ and Ca2+, the three HABP2 variants, and particularly G221E, displayed a major Km increase for S-2288. Chemical footprinting revealed that Ile-16 is significantly less protected from chemical modification in G221E than in wild-type HABP2, suggesting impaired insertion of the N terminus into the G221E protease domain, with a concomitant impact on catalytic activity. Homology modeling suggested that the Glu-221 side chain could sterically hinder insertion of the N terminus into the HABP2 protease domain, helping to explain the detrimental effects of Glu-221 substitution on HABP2 activity.
Collapse
Affiliation(s)
- Fabian Stavenuiter
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and
| | - Eduard H T M Ebberink
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and
| | - Koen Mertens
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and.,the Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alexander B Meijer
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and .,the Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
NMR reveals a dynamic allosteric pathway in thrombin. Sci Rep 2017; 7:39575. [PMID: 28059082 PMCID: PMC5216386 DOI: 10.1038/srep39575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022] Open
Abstract
Although serine proteases are found ubiquitously in both eukaryotes and prokaryotes, and they comprise the largest of all of the peptidase families, their dynamic motions remain obscure. The backbone dynamics of the coagulation serine protease, apo-thrombin (S195M-thrombin), were compared to the substrate-bound form (PPACK-thrombin). R1, R2, 15N-{1H}NOEs, and relaxation dispersion NMR experiments were measured to capture motions across the ps to ms timescale. The ps-ns motions were not significantly altered upon substrate binding. The relaxation dispersion data revealed that apo-thrombin is highly dynamic, with μs-ms motions throughout the molecule. The region around the N-terminus of the heavy chain, the Na+-binding loop, and the 170 s loop, all of which are implicated in allosteric coupling between effector binding sites and the active site, were dynamic primarily in the apo-form. Most of the loops surrounding the active site become more ordered upon PPACK-binding, but residues in the N-terminal part of the heavy chain, the γ-loop, and anion-binding exosite 1, the main allosteric binding site, retain μs-ms motions. These residues form a dynamic allosteric pathway connecting the active site to the main allosteric site that remains in the substrate-bound form.
Collapse
|
16
|
Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy. Sci Rep 2016; 6:31488. [PMID: 27507430 PMCID: PMC4979035 DOI: 10.1038/srep31488] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/19/2016] [Indexed: 01/17/2023] Open
Abstract
Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding.
Collapse
|
17
|
Dabigatran and Argatroban Diametrically Modulate Thrombin Exosite Function. PLoS One 2016; 11:e0157471. [PMID: 27305147 PMCID: PMC4909201 DOI: 10.1371/journal.pone.0157471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022] Open
Abstract
Thrombin is a highly plastic molecule whose activity and specificity are regulated by exosites 1 and 2, positively-charged domains that flank the active site. Exosite binding by substrates and cofactors regulates thrombin activity by localizing thrombin, guiding substrates, and by inducing allosteric changes at the active site. Although inter-exosite and exosite-to-active-site allostery have been demonstrated, the impact of active site ligation on exosite function has not been examined. To address this gap, we used surface plasmon resonance to determine the effects of dabigatran and argatroban, active site-directed inhibitors, on thrombin binding to immobilized γA/γA-fibrin or glycoprotein Ibα peptide via exosite 1 and 2, respectively, and thrombin binding to γA/γ′-fibrin or factor Va, which is mediated by both exosites. Whereas dabigatran attenuated binding, argatroban increased thrombin binding to γA/γA- and γA/γ′-fibrin and to factor Va. The results with immobilized fibrin were confirmed by examining the binding of radiolabeled thrombin to fibrin clots. Thus, dabigatran modestly accelerated the dissociation of thrombin from γA/γA-fibrin clots, whereas argatroban attenuated dissociation. Dabigatran had no effect on thrombin binding to glycoprotein Ibα peptide, whereas argatroban promoted binding. These findings not only highlight functional effects of thrombin allostery, but also suggest that individual active site-directed thrombin inhibitors uniquely modulate exosite function, thereby identifying potential novel mechanisms of action.
Collapse
|
18
|
Abstract
Protease signaling in cells elicits multiple physiologically important responses via protease-activated receptors (PARs). There are 4 members of this family of G-protein-coupled receptors (PAR1-4). PARs are activated by proteolysis of the N terminus to reveal a tethered ligand. The rate-limiting step of PAR signaling is determined by the efficiency of proteolysis of the N terminus, which is regulated by allosteric binding sites, cofactors, membrane localization, and receptor dimerization. This ultimately controls the initiation of PAR signaling. In addition, these factors also control the cellular response by directing signaling toward G-protein or β-arrestin pathways. PAR1 signaling on endothelial cells is controlled by the activating protease and heterodimerization with PAR2 or PAR3. As a consequence, the genetic and epigenetic control of PARs and their cofactors in physiologic and pathophysiologic conditions have the potential to influence cellular behavior. Recent studies have uncovered polymorphisms that result in PAR4 sequence variants with altered reactivity that interact to influence platelet response. This further demonstrates how interactions within the plasma membrane can control the physiological output. Understanding the structural rearrangement following PAR activation and how PARs are allosterically controlled within the plasma membrane will determine how best to target this family of receptors therapeutically. The purpose of this article is to review how signaling from PARs is influenced by alternative cleavage sites and the physical interactions within the membrane. Going forward, it will be important to relate the altered signaling to the molecular arrangement of PARs in the cell membrane and to determine how these may be influenced genetically.
Collapse
|
19
|
Bradford HN, Krishnaswamy S. The Fragment 1 Region of Prothrombin Facilitates the Favored Binding of Fragment 12 to Zymogen and Enforces Zymogen-like Character in the Proteinase. J Biol Chem 2016; 291:11114-23. [PMID: 27013660 DOI: 10.1074/jbc.m116.723072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/06/2022] Open
Abstract
Thrombin is produced from the C-terminal half of prothrombin following its proteolytic activation. The N-terminal half, released as the propiece Fragment 12 (F12), is composed of an N-terminal γ-carboxyglutamate domain (Gla) followed by two kringles (K1 and K2). The propiece plays essential roles in regulating prothrombin activation and proteinase function. The latter results from the ability of F12 to reversibly bind to the (pro)catalytic domain through K2 with high affinity and highly favorable thermodynamic constants when it is a zymogen in comparison to proteinase. Such discrimination is lost for K2 binding after proteolytic removal of the N-terminal Gla-K1 region of F12. The Ca(2+)-stabilized structure of the Gla domain is not required for F12 to bind the zymogen form more favorably. Enhanced binding to zymogen versus proteinase correlates with the ability of the propiece to enforce zymogen-like character in the proteinase. This is evident in variants of meizothrombin, an intermediate of prothrombin activation that contains the propiece covalently attached. This phenomenon is also independent of the Gla domain. Thus, the presence of K1 in covalent linkage with K2 in the propiece governs the ability of K2 to bind the (pro)catalytic domain in favor of zymogen, thereby enforcing zymogen-like character in the proteinase.
Collapse
Affiliation(s)
- Harlan N Bradford
- From the Research Institute, Children's Hospital of Philadelphia, and
| | - Sriram Krishnaswamy
- From the Research Institute, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
20
|
Vogt AD, Chakraborty P, Di Cera E. Kinetic dissection of the pre-existing conformational equilibrium in the trypsin fold. J Biol Chem 2015. [PMID: 26216877 DOI: 10.1074/jbc.m115.675538] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Pradipta Chakraborty
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
21
|
Baroni M, Pavani G, Pinotti M, Branchini A, Bernardi F, Camire RM. Asymmetric processing of mutant factor X Arg386Cys reveals differences between intrinsic and extrinsic pathway activation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1351-6. [PMID: 26012870 DOI: 10.1016/j.bbapap.2015.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 01/30/2023]
Abstract
Alterations in coagulation factor X (FX) activation, mediated by the extrinsic VIIa/tissue factor (FVIIa/TF) or the intrinsic factor IXa/factor VIIIa (FIXa/FVIIIa) complexes, can result in hemorrhagic/prothrombotic tendencies. However, the molecular determinants involved in substrate recognition by these enzymes are poorly defined. Here, we investigated the role of arginine 386 (chymotrypsin numbering c202), a surface-exposed residue on the FX catalytic domain. The naturally occurring FX386Cys mutant and FX386Ala variant were characterized. Despite the unpaired cysteine, recombinant (r)FX386Cys was efficiently secreted (88.6±21.3% of rFXwt) and possessed normal clearance in mice. rFX386Cys was also normally activated by FVIIa/TF and displayed intact amidolytic activity. In contrast, rFX386Cys activation by the FIXa/FVIIIa complex was 4.5-fold reduced, which was driven by a decrease in the kcat (1.6∗10(-4) s(-1) vs 5.8∗10(-4) s(-1), rFXwt). The virtually unaltered Km (70.6 nM vs 55.6nM, rFXwt) suggested no major alterations in the FX substrate exosite. Functional assays in plasma supplemented with rFX386Cys indicated a remarkable reduction in the thrombin generation rate and thus in coagulation efficiency. Consistently, the rFX386Ala variant displayed similar biochemical features suggesting that global changes at position 386 impact the intrinsic pathway activation. These data indicate that the FXArg386 is involved in FIXa/FVIIIa-mediated FX activation and help in elucidating the bleeding tendency associated with the FX386Cys in a rare FX deficiency case. Taking advantage of the unpaired cysteine, the rFX386Cys mutant may be efficiently targeted by thiol-specific ligands and represent a valuable tool to study FX structure-function relationships both in vitro and in vivo.
Collapse
Affiliation(s)
- M Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.
| | - G Pavani
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy; The Children's Hospital of Philadelphia, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; The Center for Cell and Molecular Therapeutics, and Division of Hematology, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - A Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - R M Camire
- The Children's Hospital of Philadelphia, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; The Center for Cell and Molecular Therapeutics, and Division of Hematology, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Dai D, Huang Q, Nussinov R, Ma B. Promiscuous and specific recognition among ephrins and Eph receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1729-40. [PMID: 25017878 PMCID: PMC4157952 DOI: 10.1016/j.bbapap.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
Eph-ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph-ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph-ephrin complexes. Analysis of the Eph-ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph-ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein-protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph-ephrin complex.
Collapse
Affiliation(s)
- Dandan Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Mumaw MM, de la Fuente M, Noble DN, Nieman MT. Targeting the anionic region of human protease-activated receptor 4 inhibits platelet aggregation and thrombosis without interfering with hemostasis. J Thromb Haemost 2014; 12:1331-41. [PMID: 24888424 PMCID: PMC4127092 DOI: 10.1111/jth.12619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/25/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Human platelet activation and aggregation is a complex process. To date, many therapies have been developed targeting proteins that mediate this process to prevent unwanted activation. However, the current standard of care for acute coronary syndromes still has limitations, including bleeding risk. OBJECTIVE To evaluate the protease-activated receptor 4 (PAR4) anionic cluster as a viable antiplatelet target by using a polyclonal antibody (CAN12). METHODS We used western blotting, aggregation and secretion ex vivo to evaluate the ability of CAN12 to interact with PAR4 and inhibit platelet activation. The effects of CAN12 in vivo were evaluated with the Rose Bengal arterial thrombosis model and two models of hemostasis. RESULTS CAN12 was able to interact with human PAR4 and delay PAR4 cleavage. In addition, CAN12 inhibited thrombin-induced human platelet aggregation and secretion in a dose-dependent manner. The specificity of CAN12 was agonist-dependent. In vivo, we determined that CAN12 was able to inhibit arterial thrombosis, and, using two independent methods, we found that CAN12 did not influence hemostasis. CONCLUSION Targeting the extracellular anionic cluster on PAR4 is a viable novel strategy as an antiplatelet therapy.
Collapse
Affiliation(s)
- M M Mumaw
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
24
|
Mehta AY, Thakkar JN, Mohammed BM, Martin EJ, Brophy DF, Kishimoto T, Desai UR. Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. J Med Chem 2014; 57:3030-9. [PMID: 24635452 PMCID: PMC4203406 DOI: 10.1021/jm4020026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Exosite 2 of human thrombin contributes
to two opposing pathways, the anticoagulant pathway and the platelet
aggregation pathway. We reasoned that an exosite 2 directed allosteric
thrombin inhibitor should simultaneously induce anticoagulant and
antiplatelet effects. To assess this, we synthesized SbO4L based on
the sulfated tyrosine-containing sequence of GPIbα. SbO4L was
synthesized in three simple steps in high yield and found to be a
highly selective, direct inhibitor of thrombin. Michelis–Menten
kinetic studies indicated a noncompetitive mechanism of inhibition.
Competitive inhibition studies suggested ideal competition with heparin
and glycoprotein Ibα, as predicted. Studies with site-directed
mutants of thrombin indicated that SbO4L binds to Arg233, Lys235,
and Lys236 of exosite 2. SbO4L prevented thrombin-mediated platelet
activation and aggregation as expected on the basis of competition
with GPIbα. SbO4L presents a novel paradigm of simultaneous
dual anticoagulant and antiplatelet effects achieved through the GPIbα
binding site of thrombin.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23219, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Lechtenberg BC, Freund SMV, Huntington JA. GpIbα interacts exclusively with exosite II of thrombin. J Mol Biol 2013; 426:881-93. [PMID: 24316004 PMCID: PMC3919161 DOI: 10.1016/j.jmb.2013.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Abstract
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition. We analysed interactions of the platelet receptor GpIbα with thrombin using three complementary methods. GpIbα exclusively binds to exosite II of thrombin. Exosite I remains available for binding to other ligands. GpIbα recruits thrombin to the platelet membrane as a cofactor for PAR-1 cleavage.
Collapse
Affiliation(s)
- Bernhard C Lechtenberg
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory for Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
26
|
Abstract
The coagulation system involves a dynamic group of procoagulation and anticoagulation proteins that appear early in fetal life and whose levels change throughout childhood and into the teenage years. This process is called developmental hemostasis. Developmental hemostasis creates unique challenges for clinicians affecting the diagnosis and treatment of coagulation disorders during early childhood. The objective of this review is to assist pediatricians in understanding the coagulation system in fetal life and childhood and to provide guidance for interpreting basic coagulation testing, which will result in an improved ability to diagnose and treat patients with hemostatic and thrombotic disorders.
Collapse
Affiliation(s)
- Julie Jaffray
- Department of Hematology/Oncology, Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Boulevard, Mail Stop #54, Los Angeles, CA 90027, USA
| | | |
Collapse
|
27
|
Arachiche A, Mumaw MM, de la Fuente M, Nieman MT. Protease-activated receptor 1 (PAR1) and PAR4 heterodimers are required for PAR1-enhanced cleavage of PAR4 by α-thrombin. J Biol Chem 2013; 288:32553-32562. [PMID: 24097976 DOI: 10.1074/jbc.m113.472373] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin is a potent platelet agonist that activates platelets and other cells of the cardiovascular system by cleaving its G-protein-coupled receptors, protease-activated receptor 1 (PAR1), PAR4, or both. We now show that cleaving PAR1 and PAR4 with α-thrombin induces heterodimer formation. PAR1-PAR4 heterodimers were not detected when unstimulated; however, when the cells were stimulated with 10 nm α-thrombin, we were able to detect a strong interaction between PAR1 and PAR4 by bioluminescence resonance energy transfer. In contrast, activating the receptors without cleavage using PAR1 and PAR4 agonist peptides (TFLLRN and AYPGKF, respectively) did not enhance heterodimer formation. Preventing PAR1 or PAR4 cleavage with point mutations or hirugen also prevented the induction of heterodimers. To further characterize the PAR1-PAR4 interactions, we mapped the heterodimer interface by introducing point mutations in transmembrane helix 4 of PAR1 or PAR4 that prevented heterodimer formation. Finally, we show that mutations in PAR1 or PAR4 at the heterodimer interface prevented PAR1-assisted cleavage of PAR4. These data demonstrate that PAR1 and PAR4 require allosteric changes induced via receptor cleavage by α-thrombin to mediate heterodimer formation, and we have determined the PAR1-PAR4 heterodimer interface. Our findings show that PAR1 and PAR4 have dynamic interactions on the cell surface that should be taken into account when developing and characterizing PAR antagonists.
Collapse
Affiliation(s)
- Amal Arachiche
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michele M Mumaw
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - María de la Fuente
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Marvin T Nieman
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
28
|
Vogt AD, Pozzi N, Chen Z, Di Cera E. Essential role of conformational selection in ligand binding. Biophys Chem 2013; 186:13-21. [PMID: 24113284 DOI: 10.1016/j.bpc.2013.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022]
Abstract
Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a few cases. Therefore, the long assumed importance and preponderance of induced fit as a mechanism of ligand binding should be reconsidered.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States.
| |
Collapse
|
29
|
Sidhu PS, Abdel Aziz MH, Sarkar A, Mehta AY, Zhou Q, Desai UR. Designing allosteric regulators of thrombin. Exosite 2 features multiple subsites that can be targeted by sulfated small molecules for inducing inhibition. J Med Chem 2013; 56:5059-70. [PMID: 23718540 DOI: 10.1021/jm400369q] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We recently designed a group of novel exosite-2-directed sulfated, small, allosteric inhibitors of thrombin. To develop more potent inhibitors, monosulfated benzofuran tri- and tetrameric homologues of the parent designed dimers were synthesized in seven to eight steps and found to exhibit a wide range of potencies. Among these, trimer 9a was found to be nearly 10-fold more potent than the first generation molecules. Michaelis-Menten studies indicated an allosteric mechanism of inhibition. Competitive studies using a hirudin peptide (exosite 1 ligand) and unfractionated heparin, heparin octasaccharide, and γ'-fibrinogen peptide (exosite 2 ligands) demonstrated exosite 2 recognition in a manner different from that of the parent dimers. Alanine scanning mutagenesis of 12 Arg/Lys residues of exosite 2 revealed a defect in 9a potency for Arg233Ala thrombin only confirming the major difference in site of recognition between the two structurally related sulfated benzofurans. The results suggest that multiple avenues are available within exosite 2 for inducing thrombin inhibition.
Collapse
Affiliation(s)
- Preetpal Singh Sidhu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The proteolytic conversion of prothrombin to thrombin catalyzed by prothrombinase is one of the more extensively studied reactions of blood coagulation. Sophisticated biophysical and biochemical insights into the players of this reaction were developed in the early days of the field. Yet, many basic enzymological questions remained unanswered. I summarize new developments that uncover mechanisms by which high substrate specificity is achieved, and the impact of these strategies on enzymic function. Two principles emerge that deviate from conventional wisdom that has otherwise dominated thinking in the field. (i) Enzymic specificity is dominated by the contribution of exosite binding interactions between substrate and enzyme rather than by specific recognition of sequences flanking the scissile bond. Coupled with the regulation of substrate conformation as a result of the zymogen to proteinase transition, novel mechanistic insights result for numerous aspects of enzyme function. (ii) The transition of zymogen to proteinase following cleavage is not absolute and instead, thrombin can reversibly interconvert between zymogen-like and proteinase-like forms depending on the complement of ligands bound to it. This establishes new paradigms for considering proteinase allostery and how enzyme function may be modulated by ligand binding. These insights into the action of prothrombinase on prothrombin have wide-ranging implications for the understanding of function in blood coagulation.
Collapse
Affiliation(s)
- S Krishnaswamy
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Fuglestad B, Gasper PM, McCammon JA, Markwick PRL, Komives EA. Correlated motions and residual frustration in thrombin. J Phys Chem B 2013; 117:12857-63. [PMID: 23621631 PMCID: PMC3808083 DOI: 10.1021/jp402107u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin is the central protease in the cascade of blood coagulation proteases. The structure of thrombin consists of a double β-barrel core surrounded by connecting loops and helices. Compared to chymotrypsin, thrombin has more extended loops that are thought to have arisen from insertions in the serine protease that evolved to impart greater specificity. Previous experiments showed thermodynamic coupling between ligand binding at the active site and distal exosites. We present a combined approach of molecular dynamics (MD), accelerated molecular dynamics (AMD), and analysis of the residual local frustration of apo-thrombin and active-site-bound (PPACK-thrombin). Community analysis of the MD ensembles identified changes upon active site occupation in groups of residues linked through correlated motions and physical contacts. AMD simulations, calibrated on measured residual dipolar couplings, reveal that upon active site ligation, correlated loop motions are quenched, but new ones connecting the active site with distal sites where allosteric regulators bind emerge. Residual local frustration analysis reveals a striking correlation between frustrated contacts and regions undergoing slow time scale dynamics. The results elucidate a motional network that probably evolved through retention of frustrated contacts to provide facile conversion between ensembles of states.
Collapse
Affiliation(s)
- Brian Fuglestad
- Department of Chemistry and Biochemistry and ⊥Department of Pharmacology, University of California, San Diego , La Jolla, California, United States
| | | | | | | | | |
Collapse
|
32
|
Malovichko MV, Sabo TM, Maurer MC. Ligand binding to anion-binding exosites regulates conformational properties of thrombin. J Biol Chem 2013; 288:8667-8678. [PMID: 23378535 DOI: 10.1074/jbc.m112.410829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin participates in coagulation, anticoagulation, and initiation of platelet activation. To fulfill its diverse roles and maintain hemostasis, this serine protease is regulated via the extended active site region and anion-binding exosites (ABEs) I and II. For the current project, amide proton hydrogen-deuterium exchange coupled with MALDI-TOF mass spectrometry was used to characterize ligand binding to individual exosites and to investigate the presence of exosite-active site and exosite-exosite interactions. PAR3(44-56) and PAR1(49-62) were observed to bind to thrombin ABE I and then to exhibit long range effects over to ABE II. By contrast, Hirudin(54-65) focused more on ABE I and did not transmit influences over to ABE II. Although these three ligands were each directed to ABE I, they did not promote the same conformational consequences. D-Phe-Pro-Arg-chloromethyl ketone inhibition at the thrombin active site led to further local and long range consequences to thrombin-ABE I ligand complexes with the autolysis loop often most affected. When Hirudin(54-65) was bound to ABE I, it was still possible to bind GpIbα(269-286) or fibrinogen γ'(410-427) to ABE II. Each ligand exerted its predominant influences on thrombin and also allowed interexosite communication. The results obtained support the proposal that thrombin is a highly dynamic protein. The transmission of ligand-specific local and long range conformational events is proposed to help regulate this multifunctional enzyme.
Collapse
Affiliation(s)
| | - T Michael Sabo
- Chemistry Department, University of Louisville, Louisville, Kentucky 40292
| | - Muriel C Maurer
- Chemistry Department, University of Louisville, Louisville, Kentucky 40292.
| |
Collapse
|
33
|
Kroh HK, Bock PE. Effect of zymogen domains and active site occupation on activation of prothrombin by von Willebrand factor-binding protein. J Biol Chem 2012; 287:39149-57. [PMID: 23012355 DOI: 10.1074/jbc.m112.415562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin is conformationally activated by von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus through insertion of the NH(2)-terminal residues of vWbp into the prothrombin catalytic domain. The rate of prothrombin activation by vWbp(1-263) is controlled by a hysteretic kinetic mechanism initiated by substrate binding. The present study evaluates activation of prothrombin by full-length vWbp(1-474) through activity progress curve analysis. Additional interactions from the COOH-terminal half of vWbp(1-474) strengthened the initial binding of vWbp to prothrombin, resulting in higher activity and an ∼100-fold enhancement in affinity. The affinities of vWbp(1-263) or vWbp(1-474) were compared by equilibrium binding to the prothrombin derivatives prethrombin 1, prethrombin 2, thrombin, meizothrombin, and meizothrombin(des-fragment 1) and their corresponding active site-blocked analogs. Loss of fragment 1 in prethrombin 1 enhanced affinity for both vWbp(1-263) and vWbp(1-474), with a 30-45% increase in Gibbs free energy, implicating a regulatory role for fragment 1 in the activation mechanism. Active site labeling of all prothrombin derivatives with D-Phe-Pro-Arg-chloromethyl ketone, analogous to irreversible binding of a substrate, decreased their K(D) values for vWbp into the subnanomolar range, reflecting the dependence of the activating conformational change on substrate binding. The results suggest a role for prothrombin domains in the pathophysiological activation of prothrombin by vWbp, and may reveal a function for autocatalysis of the vWbp·prothrombin complexes during initiation of blood coagulation.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
34
|
Liu Z, Kromann-Hansen T, Lund IK, Hosseini M, Jensen KJ, Høyer-Hansen G, Andreasen PA, Sørensen HP. Interconversion of active and inactive conformations of urokinase-type plasminogen activator. Biochemistry 2012; 51:7804-11. [PMID: 22950516 DOI: 10.1021/bi3005957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic activity of serine proteases depends on a salt-bridge between the amino group of residue 16 and the side chain of Asp194. The salt-bridge stabilizes the oxyanion hole and the S1 specificity pocket of the protease. Some serine proteases exist in only partially active forms, in which the amino group of residue 16 is exposed to the solvent. Such a partially active state is assumed by a truncated form of the murine urokinase-type plasminogen activator (muPA), consisting of residues 16-243. Here we investigated the allosteric interconversion between partially active states and the fully active state. Both a monoclonal antibody (mU3) and a peptidic inhibitor (mupain-1--16) stabilize the active state. The epitope of mU3 is located in the 37- and 70-loops at a site homologous to exosite I of thrombin. The N-terminus((Ile16)) of muPA((16--243)) was less exposed upon binding of mU3 or mupain-1--16. In contrast, introduction of the mutations F40Y or E137A into muPA((16--243)) increased exposure of the N-terminus((Ile16)) and resulted in large changes in the thermodynamic parameters for mupain-1--16 binding. We conclude that the distorted state of muPA((16--243)) is conformationally ordered upon binding of ligands to the active site and upon binding of mU3 to the 37- and 70-loops. Our study establishes the 37- and 70-loops as a unique site for binding to compounds stabilizing the active state of serine proteases.
Collapse
Affiliation(s)
- Zhuo Liu
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bradford HN, Krishnaswamy S. Meizothrombin is an unexpectedly zymogen-like variant of thrombin. J Biol Chem 2012; 287:30414-25. [PMID: 22815477 DOI: 10.1074/jbc.m112.394809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thrombin is produced by the ordered action of prothrombinase on two cleavage sites in prothrombin. Meizothrombin, a proteinase precursor of thrombin, is a singly cleaved species that accumulates abundantly as an intermediate. We now show that covalent linkage of the N-terminal propiece with the proteinase domain in meizothrombin imbues it with exceptionally zymogen-like character. Meizothrombin exists in a slowly reversible equilibrium between two equally populated states, differing by as much as 140-fold in their affinity for active site-directed ligands. The distribution between the two forms, designated zymogen-like and proteinase-like, is affected by Na(+), thrombomodulin binding, or active site ligation. In rapid kinetic measurements with prothrombinase, we also show that the zymogen-like form is produced following the initial cleavage reaction and slowly equilibrates with the proteinase-like form in a previously unanticipated rate-limiting step before it can be further cleaved to thrombin. The reversible equilibration of meizothrombin between zymogen- and proteinase-like states provides new insights into its ability to selectively exhibit the anticoagulant function of thrombin and the mechanistic basis for its accumulation during prothrombin activation. Our findings also provide unexpected insights into the regulation of proteinase function and how the formation of meizothrombin may yield a long lived intermediate with an important regulatory role in coagulation.
Collapse
Affiliation(s)
- Harlan N Bradford
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
36
|
Pozzi N, Vogt AD, Gohara DW, Di Cera E. Conformational selection in trypsin-like proteases. Curr Opin Struct Biol 2012; 22:421-31. [PMID: 22664096 DOI: 10.1016/j.sbi.2012.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/30/2023]
Abstract
For over four decades, two competing mechanisms of ligand recognition--conformational selection and induced-fit--have dominated our interpretation of protein allostery. Defining the mechanism broadens our understanding of the system and impacts our ability to design effective drugs and new therapeutics. Recent kinetics studies demonstrate that trypsin-like proteases exist in equilibrium between two forms: one fully accessible to substrate (E) and the other with the active site occluded (E*). Analysis of the structural database confirms existence of the E* and E forms and vouches for the allosteric nature of the trypsin fold. Allostery in terms of conformational selection establishes an important paradigm in the protease field and enables protein engineers to expand the repertoire of proteases as therapeutics.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | | | | | |
Collapse
|
37
|
Crystal structures of protease nexin-1 in complex with heparin and thrombin suggest a 2-step recognition mechanism. Blood 2012; 120:459-67. [PMID: 22618708 DOI: 10.1182/blood-2012-03-415869] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protease nexin-1 (PN1) is a specific and extremely efficient inhibitor of thrombin. However, unlike other thrombin inhibitors belonging to the serpin family, PN1 is not synthesized in the liver and does not circulate in the blood. Rather, PN1 is expressed by multiple cell types, including macrophages, smooth muscle cells, and platelets, and it is on the surface of these cells, bound to glycosaminoglycans, that PN1 inhibits the signaling functions of thrombin. PN1 sets the threshold for thrombin-induced platelet activation and has been implicated in atherosclerosis. However, in spite of the emerging importance of PN1 in thrombosis and atherosclerosis, little is know about how it associates to cells and how it inhibits thrombin at rates that surpass the diffusion limit. To address these issues, we determined the crystal structures of PN1 in complex with heparin, and in complex with catalytically inert thrombin. The crystal structures suggest a unique 2-step mechanism of thrombin recognition involving rapid electrostatics-driven association to form an initial glycosaminoglycan-bridged complex, followed by a large conformational rearrangement to form the productive Michaelis complex.
Collapse
|
38
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
39
|
Jadhav MA, Lucas RC, Goldsberry WN, Maurer MC. Design of Factor XIII V34X activation peptides to control ability to interact with thrombin mutants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1955-63. [PMID: 21798378 DOI: 10.1016/j.bbapap.2011.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022]
Abstract
Thrombin helps to activate Factor XIII (FXIII) by hydrolyzing the R37-G38 peptide bond. The resultant transglutaminase introduces cross-links into the fibrin clot. With the development of therapeutic coagulation factors, there is a need to better understand interactions involving FXIII. Such knowledge will help predict ability to activate FXIII and thus ability to promote/hinder the generation of transglutaminase activity. Kinetic parameters have been determined for a series of thrombin species hydrolyzing the FXIII (28-41) V34X activation peptides (V34, V34L, V34F, and V34P). The V34P substitution introduces PAR4 character into the FXIII, and the V34F exhibits important similarities to the cardioprotective V34L. FXIII activation peptides containing V34, V34L, or V34P could each be accommodated by alanine mutants of thrombin lacking either the W60d or Y60a residue in the 60-insertion loop. By contrast, FXIII V34F AP could be cleaved by thrombin W60dA but not by Y60aA. FXIII V34P is highly reliant on the thrombin W215 platform for its strong substrate properties whereas FXIII V34F AP becomes the first segment that can maintain its K(m) upon loss of the critical thrombin W215 residue. Interestingly, FXIII V34F AP could also be readily accommodated by thrombin L99A and E217A. Hydrolysis of FXIII V34F AP by thrombin W217A/E217A (WE) was similar to that of FXIII V34L AP whereas WE could not effectively cleave FXIII V34P AP. FXIII V34F and V34P AP show promise for designing FXIII activation systems that are either tolerant of or greatly hindered by the presence of anticoagulant thrombins.
Collapse
Affiliation(s)
- Madhavi A Jadhav
- Chemistry Department, University of Louisville, Louisville, KY, USA
| | | | | | | |
Collapse
|
40
|
Huntington JA. Thrombin plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:246-52. [PMID: 21782041 DOI: 10.1016/j.bbapap.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022]
Abstract
Thrombin is the final protease generated in the blood coagulation cascade. It has multiple substrates and cofactors, and serves both pro- and anti-coagulant functions. How thrombin activity is directed throughout the evolution of a clot and the role of conformational change in determining thrombin specificity are issues that lie at the heart of the haemostatic balance. Over the last 20 years there have been a great number of studies supporting the idea that thrombin is an allosteric enzyme that can exist in two conformations differing in activity and specificity. However, recent work has shown that thrombin in its unliganded state is inherently flexible in regions that are important for activity. The effect of flexibility on activity is discussed in this review in context of the zymogen-to-protease conformational transition. Understanding thrombin function in terms of 'plasticity' provides a new conceptual framework for understanding regulation of enzyme activity in general. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.
| |
Collapse
|
41
|
Structural basis for complement factor I control and its disease-associated sequence polymorphisms. Proc Natl Acad Sci U S A 2011; 108:12839-44. [PMID: 21768352 DOI: 10.1073/pnas.1102167108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complement system is a key component of innate and adaptive immune responses. Complement regulation is critical for prevention and control of disease. We have determined the crystal structure of the complement regulatory enzyme human factor I (fI). FI is in a proteolytically inactive form, demonstrating that it circulates in a zymogen-like state despite being fully processed to the mature sequence. Mapping of functional data from mutants of fI onto the structure suggests that this inactive form is maintained by the noncatalytic heavy-chain allosterically modulating activity of the light chain. Once the ternary complex of fI, a cofactor and a substrate is formed, the allosteric inhibition is released, and fI is oriented for cleavage. In addition to explaining how circulating fI is limited to cleaving only C3b/C4b, our model explains the molecular basis of disease-associated polymorphisms in fI and its cofactors.
Collapse
|
42
|
Desai BJ, Boothello RS, Mehta AY, Scarsdale JN, Wright HT, Desai UR. Interaction of thrombin with sucrose octasulfate. Biochemistry 2011; 50:6973-82. [PMID: 21736375 DOI: 10.1021/bi2004526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The serine protease thrombin plays multiple roles in many important physiological processes, especially coagulation, where it functions as both a pro- and anticoagulant. The polyanionic glycosaminoglycan heparin modulates thrombin's activity through binding at exosite II. Sucrose octasulfate (SOS) is often used as a surrogate for heparin, but it is not known whether it is an effective heparin mimic in its interaction with thrombin. We have characterized the interaction of SOS with thrombin in solution and determined a crystal structure of their complex. SOS binds thrombin with a K(d) of ~1.4 μM, comparable to that of the much larger polymeric heparin measured under the same conditions. Nonionic (hydrogen bonding) interactions make a larger contribution to thrombin binding of SOS than to heparin. SOS binding to exosite II inhibits thrombin's catalytic activity with high potency but with low efficacy. Analytical ultracentrifugation shows that bovine and human thrombins are monomers in solution in the presence of SOS, in contrast to their complexes with heparin, which are dimers. In the X-ray crystal structure, two molecules of SOS are bound nonequivalently to exosite II portions of a thrombin dimer, in contrast to the 1:2 stoichiometry of the heparin-thrombin complex, which has a different monomer association mode in the dimer. SOS and heparin binding to exosite II of thrombin differ on both chemical and structural levels and, perhaps most significantly, in thrombin inhibition. These differences may offer paths to the design of more potent exosite II binding, allosteric small molecules as modulators of thrombin function.
Collapse
Affiliation(s)
- Bijoy J Desai
- Departments of Medicinal Chemistry and Biochemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | | | | | | | | | | |
Collapse
|
43
|
Treuheit NA, Beach MA, Komives EA. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin. Biochemistry 2011; 50:4590-6. [PMID: 21526769 DOI: 10.1021/bi2004069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.
Collapse
Affiliation(s)
- Nicholas A Treuheit
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093-0378, USA
| | | | | |
Collapse
|
44
|
Vogt AD, Bah A, Di Cera E. Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa. J Phys Chem B 2010; 114:16125-30. [PMID: 20809655 DOI: 10.1021/jp105502c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) binding to thrombin enhances the procoagulant and prothrombotic functions of the enzyme and obeys a mechanism that produces two kinetic phases: one fast (in the microsecond time scale) due to Na(+) binding to the low activity form E to produce the high activity form E:Na(+) and another considerably slower (in the millisecond time scale) that reflects a pre-equilibrium between E and the inactive form E*. In this study, we demonstrate that this mechanism also exists in other Na(+)-activated clotting proteases like factor Xa and activated protein C. These findings, along with recent structural data, suggest that the E*-E equilibrium is a general feature of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|