1
|
Googins MR, An P, Gauthier CH, Pipas JM. Polyomavirus large T antigens: Unraveling a complex interactome. Tumour Virus Res 2024; 19:200306. [PMID: 39675526 PMCID: PMC11720896 DOI: 10.1016/j.tvr.2024.200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
All members of the polyomavirus family encode a large T antigen (LT) protein that plays essential roles in viral DNA replication, regulation of viral gene expression, and the manipulation of numerous cellular pathways. Over 100 polyomaviruses have been discovered in hosts ranging from arthropods and fish to mammals, including fourteen that infect humans. LT is among the most studied viral proteins with thousands of articles describing its functions in viral productive infection and tumorigenesis. However, nearly all knowledge of LT activities is based on the studies of simian virus 40 (SV40) and a few other viruses. Comparative studies of LT proteins of different polyomaviruses have revealed a remarkable diversity in the mechanisms by which LT proteins function across different polyomavirus species. This review focuses on human polyomaviruses highlights the similarities and differences between polyomavirus LTs and highlights gaps in our understanding of this protein family. The concentration of knowledge around SV40 LT and the corresponding lack of mechanistic studies on LT proteins encoded by other human and animal polyomaviruses severely constrains our understanding of the biology of this important virus family.
Collapse
Affiliation(s)
- Matthew R Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Christian H Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Dey-Rao R, Shen S, Qu J, Melendy T. Proteomics Analysis of the Polyomavirus DNA Replication Initiation Complex Reveals Novel Functional Phosphorylated Residues and Associated Proteins. Int J Mol Sci 2024; 25:4540. [PMID: 38674125 PMCID: PMC11049971 DOI: 10.3390/ijms25084540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Polyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular pathways for cellular transformation and viral replication. LT directly recruits the cellular replication factors involved in initiation of viral DNA replication through mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single-stranded DNA binding complex, (RPA). Activities and interactions of these complexes are known to be modulated by post-translational modifications; however, high-sensitivity proteomic analyses of the PTMs and proteins associated have been lacking. High-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) of the immunoprecipitated factors (IPMS) identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors; the function of one has been validated. IPMS revealed 374, 453, and 183 novel proteins associated with the three, respectively. A significant transcription-related process network identified by Gene Ontology (GO) enrichment analysis was unique to LT. Although unidentified by IPMS, the ETS protooncogene 1, transcription factor (ETS1) was significantly overconnected to our dataset indicating its involvement in PyV processes. This result was validated by demonstrating that ETS1 coimmunoprecipitates with LT. Identification of a novel PAAR that regulates PyV replication and LT's association with the protooncogenic Ets1 transcription factor demonstrates the value of these results for studies in PyV biology.
Collapse
Affiliation(s)
- Rama Dey-Rao
- Department of Microbiology & Immunology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Thomas Melendy
- Department of Microbiology & Immunology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Dey-Rao R, Shen S, Qu J, Melendy T. Proteomics analysis reveals novel phosphorylated residues and associated proteins of the polyomavirus DNA replication initiation complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579500. [PMID: 38370620 PMCID: PMC10871363 DOI: 10.1101/2024.02.08.579500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyomavirus ( PyV ) Large T-antigen ( LT ) is the major viral regulatory protein that targets numerous cellular factors/pathways: tumor suppressors, cell cycle regulators, transcription and chromatin regulators, as well as other factors for viral replication. LT directly recruits the cellular replication factors involved in LT's recognition of the viral origin, origin unwinding, and primer synthesis which is carried out by mutual interactions between LT, DNA polymerase alpha-primase ( Polprim ), and single strand (ss) DNA binding replication protein A ( RPA ). The activities as well as interactions of these three with each other as well as other factors, are known to be modulated by post-translational modifications (PTMs); however, modern high-sensitivity proteomic analyses of the PTMs as well as proteins associated with the three have been lacking. Elution from immunoprecipitation (IP) of the three factors were subjected to high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). We identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors: 82 PAARs on SV40 LT, 305 on the Polprim heterotetrametric complex and 92 on the RPA heterotrimeric complex. LC-MS/MS analysis also identified proteins that co-immunoprecipitated (coIP-ed) with the three factors that were not previously reported: 374 with LT, 453 with Polprim and 183 with RPA. We used a bioinformatic-based approach to analyze the proteomics data and demonstrate a highly significant "enrichment" of transcription-related process associated uniquely with LT, consistent with its role as a transcriptional regulator, as opposed to Polprim and RPA associated proteins which showed no such enrichment. The most significant cell cycle related network was regulated by ETS proto-oncogene 1 (ETS1), indicating its involvement in regulatory control of DNA replication, repair, and metabolism. The interaction between LT and ETS1 is validated and shown to be independent of nucleic acids. One of the novel phosphorylated aa residues detected on LT from this study, has been demonstrated by us to affect DNA replication activities of SV40 Large T-antigen. Our data provide substantial additional novel information on PAARs, and proteins associated with PyV LT, and the cellular Polprim-, RPA- complexes which will benefit research in DNA replication, transformation, transcription, and other viral and host cellular processes.
Collapse
|
4
|
Onwubiko NO, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen helicase domain regions responsible for oligomerisation regulate Okazaki fragment synthesis initiation. FEBS Open Bio 2022; 12:649-663. [PMID: 35073603 PMCID: PMC8886539 DOI: 10.1002/2211-5463.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Heinz Peter Nasheuer
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| |
Collapse
|
5
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Nie M, Oravcová M, Jami‐Alahmadi Y, Wohlschlegel JA, Lazzerini‐Denchi E, Boddy MN. FAM111A induces nuclear dysfunction in disease and viral restriction. EMBO Rep 2021; 22:e50803. [PMID: 33369867 PMCID: PMC7857424 DOI: 10.15252/embr.202050803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the nuclear trypsin-like serine protease FAM111A cause Kenny-Caffey syndrome (KCS2) with hypoparathyroidism and skeletal dysplasia or perinatally lethal osteocraniostenosis (OCS). In addition, FAM111A was identified as a restriction factor for certain host range mutants of the SV40 polyomavirus and VACV orthopoxvirus. However, because FAM111A function is poorly characterized, its roles in restricting viral replication and the etiology of KCS2 and OCS remain undefined. We find that FAM111A KCS2 and OCS patient mutants are hyperactive and cytotoxic, inducing apoptosis-like phenotypes such as disruption of nuclear structure and pore distribution, in a protease-dependent manner. Moreover, wild-type FAM111A activity causes similar nuclear phenotypes, including the loss of nuclear barrier function, when SV40 host range mutants attempt to replicate in restrictive cells. Interestingly, pan-caspase inhibitors do not block these FAM111A-induced phenotypes, implying it acts independently or upstream of caspases. In this regard, we identify nucleoporins and the associated GANP transcription/replication factor as FAM111A interactors and candidate targets. Overall, we reveal a potentially unifying mechanism through which deregulated FAM111A activity restricts viral replication and causes KCS2 and OCS.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Martina Oravcová
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Yasaman Jami‐Alahmadi
- Department of Biological ChemistryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - James A Wohlschlegel
- Department of Biological ChemistryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | | | - Michael N Boddy
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| |
Collapse
|
7
|
Onwubiko NO, Borst A, Diaz SA, Passkowski K, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen interactions with ssDNA and replication protein A: a regulatory role of T antigen monomers in lagging strand DNA replication. Nucleic Acids Res 2020; 48:3657-3677. [PMID: 32128579 PMCID: PMC7144908 DOI: 10.1093/nar/gkaa138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
DNA replication is a central process in all living organisms. Polyomavirus DNA replication serves as a model system for eukaryotic DNA replication and has considerably contributed to our understanding of basic replication mechanisms. However, the details of the involved processes are still unclear, in particular regarding lagging strand synthesis. To delineate the complex mechanism of coordination of various cellular proteins binding simultaneously or consecutively to DNA to initiate replication, we investigated single-stranded DNA (ssDNA) interactions by the SV40 large T antigen (Tag). Using single molecule imaging by atomic force microscopy (AFM) combined with biochemical and spectroscopic analyses we reveal independent activity of monomeric and oligomeric Tag in high affinity binding to ssDNA. Depending on ssDNA length, we obtain dissociation constants for Tag-ssDNA interactions (KD values of 10–30 nM) that are in the same order of magnitude as ssDNA binding by human replication protein A (RPA). Furthermore, we observe the formation of RPA-Tag-ssDNA complexes containing hexameric as well as monomeric Tag forms. Importantly, our data clearly show stimulation of primase function in lagging strand Okazaki fragment synthesis by monomeric Tag whereas hexameric Tag inhibits the reaction, redefining DNA replication initiation on the lagging strand.
Collapse
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Angela Borst
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Suraya A Diaz
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Katharina Passkowski
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Heinz P Nasheuer
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| |
Collapse
|
8
|
Tarnita RM, Wilkie AR, DeCaprio JA. Contribution of DNA Replication to the FAM111A-Mediated Simian Virus 40 Host Range Phenotype. J Virol 2019; 93:e01330-18. [PMID: 30333173 PMCID: PMC6288344 DOI: 10.1128/jvi.01330-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023] Open
Abstract
Host range (HR) mutants of simian virus 40 (SV40) containing mutations in the C terminus of large T antigen fail to replicate efficiently or form plaques in restrictive cell types. HR mutant viruses exhibit impairments at several stages of the viral life cycle, including early and late gene and protein expression, DNA replication, and virion assembly, although the underlying mechanism for these defects is unknown. Host protein FAM111A, whose depletion rescues early and late gene expression and plaque formation for SV40 HR viruses, has been shown to play a role in cellular DNA replication. SV40 viral DNA replication occurs in the nucleus of infected cells in viral replication centers where viral proteins and cellular replication factors localize. Here, we examined the role of viral replication center formation and DNA replication in the FAM111A-mediated HR phenotype. We found that SV40 HR virus rarely formed viral replication centers in restrictive cells, a phenotype that could be rescued by FAM111A depletion. Furthermore, while FAM111A localized to nucleoli in uninfected cells in a cell cycle-dependent manner, FAM111A relocalized to viral replication centers after infection with SV40 wild-type or HR viruses. We also found that inhibition of viral DNA replication through aphidicolin treatment or through the use of replication-defective SV40 mutants diminished the effects of FAM111A depletion on viral gene expression. These results indicate that FAM111A restricts SV40 HR viral replication center formation and that viral DNA replication contributes to the FAM111A-mediated effect on early gene expression.IMPORTANCE SV40 has served as a powerful tool for understanding fundamental viral and cellular processes; however, despite extensive study, the SV40 HR mutant phenotype remains poorly understood. Mutations in the C terminus of large T antigen that disrupt binding to the host protein FAM111A render SV40 HR viruses unable to replicate in restrictive cell types. Our work reveals a defect of HR mutant viruses in the formation of viral replication centers that can be rescued by depletion of FAM111A. Furthermore, inhibition of viral DNA replication reduces the effects of FAM111A restriction on viral gene expression. Additionally, FAM111A is a poorly characterized cellular protein whose mutation leads to two severe human syndromes, Kenny-Caffey syndrome and osteocraniostenosis. Our findings regarding the role of FAM111A in restricting viral replication and its localization to nucleoli and viral replication centers provide further insight into FAM111A function that could help reveal the underlying disease-associated mechanisms.
Collapse
Affiliation(s)
- Roxana M Tarnita
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adrian R Wilkie
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James A DeCaprio
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Saifi SK, Passricha N, Tuteja R, Tuteja N. Stress-induced Oryza sativa RuvBL1a is DNA-independent ATPase and unwinds DNA duplex in 3' to 5' direction. PROTOPLASMA 2018; 255:669-684. [PMID: 29103092 DOI: 10.1007/s00709-017-1178-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
RuvB, a member of AAA+ (ATPases Associated with diverse cellular Activities) superfamily of proteins, is essential, highly conserved and multifunctional in nature as it is involved in DNA damage repair, mitotic assembly, switching of histone variants and assembly of telomerase core complex. RuvB family is widely studied in various systems such as Escherichia coli, yeast, human, Drosophila, Plasmodium falciparum and mouse, but not well studied in plants. We have studied the transcript level of rice homologue of RuvB gene (OsRuvBL1a) under various abiotic stress conditions, and the results suggest that it is upregulated under salinity, cold and heat stress. Therefore, the OsRuvBL1a protein was characterized using in silico and biochemical approaches. In silico study confirmed the presence of all the four characteristic motifs of AAA+ superfamily-Walker A, Walker B, Sensor I and Sensor II. Structurally, OsRuvBL1a is similar to RuvB1 from Chaetomium thermophilum. The purified recombinant OsRuvBL1a protein shows unique DNA-independent ATPase activity. Using site-directed mutagenesis, the importance of two conserved motifs (Walker B and Sensor I) in ATPase activity has been also reported with mutants D302N and N332H. The OsRuvBL1a protein unwinds the duplex DNA in the 3' to 5' direction. The presence of unique DNA-independent ATPase and DNA unwinding activities of OsRuvBL1a protein and upregulation of its transcript under abiotic stress conditions suggest its involvement in multiple cellular pathways. The first detailed characterization of plant RuvBL1a in this study may provide important contribution in exploiting the role of RuvB for developing the stress tolerant plants of agricultural importance.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Carney SM, Gomathinayagam S, Leuba SH, Trakselis MA. Bacterial DnaB helicase interacts with the excluded strand to regulate unwinding. J Biol Chem 2017; 292:19001-19012. [PMID: 28939774 DOI: 10.1074/jbc.m117.814178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Replicative hexameric helicases are thought to unwind duplex DNA by steric exclusion (SE) where one DNA strand is encircled by the hexamer and the other is excluded from the central channel. However, interactions with the excluded strand on the exterior surface of hexameric helicases have also been shown to be important for DNA unwinding, giving rise to the steric exclusion and wrapping (SEW) model. For example, the archaeal Sulfolobus solfataricus minichromosome maintenance (SsoMCM) helicase has been shown to unwind DNA via a SEW mode to enhance unwinding efficiency. Using single-molecule FRET, we now show that the analogous Escherichia coli (Ec) DnaB helicase also interacts specifically with the excluded DNA strand during unwinding. Mutation of several conserved and positively charged residues on the exterior surface of EcDnaB resulted in increased interaction dynamics and states compared with wild type. Surprisingly, these mutations also increased the DNA unwinding rate, suggesting that electrostatic contacts with the excluded strand act as a regulator for unwinding activity. In support of this, experiments neutralizing the charge of the excluded strand with a morpholino substrate instead of DNA also dramatically increased the unwinding rate. Of note, although the stability of the excluded strand was nearly identical for EcDnaB and SsoMCM, these enzymes are from different superfamilies and unwind DNA with opposite polarities. These results support the SEW model of unwinding for EcDnaB that expands on the existing SE model of hexameric helicase unwinding to include contributions from the excluded strand to regulate the DNA unwinding rate.
Collapse
Affiliation(s)
- Sean M Carney
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Sanford H Leuba
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Michael A Trakselis
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, .,Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, and
| |
Collapse
|
11
|
Abstract
The human primosome is a 340-kilodalton complex of primase (DNA-dependent RNA polymerase) and DNA polymerase α, which initiates genome replication by synthesizing chimeric RNA-DNA primers for DNA polymerases δ and ϵ. Accumulated biochemical and structural data reveal the complex mechanism of concerted primer synthesis by two catalytic centers. First, primase generates an RNA primer through three steps: initiation, consisting of dinucleotide synthesis from two nucleotide triphosphates; elongation, resulting in dinucleotide extension; and termination, owing to primase inhibition by a mature 9-mer primer. Then Polα, which works equally well on DNA:RNA and DNA:DNA double helices, intramolecularly catches the template primed by a 9mer RNA and extends the primer with dNTPs. All primosome transactions are highly coordinated by autoregulation through the alternating activation/inhibition of the catalytic centers. This coordination is mediated by the small C-terminal domain of the primase accessory subunit, which forms a tight complex with the template:primer, shuttles between the primase and DNA polymerase active sites, and determines their access to the substrate.
Collapse
|
12
|
Baranovskiy AG, Babayeva ND, Zhang Y, Gu J, Suwa Y, Pavlov YI, Tahirov TH. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome. J Biol Chem 2016; 291:10006-20. [PMID: 26975377 DOI: 10.1074/jbc.m116.717405] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and the Departments of Biochemistry and Molecular Biology and
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and the Departments of Biochemistry and Molecular Biology and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| |
Collapse
|
13
|
An P, Brodsky JL, Pipas JM. The conserved core enzymatic activities and the distinct dynamics of polyomavirus large T antigens. Arch Biochem Biophys 2015; 573:23-31. [PMID: 25752954 PMCID: PMC4865250 DOI: 10.1016/j.abb.2015.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/02/2023]
Abstract
Several human polyomaviruses including JCV, BKV and TSV are associated with diseases, particularly in immunosuppressed patients. While the large T antigen (LT) encoded by the monkey polyomavirus SV40 is well studied, and possesses intrinsic ATPase and DNA helicase activities, the LTs of the human polyomaviruses are relatively uncharacterized. In order to evaluate whether these enzymatic activities, which are required for viral DNA replication, are conserved between polyomaviruses, we performed a comparative study using the LTs from JCV, TSV and SV40. The ATPase and DNA helicase activities and the interaction with the cellular tumor suppressor p53 were assayed for the purified Zn-ATPase domains of the three LTs. We found that all Zn-ATPases were active ATPases. The Zn-ATPase domains also functioned as DNA helicases, although the measured kinetic constants differed among the three proteins. In addition, when tested against four small molecule ATPase inhibitors, the Zn-ATPase domains of TSV was more resistant than that of SV40 and JCV. Our results show that, while LTs from JCV and TSV share the core ATPase and DNA helicase activities, they possess important functional differences that might translate into their respective abilities to infect and replicate in hosts.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
14
|
Suwa Y, Gu J, Baranovskiy AG, Babayeva ND, Pavlov YI, Tahirov TH. Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit. J Biol Chem 2015; 290:14328-37. [PMID: 25847248 DOI: 10.1074/jbc.m115.649954] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å(2). Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes.
Collapse
Affiliation(s)
- Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| | | | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases and the Departments of Biochemistry and Molecular Biology and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| |
Collapse
|
15
|
False-positive TUNEL staining observed in SV40 based transgenic murine prostate cancer models. Transgenic Res 2013; 22:1037-47. [PMID: 23423848 DOI: 10.1007/s11248-013-9694-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
The TRAMP (Transgenic Adenocarcinoma of the Mouse Prostate) and LADY (Probasin-large T antigen transgenic mouse) mice are widely used autochthonous models of prostate cancer. Both models utilise probasin promoters to direct androgen-regulated expression of oncogenic SV40 specifically to epithelial cells of the mouse prostate. The oncogenic processes and phenotypes which result mimic many features of human prostate cancer, making these transgenic mouse models useful experimental systems. The terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP in situ nick end labelling (TUNEL) assay is a commonly used method for the detection of cells undergoing apoptosis. In this study, we demonstrate false-positive TUNEL staining in frozen prostate tissue from TRAMP and LADY mice, which was not observed in non-transgenic control animals and is not due to non-specific binding of labelled-dUTP substrate. The false-positive signal co-localised with large SV40 T-antigen expression. False-positive signal was apparent using multiple commercial TUNEL kits with different detection systems. These results caution against the use of the TUNEL assay for detection of apoptosis in frozen prostate tissue of large T-antigen based autochthonous transgenic models of prostate cancer.
Collapse
|
16
|
An P, Sáenz Robles MT, Pipas JM. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 2013; 66:213-36. [PMID: 22994493 DOI: 10.1146/annurev-micro-092611-150154] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The large tumor antigen (T antigen) encoded by simian virus 40 is an amazing molecular machine because it orchestrates viral infection by modulating multiple fundamental viral and cellular processes. T antigen is required for viral DNA replication, transcription, and virion assembly. In addition, T antigen targets multiple cellular pathways, including those that regulate cell proliferation, cell death, and the inflammatory response. Ectopic T antigen expression results in the immortalization and transformation of many cell types in culture and T antigen induces neoplasia when expressed in rodents. The analysis of the mechanisms by which T antigen carries out its many functions has proved to be a powerful way of gaining insights into cell biology. The accelerating pace at which new polyomaviruses are being discovered provides a collection of novel T antigens that, like simian virus 40, can be used to discover and study key cellular regulatory systems.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
17
|
Bauer RJ, Graham BW, Trakselis MA. Novel interaction of the bacterial-Like DnaG primase with the MCM helicase in archaea. J Mol Biol 2013; 425:1259-73. [PMID: 23357171 DOI: 10.1016/j.jmb.2013.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
DNA priming and unwinding activities are coupled within bacterial primosome complexes to initiate synthesis on the lagging strand during DNA replication. Archaeal organisms contain conserved primase genes homologous to both the bacterial DnaG and archaeo-eukaryotic primase families. The inclusion of multiple DNA primases within a whole domain of organisms complicates the assignment of the metabolic roles of each. In support of a functional bacterial-like DnaG primase participating in archaeal DNA replication, we have detected an interaction of Sulfolobus solfataricus DnaG (SsoDnaG) with the replicative S. solfataricus minichromosome maintenance (SsoMCM) helicase on DNA. The interaction site has been mapped to the N-terminal tier of SsoMCM analogous to bacterial primosome complexes. Mutagenesis within the metal binding site of SsoDnaG verifies a functional homology with bacterial DnaG that perturbs priming activity and DNA binding. The complex of SsoDnaG with SsoMCM stimulates the ATPase activity of SsoMCM but leaves the priming activity of SsoDnaG unchanged. Competition for binding DNA between SsoDnaG and SsoMCM can reduce the unwinding ability. Fluorescent gel shift experiments were used to quantify the binding of the ternary SsoMCM-DNA-SsoDnaG complex. This direct interaction of a bacterial-like primase with a eukaryotic-like helicase suggests that formation of a unique but homologous archaeal primosome complex is possible but may require other components to stimulate activities. Identification of this archaeal primosome complex broadly impacts evolutionary relationships of DNA replication.
Collapse
Affiliation(s)
- Robert J Bauer
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, 801 Chevron, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
18
|
Zhou B, Arnett DR, Yu X, Brewster A, Sowd GA, Xie CL, Vila S, Gai D, Fanning E, Chen XS. Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase α-primase. J Biol Chem 2012; 287:26854-66. [PMID: 22700977 DOI: 10.1074/jbc.m112.363655] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guler GD, Liu H, Vaithiyalingam S, Arnett DR, Kremmer E, Chazin WJ, Fanning E. Human DNA helicase B (HDHB) binds to replication protein A and facilitates cellular recovery from replication stress. J Biol Chem 2011; 287:6469-81. [PMID: 22194613 DOI: 10.1074/jbc.m111.324582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Maintenance of genomic stability in proliferating cells depends on a network of proteins that coordinate chromosomal replication with DNA damage responses. Human DNA helicase B (HELB or HDHB) has been implicated in chromosomal replication, but its role in this coordinated network remains undefined. Here we report that cellular exposure to UV irradiation, camptothecin, or hydroxyurea induces accumulation of HDHB on chromatin in a dose- and time-dependent manner, preferentially in S phase cells. Replication stress-induced recruitment of HDHB to chromatin is independent of checkpoint signaling but correlates with the level of replication protein A (RPA) recruited to chromatin. We show using purified proteins that HDHB physically interacts with the N-terminal domain of the RPA 70-kDa subunit (RPA70N). NMR spectroscopy and site-directed mutagenesis reveal that HDHB docks on the same RPA70N surface that recruits S phase checkpoint signaling proteins to chromatin. Consistent with this pattern of recruitment, cells depleted of HDHB display reduced recovery from replication stress.
Collapse
Affiliation(s)
- Gulfem Dilek Guler
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wendler P, Ciniawsky S, Kock M, Kube S. Structure and function of the AAA+ nucleotide binding pocket. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:2-14. [PMID: 21839118 DOI: 10.1016/j.bbamcr.2011.06.014] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
Members of the diverse superfamily of AAA+ proteins are molecular machines responsible for a wide range of essential cellular processes. In this review we summarise structural and functional data surrounding the nucleotide binding pocket of these versatile complexes. Protein Data Bank (PDB) structures of closely related AAA+ ATPase are overlaid and biologically relevant motifs are displayed. Interactions between protomers are illustrated on the basis of oligomeric structures of each AAA+ subgroup. The possible role of conserved motifs in the nucleotide binding pocket is assessed with regard to ATP binding and hydrolysis, oligomerisation and inter-subunit communication. Our comparison indicates that in particular the roles of the arginine finger and sensor 2 residues differ subtly between AAA+ subgroups, potentially providing a means for functional diversification.
Collapse
Affiliation(s)
- Petra Wendler
- Gene Center, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | |
Collapse
|
21
|
Gai D, Chang YP, Chen XS. Origin DNA melting and unwinding in DNA replication. Curr Opin Struct Biol 2010; 20:756-62. [PMID: 20870402 DOI: 10.1016/j.sbi.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/25/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on recent advances in the structural and biochemical studies of the initiators and the replicative helicases in multiple replication systems, with emphasis on the systems in archaeal and eukaryotic cells. These studies have yielded insights into the plausible mechanisms of the early stages of DNA replication.
Collapse
Affiliation(s)
- Dahai Gai
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|