1
|
Lupu A, Stoleriu G, Nedelcu AH, Perju SN, Gavrilovici C, Baciu G, Mihai CM, Chisnoiu T, Morariu ID, Grigore E, Shawais SK, Salaru DL, Revenco N, Lupu VV. Overview of Oxidative Stress in Systemic Lupus Erythematosus. Antioxidants (Basel) 2025; 14:303. [PMID: 40227251 PMCID: PMC11939823 DOI: 10.3390/antiox14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is frequently diagnosed in female patients, caused by multiple interacting factors. It has a complex pathogenesis which can affect almost any organ, from the kidneys to the cardiovascular, pulmonary, neurological, osteoarticular, and hematological systems. The present narrative review seeks to elucidate the role of reactive oxygen species (ROS) in the pathogenesis of SLE. The central question guiding this study is to what extent these serum protein modifications correlate with disease activity and organ damage in SLE. It is characterized by the decreased apoptosis and increased necrosis of T cells and the NETosis of granulocytes. Given the impact of an SLE diagnosis on one's life, this narrative review aims to evaluate the intricacies of oxidative stress and its relevance to the pathogenesis and treatment of the disease. Topics such as understanding processes of oxidative stress, their damaging pathways, oxidative stress biomarkers, and their role in the future assistance of clinical decisions will be discussed in the article. The accurate determination of biomarkers is taught to improve both the diagnosis and the management of the disease, while antioxidant therapy may open a new door for the treatment.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| | - Gabriela Stoleriu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.S.); (G.B.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Sara Nadeea Perju
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| | - Cristina Gavrilovici
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| | - Ginel Baciu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.S.); (G.B.)
| | - Cristina Maria Mihai
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ecaterina Grigore
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Shwan Karwan Shawais
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| |
Collapse
|
2
|
de la Visitación N, Chen W, Krishnan J, Van Beusecum JP, Amarnath V, Hennen EM, Zhao S, Saleem M, Ao M, Dikalov SI, Dikalova AE, Harrison DG, Patrick DM. Immunoproteasomal Processing of IsoLG-Adducted Proteins Is Essential for Hypertension. Circ Res 2024; 134:1276-1291. [PMID: 38623763 PMCID: PMC11081850 DOI: 10.1161/circresaha.124.324068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.
Collapse
Affiliation(s)
- Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jaya Krishnan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Charleston South Carolina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Venkataraman Amarnath
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Shilin Zhao
- Vanderbilt Center for Quantitative Science, Vanderbilt University Medical Center
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergey I. Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna E. Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
3
|
Anan Y, Itakura M, Shimoda T, Yamaguchi K, Lu P, Nagata K, Dong J, Ueda H, Uchida K. Molecular and structural basis of anti-DNA antibody specificity for pyrrolated proteins. Commun Biol 2024; 7:149. [PMID: 38310133 PMCID: PMC10838295 DOI: 10.1038/s42003-024-05851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Anti-DNA antibodies (Abs), serological hallmarks of systemic lupus erythematosus (SLE) and markers for diagnosis and disease activity, show a specificity for non-nucleic acid molecules, such as N-pyrrolated proteins (pyrP) containing Nε-pyrrole-L-lysine (pyrK) residues. However, the detailed mechanism for the binding of anti-DNA Abs to pyrP remains unknown. In the present study, to gain structural insights into the dual-specificity of anti-DNA Abs, we used phage display to obtain DNA-binding, single-chain variable fragments (scFvs) from SLE-prone mice and found that they also cross-reacted with pyrP. It was revealed that a variable heavy chain (VH) domain is sufficient for the recognition of DNA/pyrP. Identification of an antigenic sequence containing pyrK in pyrP suggested that the presence of both pyrK and multiple acidic amino acid residues plays important roles in the electrostatic interactions with the Abs. X-ray crystallography and computer-predicted simulations of the pyrK-containing peptide-scFv complexes identified key residues of Abs involved in the interaction with the antigens. These data provide a mechanistic insight into the molecular basis of the dual-specificity of the anti-DNA Abs and provide a basis for therapeutic intervention against SLE.
Collapse
Affiliation(s)
- Yusuke Anan
- Laboratory of Food Chemistry and Life Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Masanori Itakura
- Laboratory of Food Chemistry and Life Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tatsuya Shimoda
- Laboratory of Food Chemistry and Life Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kosuke Yamaguchi
- Laboratory of Food Chemistry and Life Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Peng Lu
- Laboratory of Food Biotechnology and Structural Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Koji Nagata
- Laboratory of Food Biotechnology and Structural Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Koji Uchida
- Laboratory of Food Chemistry and Life Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
- Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
4
|
Cerrillos-Gutiérrez JI, Medina-Pérez M, Andrade-Sierra J, De Alba-Razo A, Pacheco-Moisés FP, Cardona-Muñoz EG, Campos-Pérez W, Martínez-López E, Sánchez-Lozano DI, García-Sánchez A, Campos-Bayardo TI, Miranda-Díaz AG. The Inflammatory and Oxidative Status of Newly Diagnosed Class III and Class IV Lupus Nephritis, with Six-Month Follow-Up. Antioxidants (Basel) 2023; 12:2065. [PMID: 38136185 PMCID: PMC10740615 DOI: 10.3390/antiox12122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Lupus nephritis (LN) is the most frequent and severe complication of systemic lupus erythematosus (SLE). A prospective cohort with a six-month follow-up was performed. Twelve SLE patients diagnosed with LN Class III, twelve NL Class IV patients, and twelve healthy control subjects (HC) were included. SLE data, renal function, oxidants, antioxidants, and inflammation were determined at baseline and six-month follow-up. During the six-month follow-up, the SLE Disease Activity Index (SLEDAI-2K) decreased in both LN Class III (20.08 ± 6.92 vs. 11.92 ± 5.87, p < 0.001) and LN Class IV (25.33 ± 6.01 vs. 13.83 ± 5.52, p < 0.001) patients. Furthermore, the values of the C4 component also increased during follow-up for LN Class III (25.36 ± 6.34 vs. 30.91 ± 9.22, p = 0.027) and LN Class IV (12.18 ± 3.90 vs. 20.33 ± 8.95, p = 0.008) groups. Regarding inflammation markers, both groups presented decreased C-reactive protein (CRP), but this was only significant for patients with LN class III (7.93 ± 1.77 vs. 4.72 ± 3.23, p = 0.006). Renal function remained stable in both groups, with no changes in eGFR. Patients with LN Class III and Class IV showed higher baseline levels for lipoperoxides (Class III p < 0.01, Class IV p < 0.1) and carbonyl groups in proteins (Class III p < 0.01, Class IV p < 0.1) compared to HC. Moreover, both groups presented lower baseline values of total antioxidant capacity (Class III p < 0.01, Class IV p < 0.1) and catalase (Class III p < 0.01, Class IV p < 0.1) compared to HCs. However, antioxidant and oxidant markers did not show significant differences between baseline values and at six months for either of the two study groups. In conclusion, patients show an imbalance in the oxidative state characterized by the increase in the oxidants LPO and protein carbonyl groups and the decrease in the activity of the antioxidant enzymes TAC and CAT compared to HC. However, the patients did not present an increase in disease activity and renal function improvement. The glomerular filtration rate did not change during the length of the study, and SLEDAI -2K, C3, and C4 improved. The early co-management between Rheumatologists and Nephrologists is essential to prevent the rapid progression of LN. It would be interesting to administer antioxidant supplements to patients with a recent diagnosis of LN and evaluate its effect in a follow-up study.
Collapse
Affiliation(s)
- José Ignacio Cerrillos-Gutiérrez
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.I.C.-G.); (M.M.-P.); (J.A.-S.)
| | - Miguel Medina-Pérez
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.I.C.-G.); (M.M.-P.); (J.A.-S.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.I.C.-G.); (M.M.-P.); (J.A.-S.)
| | - Alejandra De Alba-Razo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.D.A.-R.); (E.G.C.-M.); (D.I.S.-L.); (A.G.-S.); (T.I.C.-B.)
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.D.A.-R.); (E.G.C.-M.); (D.I.S.-L.); (A.G.-S.); (T.I.C.-B.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.D.A.-R.); (E.G.C.-M.); (D.I.S.-L.); (A.G.-S.); (T.I.C.-B.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.D.A.-R.); (E.G.C.-M.); (D.I.S.-L.); (A.G.-S.); (T.I.C.-B.)
| | - Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.D.A.-R.); (E.G.C.-M.); (D.I.S.-L.); (A.G.-S.); (T.I.C.-B.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.D.A.-R.); (E.G.C.-M.); (D.I.S.-L.); (A.G.-S.); (T.I.C.-B.)
| |
Collapse
|
5
|
Jiang X, Xiao X, Li H, Gong Y, Wang M, Yang H, Zhao L, Jiang Y, Wei Y, Zhao C, Li J, Chen Y, Feng S, Deng H, Ma S, Xu Y, Liu Y, Tsokos GC, Jiang M, Zhang X. Oxidized galectin-1 in SLE fails to bind the inhibitory receptor VSTM1 and increases reactive oxygen species levels in neutrophils. Cell Mol Immunol 2023; 20:1339-1351. [PMID: 37737309 PMCID: PMC10616122 DOI: 10.1038/s41423-023-01084-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Inhibitory immune receptors set thresholds for immune cell activation, and their deficiency predisposes a person to autoimmune responses. However, the agonists of inhibitory immune receptors remain largely unknown, representing untapped sources of treatments for autoimmune diseases. Here, we show that V-set and transmembrane domain-containing 1 (VSTM1) is an inhibitory receptor and that its binding by the competent ligand soluble galectin-1 (Gal1) is essential for maintaining neutrophil viability mediated by downregulated reactive oxygen species production. However, in patients with systemic lupus erythematosus (SLE), circulating Gal1 is oxidized and cannot be recognized by VSTM1, leading to increased intracellular reactive oxygen species levels and reduced neutrophil viability. Dysregulated neutrophil function or death contributes significantly to the pathogenesis of SLE by providing danger molecules and autoantigens that drive the production of inflammatory cytokines and the activation of autoreactive lymphocytes. Interestingly, serum levels of glutathione, an antioxidant able to convert oxidized Gal1 to its reduced form, were negatively correlated with SLE disease activity. Taken together, our findings reveal failed inhibitory Gal1/VSTM1 pathway activation in patients with SLE and provide important insights for the development of effective targeted therapies.
Collapse
Affiliation(s)
- Xu Jiang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyue Xiao
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yiyi Gong
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College; The Ministry of Education Key Laboratory, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College; The Ministry of Education Key Laboratory, Beijing, China
| | - Ying Jiang
- Department of Rheumatology, Xiangya Hospital, Central South University, Hunan, China
| | - Yanping Wei
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chongchong Zhao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jin Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shiliang Ma
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Minghong Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Merino de Paz N, García-González M, Gómez-Bernal F, Quevedo-Abeledo JC, de Vera-González A, López-Mejias R, Abreu-González P, Martín-González C, González-Gay MÁ, Ferraz-Amaro I. Relationship between Malondialdehyde Serum Levels and Disease Features in a Full Characterized Series of 284 Patients with Systemic Lupus Erythematosus. Antioxidants (Basel) 2023; 12:1535. [PMID: 37627530 PMCID: PMC10451961 DOI: 10.3390/antiox12081535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Malondialdehyde (MDA) is a marker of oxidative stress and antioxidant status. Oxidative stress has been observed to be increased in systemic lupus erythematosus (SLE). Some studies have shown that MDA is upregulated in SLE compared to controls. However, the literature lacks reports regarding the relationship of MDA to disease manifestations. This is relevant since SLE is a multisystemic disease which may affect virtually any organ in the body. In this study, we set out to analyze how MDA serum levels are associated with disease expression in a large series of SLE patients who were fully characterized in clinical and laboratory terms. A total of 284 patients with SLE were recruited. Serum levels of MDA, and the activity (SLEDAI), severity (Katz) and damage index (SLICC-DI) scores, full lipid profile, and carotid subclinical atherosclerosis were assessed. In addition, a full characterization of the complement system was performed in SLE patients' samples. Multivariable linear regression analysis was executed to study the relationship between clinical and laboratory disease characteristics and MDA. A statistically significant negative relationship was found between disease duration and MDA. In contrast, the presence of anti-nucleosome antibodies was positively associated with MDA. Regarding the SLICC-DI areas, both the musculoskeletal domain and the cutaneous domain were significantly related to higher serum MDA values. Furthermore, after adjustment for confounding factors, lower levels of the classical complement pathway, which denotes activation, were associated with higher serum levels of MDA. In conclusion, cumulative musculoskeletal and skin damage in SLE patients is associated with superior serum levels of MDA. In addition, activation of the complement system is also related to higher circulating MDA levels.
Collapse
Affiliation(s)
- Nayra Merino de Paz
- Division of Dermatology, Dermamedicin Clínicas, 38004 Santa Cruz de Tenerife, Spain;
| | - María García-González
- Division of Rheumatology, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain;
| | - Fuensanta Gómez-Bernal
- Division of Central Laboratory, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (F.G.-B.); (A.d.V.-G.)
| | | | - Antonia de Vera-González
- Division of Central Laboratory, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (F.G.-B.); (A.d.V.-G.)
| | - Raquel López-Mejias
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, 39011 Santander, Spain;
| | - Pedro Abreu-González
- Unit of Physiology, Department of Basic Medical Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Candelaria Martín-González
- Division of Internal Medicine, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain;
- Department of Internal Medicine, University of La Laguna (ULL), 38200 Santa Cruz de Tenerife, Spain
| | - Miguel Á. González-Gay
- Division of Rheumatology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department of Medicine, University of Cantabria, 39005 Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Iván Ferraz-Amaro
- Division of Rheumatology, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain;
- Department of Internal Medicine, University of La Laguna (ULL), 38200 Santa Cruz de Tenerife, Spain
| |
Collapse
|
7
|
de la Visitación N, Chen W, Krishnan J, Van Beusecum JP, Amarnath V, Hennen EM, Zhao S, Saleem M, Ao M, Harrison DG, Patrick DM. Immunoproteasomal Processing of Isolevuglandin Adducts in Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536054. [PMID: 37383945 PMCID: PMC10299468 DOI: 10.1101/2023.04.10.536054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Isolevuglandins (isoLGs) are lipid aldehydes that form in the presence of reactive oxygen species (ROS) and drive immune activation. We found that isoLG-adducts are presented within the context of major histocompatibility complexes (MHC-I) by an immunoproteasome dependent mechanism. Pharmacologic inhibition of LMP7, the chymotrypsin subunit of the immunoproteasome, attenuates hypertension and tissue inflammation in the angiotensin II (Ang II) model of hypertension. Genetic loss of function of all immunoproteasome subunits or conditional deletion of LMP7 in dendritic cell (DCs) or endothelial cells (ECs) attenuated hypertension, reduced aortic T cell infiltration, and reduced isoLG-adduct MHC-I interaction. Furthermore, isoLG adducts structurally resemble double-stranded DNA and contribute to the activation of STING in ECs. These studies define a critical role of the immunoproteasome in the processing and presentation of isoLG-adducts. Moreover they define a role of LMP7 as a regulator of T cell activation and tissue infiltration in hypertension.
Collapse
|
8
|
Uchida K. Conversion of proteins into DNA mimetics by lipid peroxidation. Arch Biochem Biophys 2022; 728:109374. [PMID: 35964440 DOI: 10.1016/j.abb.2022.109374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
Conversion of primary amino groups to pyrrole derivatives occurs by modifying lysine residues of proteins with lipid peroxidation products. Pyrrolated proteins exhibit electronegativity and electronic properties and are recognized by DNA-binding molecules, such as anti-DNA autoantibodies and DNA intercalators. This review summarizes the state of knowledge about the chemistry of this unique conversion reaction of proteins into DNA mimetics by lipid peroxidation.
Collapse
Affiliation(s)
- Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan; Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
9
|
Patrick DM, de la Visitación N, Krishnan J, Chen W, Ormseth MJ, Stein CM, Davies SS, Amarnath V, Crofford LJ, Williams JM, Zhao S, Smart CD, Dikalov S, Dikalova A, Xiao L, Van Beusecum JP, Ao M, Fogo AB, Kirabo A, Harrison DG. Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus. JCI Insight 2022; 7:e136678. [PMID: 35608913 PMCID: PMC9310530 DOI: 10.1172/jci.insight.136678] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
We describe a mechanism responsible for systemic lupus erythematosus (SLE). In humans with SLE and in 2 SLE murine models, there was marked enrichment of isolevuglandin-adducted proteins (isoLG adducts) in monocytes and dendritic cells. We found that antibodies formed against isoLG adducts in both SLE-prone mice and humans with SLE. In addition, isoLG ligation of the transcription factor PU.1 at a critical DNA binding site markedly reduced transcription of all C1q subunits. Treatment of SLE-prone mice with the specific isoLG scavenger 2-hydroxybenzylamine (2-HOBA) ameliorated parameters of autoimmunity, including plasma cell expansion, circulating IgG levels, and anti-dsDNA antibody titers. 2-HOBA also lowered blood pressure, attenuated renal injury, and reduced inflammatory gene expression uniquely in C1q-expressing dendritic cells. Thus, isoLG adducts play an essential role in the genesis and maintenance of systemic autoimmunity and hypertension in SLE.
Collapse
Affiliation(s)
- David M. Patrick
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Division of Clinical Pharmacology and
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Néstor de la Visitación
- Division of Clinical Pharmacology and
- Department of Pharmacology, University of Granada, Granada, Spain
| | | | - Wei Chen
- Division of Clinical Pharmacology and
| | - Michelle J. Ormseth
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Rheumatology and Immunology, Department of Medicine, and
| | - C. Michael Stein
- Division of Clinical Pharmacology and
- Division of Rheumatology and Immunology, Department of Medicine, and
| | | | | | | | | | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles D. Smart
- Division of Clinical Pharmacology and
- Department of Molecular Physiology and Biophysics
| | | | | | | | - Justin P. Van Beusecum
- Ralph H. Johnson VA Medical Center and
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - David G. Harrison
- Division of Clinical Pharmacology and
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Ntouros PA, Vlachogiannis NI, Pappa M, Nezos A, Mavragani CP, Tektonidou MG, Souliotis VL, Sfikakis PP. Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol 2021; 229:108765. [PMID: 34089859 PMCID: PMC8171000 DOI: 10.1016/j.clim.2021.108765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.
Collapse
Affiliation(s)
- Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
11
|
Krzemień P, Kasperczyk S, Banach M, Kasperczyk A, Dobrakowski M, Tomasik T, Windak A, Mastej M, Catapano A, Ray KK, Mikhailidis DP, Toth PP, Howard G, Lip GY, Tomaszewski M, Charchar FJ, Sattar N, Williams B, MacDonald TM, Penson PE, Jóźwiak JJ. Serum antinuclear autoantibodies are associated with measures of oxidative stress and lifestyle factors: analysis of LIPIDOGRAM2015 and LIPIDOGEN2015 studies. Arch Med Sci 2021; 19:1214-1227. [PMID: 37732061 PMCID: PMC10507751 DOI: 10.5114/aoms/139313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 09/22/2023] Open
Abstract
Introduction Oxidative stress is one of many factors suspected to promote antinuclear autoantibody (ANA) formation. Reactive oxygen species can induce changes in the antigenic structure of macromolecules, causing the immune system to treat them as "neo-antigens" and start production of autoantibodies. This study was designed to evaluate the relationship between oxidative stress markers, lifestyle factors and the detection of ANA. Material and methods We examined measures of oxidative stress indices of free-radical damage to lipids and proteins, such as total oxidant status (TOS), concentration of protein thiol groups (PSH), and malondialdehyde (MDA), activity of superoxide dismutase (SOD) in 1731 serum samples. The parameters of the non-enzymatic antioxidant system, such as total antioxidant status (TAS) and uric acid (UA) concentration, were also measured and the oxidative stress index (OSI-index) was calculated. All samples were tested for the presence of ANA using an indirect immunofluorescence assay (IIFA). Results The presence of ANA in women was associated with lower physical activity (p = 0.036), less frequent smoking (p = 0.007) and drinking of alcohol (p = 0.024) accompanied by significant changes in SOD isoenzymes activity (p < 0.001) and a higher uric acid (UA) concentration (p < 0.001). In ANA positive males we observed lower concentrations of PSH (p = 0.046) and increased concentrations of MDA (p = 0.047). Conclusions The results indicate that local oxidative stress may be associated with increased probability of ANA formation in a sex-specific manner.
Collapse
Affiliation(s)
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice Poland
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice Poland
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice Poland
| | - Tomasz Tomasik
- Department of Family Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Windak
- Department of Family Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Alberico Catapano
- Department of Pharmacological Sciences, University of Milano and Multimedica IRCCS, Milano, Italy
| | - Kausik K. Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, Kensington, London, United Kingdom
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital, University College London, London, United Kingdom
| | - Peter P. Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore MD, Maryland, USA
- CGH Medical Center, Sterling, Illinois IL, USA
| | - George Howard
- Department of Biostatistics, School of Public Health of Alabama at Birmingham, Birmingham AL, USA
| | - Gregory Y.H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool L14 3PE, United Kingdom
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fadi J. Charchar
- School of Health and Life Sciences, Federation University Australia, Ballarat VIC 3350, Victoria, Australia
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, United Kingdom
| | - Bryan Williams
- NIHR University College London Biomedical Research Centre, University College London and University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Thomas M. MacDonald
- MEMO Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Peter E. Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Jacek J. Jóźwiak
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Opole, Opole, Poland
| |
Collapse
|
12
|
Wlazlo E, Mehrad B, Morel L, Scindia Y. Iron Metabolism: An Under Investigated Driver of Renal Pathology in Lupus Nephritis. Front Med (Lausanne) 2021; 8:643686. [PMID: 33912577 PMCID: PMC8071941 DOI: 10.3389/fmed.2021.643686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Nephritis is a common manifestation of systemic lupus erythematosus, a condition associated with inflammation and iron imbalance. Renal tubules are the work horse of the nephron. They contain a large number of mitochondria that require iron for oxidative phosphorylation, and a tight control of intracellular iron prevents excessive generation of reactive oxygen species. Iron supply to the kidney is dependent on systemic iron availability, which is regulated by the hepcidin-ferroportin axis. Most of the filtered plasma iron is reabsorbed in proximal tubules, a process that is controlled in part by iron regulatory proteins. This review summarizes tubulointerstitial injury in lupus nephritis and current understanding of how renal tubular cells regulate intracellular iron levels, highlighting the role of iron imbalance in the proximal tubules as a driver of tubulointerstitial injury in lupus nephritis. We propose a model based on the dynamic ability of iron to catalyze reactive oxygen species, which can lead to an accumulation of lipid hydroperoxides in proximal tubular epithelial cells. These iron-catalyzed oxidative species can also accentuate protein and autoantibody-induced inflammatory transcription factors leading to matrix, cytokine/chemokine production and immune cell infiltration. This could potentially explain the interplay between increased glomerular permeability and the ensuing tubular injury, tubulointerstitial inflammation and progression to renal failure in LN, and open new avenues of research to develop novel therapies targeting iron metabolism.
Collapse
Affiliation(s)
- Ewa Wlazlo
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States.,Division of Nephrology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Chikazawa M, Yoshitake J, Lim SY, Iwata S, Negishi L, Shibata T, Uchida K. Glycolaldehyde is an endogenous source of lysine N-pyrrolation. J Biol Chem 2020; 295:7697-7709. [PMID: 32332094 DOI: 10.1074/jbc.ra120.013179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Indexed: 11/06/2022] Open
Abstract
Lysine N-pyrrolation converts lysine residues to N ϵ-pyrrole-l-lysine (pyrK) in a covalent modification reaction that significantly affects the chemical properties of proteins, causing them to mimic DNA. pyrK in proteins has been detected in vivo, indicating that pyrrolation occurs as an endogenous reaction. However, the source of pyrK remains unknown. In this study, on the basis of our observation in vitro that pyrK is present in oxidized low-density lipoprotein and in modified proteins with oxidized polyunsaturated fatty acids, we used LC-electrospray ionization-MS/MS coupled with a stable isotope dilution method to perform activity-guided separation of active molecules in oxidized lipids and identified glycolaldehyde (GA) as a pyrK source. The results from mechanistic experiments to study GA-mediated lysine N-pyrrolation suggested that the reactions might include GA oxidation, generating the dialdehyde glyoxal, followed by condensation reactions of lysine amino groups with GA and glyoxal. We also studied the functional significance of GA-mediated lysine N-pyrrolation in proteins and found that GA-modified proteins are recognized by apolipoprotein E, a binding target of pyrrolated proteins. Moreover, GA-modified proteins triggered an immune response to pyrrolated proteins, and monoclonal antibodies generated from mice immunized with GA-modified proteins specifically recognized pyrrolated proteins. These findings reveal that GA is an endogenous source of DNA-mimicking pyrrolated proteins and may provide mechanistic insights relevant for innate and autoimmune responses associated with glucose metabolism and oxidative stress.
Collapse
Affiliation(s)
- Miho Chikazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshitake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Sei-Young Lim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Central Laboratory, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Shibata
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan .,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
14
|
|
15
|
Wang H, Wang G, Liang Y, Du X, Boor PJ, Sun J, Khan MF. Redox regulation of hepatic NLRP3 inflammasome activation and immune dysregulation in trichloroethene-mediated autoimmunity. Free Radic Biol Med 2019; 143:223-231. [PMID: 31419475 PMCID: PMC6848782 DOI: 10.1016/j.freeradbiomed.2019.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Trichloroethene (TCE) exposure is associated with the development of various autoimmune diseases (ADs), including autoimmune hepatitis (AIH) and systemic lupus erythematosus (SLE), potentially through the generation of excessive reactive oxygen and nitrogen species (RONS; oxidative stress). However, the mechanisms by which oxidative stress contributes to these TCE-mediated ADs are not fully understood, and are the focus of current investigation. Female MRL+/+ mice were treated with TCE along with or without antioxidant N-acetylcysteine (NAC) for 6 weeks (TCE, 10 mmol/kg, i. p., every 4th day; NAC, 250 mg/kg/day via drinking water). TCE-treated mice had elevated antinuclear antibodies (ANA) and 4-hydroxynonenal (HNE)-specific circulating immune complexes, suggesting the association of TCE-induced oxidative stress with autoimmune response. In addition, TCE exposure led to prominent lobular inflammation with sinusoid dilation, increased sinusoidal cellularity and increased staining for proliferating cell nuclear antigen (PCNA), confirming inflammatory and hepatocellular cell proliferation. Importantly, TCE exposure resulted in the activation of hepatic inflammasome (NLRP3 and caspase-1) and up-regulation of pro-inflammatory cytokine IL-1β, and these changes were attenuated by NAC supplementation. TCE treatment also led to dysregulation of hepatic immune response as evident from markedly increased hepatic lymphocyte infiltration (especially B cells) and imbalance between Tregs (decreased) and Th17 cells (increased). Interestingly, TCE-mediated dysregulation of various hepatic and splenic immune cells was also effectively attenuated by NAC. Taken together, our findings provide evidence for TCE-mediated inflammasome activation, infiltration of various immune cells, and skewed balance of Treg and Th17 cells in the liver. The attenuation of TCE-mediated hepatic inflammasome activation and immune responses by NAC further supports a critical role of oxidative stress in TCE-mediated inflammation and autoimmunity. These novel findings could help in designing therapeutic strategies for such ADs.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xiaotang Du
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paul J Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jiaren Sun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
16
|
Scolnick B. Hypothesis: Clues From Mammalian Hibernation for Treating Patients With Anorexia Nervosa. Front Psychol 2018; 9:2159. [PMID: 30483182 PMCID: PMC6240652 DOI: 10.3389/fpsyg.2018.02159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
This hypothesis is that anorexia nervosa (AN) is a biologically driven disorder, and mammalian hibernation may offer clues to its pathogenesis. Using this approach, this hypothesis offers suggestions for employing heart rate variability as an early diagnostic test for AN; employing the ketogenic diet for refeeding patients, attending to omega 3:6 ratio of polyunsaturated fatty acids (PUFAs) in the refeeding diet; and exploring clinical trials of the endocannabinoid-like agent, palmitoylethanolamde for patients with AN. This hypothesis also explores the role of lipids and autoimmune phenomena in AN, and suggest a lipodomics study to search for antibodies in the serum on patients with AN.
Collapse
Affiliation(s)
- Barbara Scolnick
- Psychology and Brain Science, Boston University, Boston, MA, United States
| |
Collapse
|
17
|
The possible role of an autoimmune mechanism in the etiopathogenesis of Parkinson’s disease. J Clin Neurosci 2018; 54:63-68. [DOI: 10.1016/j.jocn.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 11/22/2022]
|
18
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
19
|
Sousa BC, Pitt AR, Spickett CM. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic Biol Med 2017; 111:294-308. [PMID: 28192230 DOI: 10.1016/j.freeradbiomed.2017.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
The process of lipid oxidation generates a diverse array of small aldehydes and carbonyl-containing compounds, which may occur in free form or esterified within phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of fatty acyl chains following radical oxidation, and the products can be subdivided into alkanals, alkenals (usually α,β-unsaturated), γ-substituted alkenals and bis-aldehydes. Isolevuglandins are non-fragmented di-carbonyl compounds derived from H2-isoprostanes, and oxidation of the ω-3-fatty acid docosahexenoic acid yield analogous 22 carbon neuroketals. Non-radical oxidation by hypochlorous acid can generate α-chlorofatty aldehydes from plasmenyl phospholipids. Most of these compounds are reactive and have generally been considered as toxic products of a deleterious process. The reactivity is especially high for the α,β-unsaturated alkenals, such as acrolein and crotonaldehyde, and for γ-substituted alkenals, of which 4-hydroxy-2-nonenal and 4-oxo-2-nonenal are best known. Nevertheless, in recent years several previously neglected aldehydes have been investigated and also found to have significant reactivity and biological effects; notable examples are 4-hydroxy-2-hexenal and 4-hydroxy-dodecadienal. This has led to substantial interest in the biological effects of all of these lipid oxidation products and their roles in disease, including proposals that HNE is a second messenger or signalling molecule. However, it is becoming clear that many of the effects elicited by these compounds relate to their propensity for forming adducts with nucleophilic groups on proteins, DNA and specific phospholipids. This emphasizes the need for good analytical methods, not just for free lipid oxidation products but also for the resulting adducts with biomolecules. The most informative methods are those utilizing HPLC separations and mass spectrometry, although analysis of the wide variety of possible adducts is very challenging. Nevertheless, evidence for the occurrence of lipid-derived aldehyde adducts in biological and clinical samples is building, and offers an exciting area of future research.
Collapse
Affiliation(s)
- Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
20
|
Wang G, Wang J, Ansari GAS, Khan MF. Autoimmune potential of perchloroethylene: Role of lipid-derived aldehydes. Toxicol Appl Pharmacol 2017; 333:76-83. [PMID: 28818516 DOI: 10.1016/j.taap.2017.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023]
Abstract
Tetrachloroethene (perchloroethylene, PCE), an ubiquitous environmental contaminant, has been implicated in inducing autoimmunity/autoimmune diseases (ADs), including systemic lupus erythematosus (SLE) and scleroderma in humans. However, experimental evidence suggesting the potential of PCE in mediating autoimmunity is lacking. This study was, therefore, undertaken to explore PCE's potential in inducing/exacerbating an autoimmune response. Six-week old female MRL+/+ mice, in groups of 6 each, were treated with PCE (0.5mg/ml) via drinking water for 12, 18 and 24weeks and markers of autoimmunity and oxidative stress were evaluated. PCE exposure led to significant increases in serum anti-nuclear antibodies (ANA), anti-dsDNA and anti-scleroderma-70 (anti-Scl-70) antibodies at 18weeks and, to a greater extent at 24weeks, suggesting that PCE exposure exacerbated autoimmunity in our animal model. The increases in autoantibodies were associated with time-dependent increases in malondialdehyde (MDA)-protein adducts and their antibodies, as well as significantly decreased levels of antioxidants GSH and SOD. The splenocytes isolated from mice treated with PCE for 18 and 24weeks showed greater Th17 cell proliferation and increased release of IL-17 in culture supernatants following stimulation with MDA-mouse serum albumin adducts, suggesting that MDA-modified proteins may act as an immunologic trigger by activating Th17 cells and contribute to PCE-mediated autoimmunity. Our studies thus provide an experimental evidence that PCE induces/exacerbates an autoimmune response and lipid-derived aldehydes (such as MDA) contribute to this response.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - G A Shakeel Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Otsuki N, Konno T, Kurahashi T, Suzuki S, Lee J, Okada F, Iuchi Y, Homma T, Fujii J. The SOD1 transgene expressed in erythroid cells alleviates fatal phenotype in congenic NZB/NZW-F1 mice. Free Radic Res 2016; 50:793-800. [PMID: 27080108 DOI: 10.1080/10715762.2016.1178388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress due to a superoxide dismutase 1 (SOD1) deficiency causes anemia and autoimmune responses, which are phenotypically similar to autoimmune hemolytic anemia (AIHA) and systemic lupus erythematosus (SLE) in C57BL/6 mice and aggravates AIHA pathogenesis in New Zealand black (NZB) mice. We report herein on an evaluation of the role of reactive oxygen species (ROS) in a model mouse with inherited SLE, that is, F1 mice of the NZB × New Zealand white (NZW) strain. The ROS levels within red blood cells (RBCs) of the F1 mice were similar to the NZW mice but lower compared to the NZB mice throughout adult period. Regarding SLE pathogenesis, we examined the effects of an SOD1 deficiency or the overexpression of human SOD1 in erythroid cells by establishing corresponding congenic F1 mice. A SOD1 deficiency caused an elevation in ROS production, methemoglobin content, and hyperoxidation of peroxiredoxin in RBC of the F1 mice, which were all consistent with elevated oxidative stress. However, while the overexpression of human SOD1 in erythroid cells extended the life span of the congenic F1 mice, the SOD1 deficiency had no effect on life span compared to wild-type F1 mice. It is generally recognized that NZW mice possess a larval defect in the immune system and that NZB mice trigger an autoimmune reaction in the F1 mice. Our results suggest that the oxidative insult originated from the NZB mouse background has a functional role in triggering an aberrant immune reaction, leading to fatal responses in F1 mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takujiro Homma
- a Department of Biochemistry and Molecular Biology , Graduate School of Medical Science, Yamagata University , Yamagata , Japan
| | | |
Collapse
|
22
|
Abstract
Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, and Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
23
|
Strollo R, Vinci C, Arshad MH, Perrett D, Tiberti C, Chiarelli F, Napoli N, Pozzilli P, Nissim A. Antibodies to post-translationally modified insulin in type 1 diabetes. Diabetologia 2015; 58:2851-60. [PMID: 26350612 DOI: 10.1007/s00125-015-3746-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/11/2015] [Indexed: 01/04/2023]
Abstract
AIM/HYPOTHESIS Insulin is the most specific beta cell antigen and a potential primary autoantigen in type 1 diabetes. Insulin autoantibodies (IAAs) are the earliest marker of beta cell autoimmunity; however, only slightly more than 50% of children and even fewer adults newly diagnosed with type 1 diabetes are IAA positive. The aim of this investigation was to determine if oxidative post-translational modification (oxPTM) of insulin by reactive oxidants associated with islet inflammation generates neoepitopes that stimulate an immune response in individuals with type 1 diabetes. METHODS oxPTM of insulin was generated using ribose and various reactive oxygen species. Modifications were analysed by SDS-PAGE, three-dimensional fluorescence and MS. Autoreactivity to oxPTM insulin (oxPTM-INS) was observed by ELISA and western blotting, using sera from participants with type 1 or type 2 diabetes and healthy controls as probes. IAA was measured using the gold-standard radiobinding assay (RBA). RESULTS MS of oxPTM-INS identified chlorination of Tyr16 and Tyr26; oxidation of His5, Cys7 and Phe24; and glycation of Lys29 and Phe1 in chain B. Significantly higher binding to oxPTM-INS vs native insulin was observed in participants with type 1 diabetes, with 84% sensitivity compared with 61% sensitivity for RBA. oxPTM-INS autoantibodies and IAA co-existed in 50% of those with type 1 diabetes. Importantly 34% of those with diabetes who were IAA negative were oxPTM-INS positive. Altogether, 95% of participants with type 1 diabetes presented with autoimmunity to insulin by RBA, oxPTM-INS or both. Binding to oxPTM-INS was directed towards oxPTM-INS fragments with slower mobility than native insulin. CONCLUSION/INTERPRETATION These data suggest that oxPTM-INS is a potential autoantigen in individuals with new-onset type 1 diabetes.
Collapse
Affiliation(s)
- Rocky Strollo
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Chiara Vinci
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Mayda H Arshad
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David Perrett
- BioAnalysis, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudio Tiberti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Ospedale Policlinico, Chieti, Italy
| | - Nicola Napoli
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Paolo Pozzilli
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy.
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is characterized by autoantibodies directed against nuclear autoantigens normally concealed from immune recognition in healthy individuals. Here, we summarize recently identified mechanisms of abnormal cell death leading to exposure and aberrant processing of nucleoprotein self antigens, and discuss their role in the SLE pathogenesis. RECENT FINDINGS During the past few years, the unveiling of several new forms of cell death has expanded our understanding beyond the simple view of 'apoptotic' versus 'necrotic' cell death. SLE patients show abnormalities in cell death at several levels, including increased rates of apoptosis, necrosis, and autophagy, as well as reduced clearance of dying cells. These abnormalities lead to an increased autoantigen burden and antigen modifications, such as nucleic acid oxidation that increases the inflammatory properties of self antigens. Recent investigations have highlighted the role of opsonins in determining the immunogenic versus tolerogenic characteristics of self antigens. SUMMARY Dysregulation of different forms of programmed cell death contributes to increased exposure, availability, and immunogenic characteristics of intracellular self antigens, which all participate in development of lupus autoimmunity. As our understanding of abnormalities of cell death in SLE advances, potential therapeutic opportunities await human implementation.
Collapse
|
25
|
Fujii J, Kurahashi T, Konno T, Homma T, Iuchi Y. Oxidative stress as a potential causal factor for autoimmune hemolytic anemia and systemic lupus erythematosus. World J Nephrol 2015; 4:213-222. [PMID: 25949934 PMCID: PMC4419130 DOI: 10.5527/wjn.v4.i2.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/05/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
The kidneys and the blood system mutually exert influence in maintaining homeostasis in the body. Because the kidneys control erythropoiesis by producing erythropoietin and by supporting hematopoiesis, anemia is associated with kidney diseases. Anemia is the most prevalent genetic disorder, and it is caused by a deficiency of glucose 6-phosphate dehydrogenase (G6PD), for which sulfhydryl oxidation due to an insufficient supply of NADPH is a likely direct cause. Elevated reactive oxygen species (ROS) result in the sulfhydryl oxidation and hence are another potential cause for anemia. ROS are elevated in red blood cells (RBCs) under superoxide dismutase (SOD1) deficiency in C57BL/6 mice. SOD1 deficient mice exhibit characteristics similar to autoimmune hemolytic anemia (AIHA) and systemic lupus erythematosus (SLE) at the gerontic stage. An examination of AIHA-prone New Zealand Black (NZB) mice, which have normal SOD1 and G6PD genes, indicated that ROS levels in RBCs are originally high and further elevated during aging. Transgenic overexpression of human SOD1 in erythroid cells effectively suppresses ROS elevation and ameliorates AIHA symptoms such as elevated anti-RBC antibodies and premature death in NZB mice. These results support the hypothesis that names oxidative stress as a risk factor for AIHA and other autoimmune diseases such as SLE. Herein we discuss the association between oxidative stress and SLE pathogenesis based mainly on the genetic and phenotypic characteristics of NZB and New Zealand white mice and provide insight into the mechanism of SLE pathogenesis.
Collapse
|
26
|
Miyashita H, Chikazawa M, Otaki N, Hioki Y, Shimozu Y, Nakashima F, Shibata T, Hagihara Y, Maruyama S, Matsumi N, Uchida K. Lysine pyrrolation is a naturally-occurring covalent modification involved in the production of DNA mimic proteins. Sci Rep 2014; 4:5343. [PMID: 24938734 PMCID: PMC4061549 DOI: 10.1038/srep05343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/28/2014] [Indexed: 11/09/2022] Open
Abstract
Covalent modification of proteins exerts significant effects on their chemical properties and has important functional and regulatory consequences. We now report the identification and verification of an electrically-active form of modified proteins recognized by a group of small molecules commonly used to interact with DNA. This previously unreported property of proteins was initially discovered when the γ-ketoaldehydes were identified as a source of the proteins stained by the DNA intercalators. Using 1,4-butanedial, the simplest γ-ketoaldehyde, we characterized the structural and chemical criteria governing the recognition of the modified proteins by the DNA intercalators and identified Nε-pyrrolelysine as a key adduct. Unexpectedly, the pyrrolation conferred an electronegativity and electronic properties on the proteins that potentially constitute an electrical mimic to the DNA. In addition, we found that the pyrrolated proteins indeed triggered an autoimmune response and that the production of specific antibodies against the pyrrolated proteins was accelerated in human systemic lupus erythematosus. These findings and the apparent high abundance of Nε-pyrrolelysine in vivo suggest that protein pyrrolation could be an endogenous source of DNA mimic proteins, providing a possible link connecting protein turnover and immune disorders.
Collapse
Affiliation(s)
- Hiroaki Miyashita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Miho Chikazawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Natsuki Otaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yusuke Hioki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuki Shimozu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- 1] Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan [2] PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yoshihisa Hagihara
- National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Graduate School of Medical Sciences, Nagoya University, Nagoya 466-8550, Japan
| | - Noriyoshi Matsumi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
27
|
Ryan BJ, Nissim A, Winyard PG. Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases. Redox Biol 2014; 2:715-24. [PMID: 24955328 PMCID: PMC4062766 DOI: 10.1016/j.redox.2014.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023] Open
Abstract
Tissue inflammation results in the production of numerous reactive oxygen, nitrogen and chlorine species, in addition to the products of lipid and sugar oxidation. Some of these products are capable of chemically modifying amino acids. This in turn results in changes to the structure and function of proteins. Increasing evidence demonstrates that such oxidative post-translational modifications result in the generation of neo-epitopes capable of eliciting both innate and adaptive immune responses. In this paper, we focus on how free radicals and related chemical species generated in inflammatory environments modulate the antigenicity of self-proteins, resulting in immune responses which involve the generation of autoantibodies against key autoantigens in autoimmune diseases. As examples, we will focus on Ro-60 and C1q in systemic lupus erythematosus, along with type-II collagen in rheumatoid arthritis. This review also covers some of the emerging literature which demonstrates that neo-epitopes generated by oxidation are conserved, as exemplified by the evolutionarily conserved pathogen-associated molecular patterns (PAMPs). We discuss how these observations relate to the pathogenesis of both human autoimmune diseases and inflammatory disease, such as atherosclerosis. The potential for these neo-epitopes and the immune responses against them to act as biomarkers or therapeutic targets is also discussed. Oxidants can generate stable post-translational modifications (PTMs) on proteins. Oxidative PTMs are recognised in evolutionarily-conserved innate immune responses. These PTMs can represent neo-epitopes that break tolerance in autoimmune disease. Antibodies targeting these PTMs in diseases e.g. RA and SLE, can be biomarkers.
Collapse
Affiliation(s)
- Brent J. Ryan
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Paul G. Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
- Corresponding author.
| |
Collapse
|
28
|
Abstract
Oxidative stress is increased in systemic lupus erythematosus (SLE), and it contributes to immune system dysregulation, abnormal activation and processing of cell-death signals, autoantibody production and fatal comorbidities. Mitochondrial dysfunction in T cells promotes the release of highly diffusible inflammatory lipid hydroperoxides, which spread oxidative stress to other intracellular organelles and through the bloodstream. Oxidative modification of self antigens triggers autoimmunity, and the degree of such modification of serum proteins shows striking correlation with disease activity and organ damage in SLE. In T cells from patients with SLE and animal models of the disease, glutathione, the main intracellular antioxidant, is depleted and serine/threonine-protein kinase mTOR undergoes redox-dependent activation. In turn, reversal of glutathione depletion by application of its amino acid precursor, N-acetylcysteine, improves disease activity in lupus-prone mice; pilot studies in patients with SLE have yielded positive results that warrant further research. Blocking mTOR activation in T cells could conceivably provide a well-tolerated and inexpensive alternative approach to B-cell blockade and traditional immunosuppressive treatments. Nevertheless, compartmentalized oxidative stress in self-reactive T cells, B cells and phagocytic cells might serve to limit autoimmunity and its inhibition could be detrimental. Antioxidant therapy might also be useful in ameliorating damage caused by other treatments. This Review thus seeks to critically evaluate the complexity of oxidative stress and its relevance to the pathogenesis and treatment of SLE.
Collapse
|
29
|
Chikazawa M, Otaki N, Shibata T, Yasueda T, Matsuda T, Uchida K. An apoptosis-associated mammary protein deficiency leads to enhanced production of IgM antibodies against multiple damage-associated molecules. PLoS One 2013; 8:e68468. [PMID: 23874637 PMCID: PMC3709889 DOI: 10.1371/journal.pone.0068468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022] Open
Abstract
Milk fat globule epidermal growth factor 8 (MFG-E8) is a protein that binds to apoptotic cells by recognizing phosphatidylserine and enhances the engulfment of apoptotic cells by macrophages. Many apoptotic cells are left unengulfed in the germinal centers of the spleen in the MFG-E8-deficient (MFG-E8−/−) mice, and these mice develop an autoimmune disease resembling human systemic lupus erythematosus. We found that the MFG-E8 deficiency was accompanied by the increased production of immunoglobulins. Further Western blot and ELISA analyses validated the increase in the IgM levels in the MFG-E8−/− mice. It was also revealed that the sera from the MFG-E8−/− mice cross-reacted with oxidation-specific epitopes generated upon incubation of serum albumin with the peroxidized lipids. Among the modified proteins with several unsaturated aldehydes of chain lengths varying from three to nine carbons, the MFG-E8−/− mice sera exclusively cross-reacted with the protein-bound 4-oxo-2-nonenal (ONE), a highly reactive aldehyde originating from the peroxidation of ω6 polyunsaturated fatty acids. In addition, the IgM monoclonal antibodies (mAbs) that selectively cross-reacted with the ONE-modified proteins were generated from the MFG-E8−/− mice. A subset of the ONE-specific IgM mAbs significantly recognized the late apoptotic and necrotic cells and enhanced the phagocytosis by macrophages. These data demonstrate that the impairment of the phagocytic clearance of apoptotic cells through MFG-E8 can lead to the generation of natural antibodies, which may play a critical role in removing multiple damage-associated molecules, including oxidation-specific epitopes and late apoptotic/necrotic cells.
Collapse
Affiliation(s)
- Miho Chikazawa
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Natsuki Otaki
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shibata
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takehiko Yasueda
- Laboratory of Molecular Bioregulation, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsukasa Matsuda
- Laboratory of Molecular Bioregulation, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koji Uchida
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
30
|
Al-Shobaili HA, Al Robaee AA, Alzolibani AA, Rasheed Z. Immunological studies of reactive oxygen species damaged catalase in patients with systemic lupus erythematosus: correlation with disease activity index. Immunol Invest 2013; 42:191-203. [PMID: 23461612 DOI: 10.3109/08820139.2012.751396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This study was undertaken to investigate the status and contribution of oxidized catalase in systemic lupus erythematosus (SLE) and to explore whether oxidized catalase has a role in disease progression. METHODS Catalase (CAT) was modified by reactive oxygen species (ROS). Sera from 50 SLE patients with varying levels of disease activity according to SLE Disease-Activity-Index (SLEDAI) and 45 age- and sex-matched healthy controls were evaluated for antibodies against oxidized CAT. RESULTS Serum analysis showed significantly higher level of anti-oxidized-CAT-antibodies in SLE patients compared with controls. Interestingly, not only was there an increased number of subjects positive for anti-oxidized-CAT-antibodies, but also the levels of these antibodies were significantly higher among SLE patients, whose SLEDAI scores were ≥ 10 as compared with lower SLEDAI scores (<10). In addition, significant correlation was observed between the levels of anti-oxidized-CAT-antibodies and SLEDAI score (r = 0.796). Furthermore, sera from SLE patients had lower levels of CAT activity compared with control sera. CONCLUSIONS These findings support an association between oxidized CAT and SLE. The stronger response observed in serum samples from patients with higher SLEDAI scores suggests that oxidized CAT may be a useful biomarker in evaluating the progression of SLE and in elucidating the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Hani A Al-Shobaili
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
31
|
Handa JT. How does the macula protect itself from oxidative stress? Mol Aspects Med 2012; 33:418-35. [PMID: 22503691 DOI: 10.1016/j.mam.2012.03.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Wang G, Wang J, Fan X, Ansari GAS, Khan MF. Protein adducts of malondialdehyde and 4-hydroxynonenal contribute to trichloroethene-mediated autoimmunity via activating Th17 cells: dose- and time-response studies in female MRL+/+ mice. Toxicology 2012; 292:113-22. [PMID: 22178267 PMCID: PMC3264691 DOI: 10.1016/j.tox.2011.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 12/01/2011] [Indexed: 12/17/2022]
Abstract
Trichloroethene (TCE), a common occupational and environmental toxicant, is known to induce autoimmunity. Previous studies in our laboratory showed increased oxidative stress in TCE-mediated autoimmunity. To further establish the role of oxidative stress and to investigate the mechanisms of TCE-mediated autoimmunity, dose- and time-response studies were conducted in MRL+/+ mice by treating them with TCE via drinking water at doses of 0.5, 1.0 or 2.0mg/ml for 12, 24 or 36 weeks. TCE exposure led to dose-related increases in malondialdehyde (MDA)-/hydroxynonenal (HNE)-protein adducts and their corresponding antibodies in the sera and decreases in GSH and GSH/GSSG ratio in the kidneys at 24 and 36 weeks, with greater changes at 36 weeks. The increases in these protein adducts and decreases in GSH/GSSG ratio were associated with significant elevation in serum anti-nuclear- and anti-ssDNA-antibodies, suggesting an association between TCE-induced oxidative stress and autoimmune response. Interestingly, splenocytes from mice treated with TCE for 24 weeks secreted significantly higher levels of IL-17 and IL-21 than did splenocytes from controls after stimulation with MDA-mouse serum albumin (MSA) or HNE-MSA adducts. The increased release of these cytokines showed a dose-related response and was more pronounced in mice treated with TCE for 36 weeks. These studies provide evidence that MDA- and or HNE-protein adducts contribute to TCE-mediated autoimmunity, which may be via activation of Th17 cells.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Xiuzhen Fan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - G. A. S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
33
|
Catalá-Rabasa A, Ndagire D, Sabio JM, Fedetz M, Matesanz F, Alcina A. High ACSL5 transcript levels associate with systemic lupus erythematosus and apoptosis in Jurkat T lymphocytes and peripheral blood cells. PLoS One 2011; 6:e28591. [PMID: 22163040 PMCID: PMC3232234 DOI: 10.1371/journal.pone.0028591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/11/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which increased apoptosis and decreased apoptotic cells removal has been described as most relevant in the pathogenesis. Long-chain acyl-coenzyme A synthetases (ACSLs) have been involved in the immunological dysfunction of mouse models of lupus-like autoimmunity and apoptosis in different in vitro cell systems. The aim of this work was to assess among the ACSL isoforms the involvement of ACSL2, ACSL4 and ACSL5 in SLE pathogenesis. FINDINGS With this end, we determined the ACSL2, ACSL4 and ACSL5 transcript levels in peripheral blood mononuclear cells (PBMCs) of 45 SLE patients and 49 healthy controls by quantitative real time-PCR (q-PCR). We found that patients with SLE had higher ACSL5 transcript levels than healthy controls [median (range), healthy controls = 16.5 (12.3-18.0) vs. SLE = 26.5 (17.8-41.7), P = 3.9×10 E-5] but no differences were found for ACSL2 and ACSL4. In in vitro experiments, ACSL5 mRNA expression was greatly increased when inducing apoptosis in Jurkat T cells and PBMCs by Phorbol-Myristate-Acetate plus Ionomycin (PMA+Io). On the other hand, short interference RNA (siRNA)-mediated silencing of ACSL5 decreased induced apoptosis in Jurkat T cells up to the control levels as well as decreased mRNA expression of FAS, FASLG and TNF. CONCLUSIONS These findings indicate that ACSL5 may play a role in the apoptosis that takes place in SLE. Our results point to ACSL5 as a potential novel functional marker of pathogenesis and a possible therapeutic target in SLE.
Collapse
Affiliation(s)
- Antonio Catalá-Rabasa
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | |
Collapse
|