1
|
Davidov Y, Tejman-Yarden N, Robinson A, Rahav G, Nissan I. Enterobactin and salmochelin S4 inhibit the growth of Staphylococcus aureus. Front Cell Infect Microbiol 2025; 15:1456046. [PMID: 40110026 PMCID: PMC11919883 DOI: 10.3389/fcimb.2025.1456046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
There is increasing demand for novel antimicrobial agents to tackle the antimicrobial resistance crisis. Here we report that two Enterobacteriaceae-produced siderophores, enterobactin and salmochelin S4, inhibit the growth of Staphylococcus aureus isolates, including methicillin-resistance S. aureus (MRSA) clinical isolates. The IC50 for different S. aureus isolates were 2-5 µM for salmochelin S4 and 5-10 µM for enterobactin. This inhibitory activity was partially repressed by adding Fe+3. These siderophores also inhibited the growth of Enterococcus strains, including vancomycin-resistant enterococci (VRE) clinical isolates, though less effectively than for S. aureus. The growth of various Gram-negative bacteria was barely affected by these siderophores. These results shed new light on the role of enterobactin and salmochelin in bacterial physiology and ecology and have potential for the development of novel strategies to combat the rapid rise of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yaacov Davidov
- Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Noa Tejman-Yarden
- Department of Laboratories, Public Health Directorate, Ministry of Health, Jerusalem, Israel
| | - Ari Robinson
- Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Galia Rahav
- Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
2
|
Zhao Y, Bitzer A, Power JJ, Belikova D, Torres Salazar BO, Adolf LA, Gerlach D, Krismer B, Heilbronner S. Nasal commensals reduce Staphylococcus aureus proliferation by restricting siderophore availability. THE ISME JOURNAL 2024; 18:wrae123. [PMID: 38987933 PMCID: PMC11296517 DOI: 10.1093/ismejo/wrae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The human microbiome is critically associated with human health and disease. One aspect of this is that antibiotic-resistant opportunistic bacterial pathogens, such as methicillin-resistant Staphylococcus aureus, can reside within the nasal microbiota, which increases the risk of infection. Epidemiological studies of the nasal microbiome have revealed positive and negative correlations between non-pathogenic species and S. aureus, but the underlying molecular mechanisms remain poorly understood. The nasal cavity is iron-limited, and bacteria are known to produce iron-scavenging siderophores to proliferate in such environments. Siderophores are public goods that can be consumed by all members of a bacterial community. Accordingly, siderophores are known to mediate bacterial competition and collaboration, but their role in the nasal microbiome is unknown. Here, we show that siderophore acquisition is crucial for S. aureus nasal colonization in vivo. We screened 94 nasal bacterial strains from seven genera for their capacity to produce siderophores as well as to consume the siderophores produced by S. aureus. We found that 80% of the strains engaged in siderophore-mediated interactions with S. aureus. Non-pathogenic corynebacterial species were found to be prominent consumers of S. aureus siderophores. In co-culture experiments, consumption of siderophores by competitors reduced S. aureus growth in an iron-dependent fashion. Our data show a wide network of siderophore-mediated interactions between the species of the human nasal microbiome and provide mechanistic evidence for inter-species competition and collaboration impacting pathogen proliferation. This opens avenues for designing nasal probiotics to displace S. aureus from the nasal cavity of humans.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, 210011 Nanjing, P. R. China
| | - Alina Bitzer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Jeffrey John Power
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Darya Belikova
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - Benjamin Orlando Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Lea Antje Adolf
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - David Gerlach
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
- German Center for Infection Research “DZIF” partnersite Tübingen, Germany
| |
Collapse
|
3
|
Drumm SD, Cormican P, Owens RA, Mitchell J, Keane OM. Immunoproteomic analysis of the serum IgG response to cell wall-associated proteins of Staphylococcus aureus strains belonging to CC97 and CC151. Vet Res 2023; 54:79. [PMID: 37723537 PMCID: PMC10506246 DOI: 10.1186/s13567-023-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shauna D Drumm
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Seed Testing Laboratory, DAFM Laboratories, Backweston, Celbridge, Co. Kildare, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer Mitchell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
4
|
de Miranda R, Cuthbert BJ, Klevorn T, Chao A, Mendoza J, Arbing M, Sieminski PJ, Papavinasasundaram K, Abdul-Hafiz S, Chan S, Sassetti CM, Ehrt S, Goulding CW. Differentiating the roles of Mycobacterium tuberculosis substrate binding proteins, FecB and FecB2, in iron uptake. PLoS Pathog 2023; 19:e1011650. [PMID: 37747938 PMCID: PMC10553834 DOI: 10.1371/journal.ppat.1011650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, poses a great threat to human health. With the emergence of drug resistant Mtb strains, new therapeutics are desperately needed. As iron is critical to the growth and survival of Mtb, mechanisms through which Mtb acquires host iron represent attractive therapeutic targets. Mtb scavenges host iron via Mtb siderophore-dependent and heme iron uptake pathways. While multiple studies describe the import of heme and ferric-siderophores and the export of apo-siderophores across the inner membrane, little is known about their transport across the periplasm and cell-wall environments. Mtb FecB and FecB2 are predicted periplasmic binding proteins implicated in host iron acquisition; however, their precise roles are not well understood. This study sought to differentiate the roles FecB and FecB2 play in Mtb iron acquisition. The crystallographic structures of Mtb FecB and FecB2 were determined to 2.0 Å and 2.2 Å resolution, respectively, and show distinct ligand binding pockets. In vitro ligand binding experiments for FecB and FecB2 were performed with heme and bacterial siderophores from Mtb and other species, revealing that both FecB and FecB2 bind heme, while only FecB binds the Mtb sideophore ferric-carboxymycobactin (Fe-cMB). Subsequent structure-guided mutagenesis of FecB identified a single glutamate residue-Glu339-that significantly contributes to Fe-cMB binding. A role for FecB in the Mtb siderophore-mediated iron acquisition pathway was corroborated by Mycobacterium smegmatis and Mtb pull-down assays, which revealed interactions between FecB and members of the mycobacterial siderophore export and import machinery. Similarly, pull-down assays with FecB2 confirms its role in heme uptake revealing interactions with a potential inner membrane heme importer. Due to ligand preference and protein partners, our data suggest that Mtb FecB plays a role in siderophore-dependent iron and heme acquisition pathways; in addition, we confirm that Mtb FecB2 is involved in heme uptake.
Collapse
Affiliation(s)
- Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Bonnie J. Cuthbert
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Thaís Klevorn
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Alex Chao
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Jessica Mendoza
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mark Arbing
- UCLA-DOE Institute, UCLA, Los Angeles, Calofornia, United States of America
| | - Paul J. Sieminski
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sumer Abdul-Hafiz
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Sum Chan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Celia W. Goulding
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, Califiornia, United States of America
| |
Collapse
|
5
|
Wang J, Sheng Z, Liu Y, Chen X, Wang S, Yang H. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against Staphylococcus aureus. Front Pharmacol 2023; 14:1178177. [PMID: 37654613 PMCID: PMC10466393 DOI: 10.3389/fphar.2023.1178177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Staphylococcus aureus is a zoonotic opportunistic pathogen that represents a significant threat to public health. Previous studies have shown that tannic acid (TA) has an inhibitory effect on a variety of bacteria. In this study, the proteome and transcriptome of S. aureus were analyzed to comprehensively assess changes in genes and proteins induced by TA. Initial observations of morphological changes revealed that TA damaged the integrity of the cell membrane. Next, proteomic and genetic analyses showed that exposure to TA altered the expression levels of 651 differentially expressed proteins (DEPs, 283 upregulated and 368 downregulated) and 503 differentially expressed genes (DEGs, 191 upregulated and 312 downregulated). Analysis of the identified DEPs and DEGs suggested that TA damages the integrity of the cell envelope by decreasing the expression and protein abundance of enzymes involved in the synthesis of peptidoglycans, teichoic acids and fatty acids, such as murB, murQ, murG, fmhX and tagA. After treatment with TA, the assembly of ribosomes in S. aureus was severely impaired by significant reductions in available ribosome components, and thus protein synthesis was hindered. The levels of genes and proteins associated with amino acids and purine synthesis were remarkably decreased, which further reduced bacterial viability. In addition, ABC transporters, which are involved in amino acid and ion transport, were also badly affected. Our results reveal the molecular mechanisms underlying the effects of TA on S. aureus and provide a theoretical basis for the application of TA as an antibacterial chemotherapeutic agent.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Zhicun Sheng
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Yunying Liu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
- Zhongchong Sino Biotech Taizhou Co., Ltd., Taizhou, Jiangsu Province, China
| | - Xiaolan Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Shuaibing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Haifeng Yang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| |
Collapse
|
6
|
Ghssein G, Ezzeddine Z. The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review. BIOLOGY 2022; 11:1525. [PMID: 36290427 PMCID: PMC9598555 DOI: 10.3390/biology11101525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
The ubiquitous bacterium Staphylococcus aureus causes many diseases that sometimes can be fatal due to its high pathogenicity. The latter is caused by the ability of this pathogen to secrete secondary metabolites, enabling it to colonize inside the host causing infection through various processes. Metallophores are secondary metabolites that enable bacteria to sequester metal ions from the surrounding environment since the availability of metal ions is crucial for bacterial metabolism and virulence. The uptake of iron and other metal ions such as nickel and zinc is one of these essential mechanisms that gives this germ its virulence properties and allow it to overcome the host immune system. Additionally, extensive interactions occur between this pathogen and other bacteria as they compete for resources. Staphylococcus aureus has high-affinity metal import pathways including metal ions acquisition, recruitment and metal-chelate complex import. These characteristics give this bacterium the ability to intake metallophores synthesized by other bacteria, thus enabling it to compete with other microorganisms for the limited nutrients. In scarce host conditions, free metal ions are extremely low because they are confined to storage and metabolic molecules, so metal ions are sequestered by metallophores produced by this bacterium. Both siderophores (iron chelating molecules) and staphylopine (wide- spectrum metallophore) are secreted by Staphylococcus aureus giving it infectious properties. The genetic regulation of the synthesis and export together with the import of metal loaded metallophores are well established and are all covered in this review.
Collapse
Affiliation(s)
- Ghassan Ghssein
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
7
|
In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. J Biol Chem 2022; 298:101823. [PMID: 35283192 PMCID: PMC9052147 DOI: 10.1016/j.jbc.2022.101823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection indicating this bacterium overcomes host nutritional immunity. Despite this, there exists a significant knowledge gap regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Here we show that S. lugdunensis can usurp hydroxamate siderophores and staphyloferrin A and B from Staphylococcus aureus. These transport activities all required a functional FhuC ATPase. Moreover, we show that the acquisition of catechol siderophores and catecholamine stress hormones by S. lugdunensis required the presence of the sst-1 transporter-encoding locus, but not the sst-2 locus. Iron-dependent growth in acidic culture conditions necessitated the ferrous iron transport system encoded by feoAB. Heme iron was acquired via expression of the iron-regulated surface determinant (isd) locus. During systemic infection of mice, we demonstrated that while S. lugdunensis does not cause overt illness, it does colonize and proliferate to high numbers in the kidneys. By combining mutations in the various iron acquisition loci (isd, fhuC, sst-1, and feo), we demonstrate that only a strain deficient for all of these systems was attenuated in its ability to proliferate to high numbers in the murine kidney. We propose the concerted action of heme and non-heme iron acquisition systems also enable S. lugdunensis to cause human infection.
Collapse
|
8
|
van Dijk MC, de Kruijff RM, Hagedoorn PL. The Role of Iron in Staphylococcus aureus Infection and Human Disease: A Metal Tug of War at the Host—Microbe Interface. Front Cell Dev Biol 2022; 10:857237. [PMID: 35399529 PMCID: PMC8986978 DOI: 10.3389/fcell.2022.857237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Iron deficiency anemia can be treated with oral or intravenous Fe supplementation. Such supplementation has considerable effects on the human microbiome, and on opportunistic pathogenic micro-organisms. Molecular understanding of the control and regulation of Fe availability at the host-microbe interface is crucial to interpreting the side effects of Fe supplementation. Here, we provide a concise overview of the regulation of Fe by the opportunistic pathogen Staphylococcus aureus. Ferric uptake regulator (Fur) plays a central role in controlling Fe uptake, utilization and storage in order to maintain a required value. The micro-organism has a strong preference for heme iron as an Fe source, which is enabled by the Iron-regulated surface determinant (Isd) system. The strategies it employs to overcome Fe restriction imposed by the host include: hijacking host proteins, replacing metal cofactors, and replacing functions by non-metal dependent enzymes. We propose that integrated omics approaches, which include metalloproteomics, are necessary to provide a comprehensive understanding of the metal tug of war at the host-microbe interface down to the molecular level.
Collapse
Affiliation(s)
- Madeleine C. van Dijk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands
- *Correspondence: Robin M. de Kruijff, ; Peter-Leon Hagedoorn,
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- *Correspondence: Robin M. de Kruijff, ; Peter-Leon Hagedoorn,
| |
Collapse
|
9
|
Heme-Dependent Siderophore Utilization Promotes Iron-Restricted Growth of the Staphylococcus aureus hemB Small-Colony Variant. J Bacteriol 2021; 203:e0045821. [PMID: 34606375 DOI: 10.1128/jb.00458-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Respiration-deficient Staphylococcus aureus small-colony variants (SCVs) frequently cause persistent infections, which necessitates they acquire iron, yet how SCVs obtain iron remains unknown. To address this, we created a stable hemB mutant from S. aureus USA300 strain LAC. The hemB SCV utilized exogenously supplied hemin but was attenuated for growth under conditions of iron starvation. Transcriptome sequencing (RNA-seq) showed that both wild-type (WT) S. aureus and the hemB mutant sense and respond to iron starvation; however, growth assays show that the hemB mutant is defective for siderophore-mediated iron acquisition. Indeed, the hemB SCV demonstrated limited utilization of endogenous staphyloferrin B or exogenously provided staphyloferrin A, deferoxamine mesylate (Desferal), and epinephrine. Direct measurement of intracellular ATP in hemB and WT S. aureus revealed that both strains can generate comparable levels of ATP during exponential growth, suggesting defects in ATP production cannot account for the inability to efficiently utilize siderophores. Defective siderophore utilization by hemB bacteria was also evident in vivo, as administration of Desferal failed to promote hemB bacterial growth in every organ analyzed except for the kidneys. In support of the hypothesis that S. aureus accesses heme in kidney abscesses, in vitro analyses revealed that increased hemin availability enables hemB bacteria to utilize siderophores for growth when iron availability is restricted. Taken together, our data support the conclusion that hemin is used not only as an iron source itself but also as a nutrient that promotes utilization of siderophore-iron complexes. IMPORTANCE S. aureus small-colony variants (SCVs) are associated with chronic recurrent infection and worsened clinical outcome. SCVs persist within the host despite administration of antibiotics. This study yields insight into how S. aureus SCVs acquire iron, which during infection of a host is a difficult-to-acquire metal nutrient. Under hemin-limited conditions, hemB S. aureus is impaired for siderophore-dependent growth, and in agreement, murine infection indicates that hemin-deficient SCVs meet their nutritional requirement for iron through utilization of hemin. Importantly, we demonstrate that hemB SCVs rely upon hemin as a nutrient to promote siderophore utilization. Therefore, perturbation of heme biosynthesis and/or utilization represents a viable to strategy to mitigate the ability of SCV bacteria to acquire siderophore-bound iron during infection.
Collapse
|
10
|
Barber CC, Zhang W. Small molecule natural products in human nasal/oral microbiota. J Ind Microbiol Biotechnol 2021; 48:6129854. [PMID: 33945611 PMCID: PMC8210680 DOI: 10.1093/jimb/kuab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Small molecule natural products are a chemically diverse class of biomolecules that fulfill myriad biological functions, including autoregulation, communication with microbial neighbors and the host, interference competition, nutrient acquisition, and resistance to oxidative stress. Human commensal bacteria are increasingly recognized as a potential source of new natural products, which may provide insight into the molecular ecology of many different human body sites as well as novel scaffolds for therapeutic development. Here, we review the scientific literature on natural products derived from residents of the human nasal/oral cavity, discuss their discovery, biosynthesis, and ecological roles, and identify key questions in the study of these compounds.
Collapse
Affiliation(s)
- Colin Charles Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley 94720, USA.,Chan-Zuckerberg Biohub, San Francisco 94158, USA
| |
Collapse
|
11
|
Zhang Y, Sen S, Giedroc DP. Iron Acquisition by Bacterial Pathogens: Beyond Tris-Catecholate Complexes. Chembiochem 2020; 21:1955-1967. [PMID: 32180318 PMCID: PMC7367709 DOI: 10.1002/cbic.201900778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Sequestration of the essential nutrient iron from bacterial invaders that colonize the vertebrate host is a central feature of nutritional immunity and the "fight over transition metals" at the host-pathogen interface. The iron quota for many bacterial pathogens is large, as iron enzymes often make up a significant share of the metalloproteome. Iron enzymes play critical roles in respiration, energy metabolism, and other cellular processes by catalyzing a wide range of oxidation-reduction, electron transfer, and oxygen activation reactions. In this Concept article, we discuss recent insights into the diverse ways that bacterial pathogens acquire this essential nutrient, beyond the well-characterized tris-catecholate FeIII complexes, in competition and cooperation with significant host efforts to cripple these processes. We also discuss pathogen strategies to adapt their metabolism to less-than-optimal iron concentrations, and briefly speculate on what might be an integrated adaptive response to the concurrent limitation of both iron and zinc in the infected host.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sambuddha Sen
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
12
|
Carlson SK, Erickson DL, Wilson E. Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microb Pathog 2020; 144:104179. [DOI: 10.1016/j.micpath.2020.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
|
13
|
Endicott N, Rivera GSM, Yang J, Wencewicz TA. Emergence of Ferrichelatase Activity in a Siderophore-Binding Protein Supports an Iron Shuttle in Bacteria. ACS CENTRAL SCIENCE 2020; 6:493-506. [PMID: 32341999 PMCID: PMC7181320 DOI: 10.1021/acscentsci.9b01257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 05/08/2023]
Abstract
Siderophores are small-molecule high-affinity multidentate chelators selective for ferric iron that are produced by pathogenic microbes to aid in nutrient sequestration and enhance virulence. In Gram-positive bacteria, the currently accepted paradigm in siderophore-mediated iron acquisition is that effluxed metal-free siderophores extract ferric iron from biological sources and the resulting ferric siderophore complex undergoes diffusion-controlled association with a surface-displayed siderophore-binding protein (SBP) followed by ABC permease-mediated translocation across the cell envelope powered by ATP hydrolysis. Here we show that a more efficient paradigm is possible in Gram-positive bacteria where extracellular metal-free siderophores associate directly with apo-SBPs on the cell surface and serve as non-covalent cofactors that enable the holo-SBPs to non-reductively extract ferric iron directly from host metalloproteins with so-called "ferrichelatase" activity. The resulting SBP-bound ferric siderophore complex is ready for import through an associated membrane permease and enzymatic turnover is achieved through cofactor replacement from the readily available pool of extracellular siderophores. This new "iron shuttle" model closes a major knowledge gap in microbial iron acquisition and defines new roles of the siderophore and SBP as cofactor and enzyme, respectively, in addition to the classically accepted roles as a transport substrate and receptor pair. We propose the formal name "siderophore-dependent ferrichelatases" for this new class of catalytic SBPs.
Collapse
|
14
|
Crosby HA, Tiwari N, Kwiecinski JM, Xu Z, Dykstra A, Jenul C, Fuentes EJ, Horswill AR. The Staphylococcus aureus ArlRS two-component system regulates virulence factor expression through MgrA. Mol Microbiol 2020; 113:103-122. [PMID: 31618469 PMCID: PMC7175635 DOI: 10.1111/mmi.14404] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Gram-positive bacterium, Staphylococcus aureus, is a versatile pathogen that can sense and adapt to a wide variety of environments within the human host, in part through its 16 two-component regulatory systems. The ArlRS two-component system has been shown to affect many cellular processes in S. aureus, including autolysis, biofilm formation, capsule synthesis and virulence. Yet the molecular details of this regulation remained largely unknown. We used RNA sequencing to identify the ArlRS regulon, and found 70% overlap with that of the global regulator MgrA. These genes included cell wall-anchored adhesins (ebh, sdrD), polysaccharide and capsule synthesis genes, cell wall remodeling genes (lytN, ddh), the urease operon, genes involved in metal transport (feoA, mntH, sirA), anaerobic metabolism genes (adhE, pflA, nrdDG) and a large number of virulence factors (lukSF, lukAB, nuc, gehB, norB, chs, scn and esxA). We show that ArlR directly activates expression of mgrA and identify a probable ArlR-binding site (TTTTCTCAT-N4 -TTTTAATAA). A highly similar sequence is also found in the spx P2 promoter, which was recently shown to be regulated by ArlRS. We also demonstrate that ArlS has kinase activity toward ArlR in vitro, although it has slower kinetics than other similar histidine kinases.
Collapse
Affiliation(s)
- Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Nitija Tiwari
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Zhen Xu
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Allison Dykstra
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ernesto J Fuentes
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| |
Collapse
|
15
|
Bacterial ABC transporters of iron containing compounds. Res Microbiol 2019; 170:345-357. [DOI: 10.1016/j.resmic.2019.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
16
|
Parsing the functional specificity of Siderocalin/Lipocalin 2/NGAL for siderophores and related small-molecule ligands. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 2:100008. [PMID: 32647813 PMCID: PMC7337064 DOI: 10.1016/j.yjsbx.2019.100008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Ligand recognition by antibacterial Siderocalin controls the competition for iron during infection. We determined nine crystal structures of Siderocalin mutants with ligands. We determined three candidate ligands did not bind. We determined the crystal structure of SBP YfiY. Multiplexed specificity of Siderocalin was determined.
Siderocalin/Lipocalin 2/Neutrophil Gelatinase Associated Lipocalin/24p3 is an innate immune system protein with bacteriostatic activity, acting by tightly binding and sequestering diverse catecholate and mixed-type ferric siderophores from enteric bacteria and mycobacteria. Bacterial virulence achieved through siderophore modifications, or utilization of alternate siderophores, can be explained by evasion of Siderocalin binding. Siderocalin has also been implicated in a wide variety of disease processes, though often in seemingly contradictory ways, and has been proposed to bind to a broader array of ligands beyond siderophores. Using structural, directed mutational, and binding studies, we have sought to rigorously test, and fully elucidate, the Siderocalin recognition mechanism. Several proposed ligands fail to meet rigorous binding criteria, including the bacterial siderophore pyochelin, the iron-chelating catecholamine hormone norepinephrine, and the bacterial second messenger cyclic diguanylate monophosphate. While possessing a remarkably rigid structure, in principle simplifying analyses of ligand recognition, understanding Scn recognition is complicated by the observed conformational and stoichiometric plasticity, and instability, of its bona fide siderophore ligands. Since the role of Siderocalin at the early host/pathogen interface is to compete for bacterial ferric siderophores, we also analyzed how bacterial siderophore binding proteins and enzymes alternately recognize siderophores that efficiently bind to, or evade, Siderocalin sequestration – including determining the crystal structure of Bacillus cereus YfiY bound to schizokinen. These studies combine to refine the potential physiological functions of Siderocalin by defining its multiplexed recognition mechanism.
Collapse
Key Words
- ABC, ATP‐binding cassette
- AEB, aerobactin
- AU, crystallographic asymmetric unit
- Antimicrobial responses
- BOCT, brain-type organic cation receptor
- Bacterial substrate binding proteins
- CAM, catechol
- CMB, carboxymycobactin
- DHBA, dihydroxybenzoic acid
- ENT, enterobactin or enterochelin
- FQ, fluorescence quenching
- Ferric enterobactin/enterochelin
- HOPO, hydroxypyridinone
- NE, norepinephrine
- NGAL, Neutrophil Gelatinase Associated Lipocalin
- PBP, bacterial periplasmic binding protein
- PCH, pyochelin
- PDB, Research Collaboratory for Structural Biology Protein Databank
- PVD, pyoverdine
- SBP, bacterial membrane-associated, substrate-binding protein
- SCH, schizokinen
- Scn, Siderocalin
- X-ray crystallography
- c-di-GMP, cyclic diguanylate monophosphate
Collapse
|
17
|
Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343-2396. [PMID: 31004359 DOI: 10.1002/med.21588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has emerged as a huge challenge to the effective treatment of infectious diseases. Aside from a modest number of novel anti-infective agents, very few new classes of antibiotics have been successfully developed for therapeutic use. Despite the research efforts of numerous scientists, the fight against antimicrobial (ATB) resistance has been a longstanding continued effort, as pathogens rapidly adapt and evolve through various strategies, to escape the action of ATBs. Among other mechanisms of resistance to antibiotics, the sophisticated envelopes surrounding microbes especially form a major barrier for almost all anti-infective agents. In addition, the mammalian cell membrane presents another obstacle to the ATBs that target intracellular pathogens. To negotiate these biological membranes, scientists have developed drug delivery systems to help drugs traverse the cell wall; these are called "Trojan horse" strategies. Within these delivery systems, ATB molecules can be conjugated with one of many different types of carriers. These carriers could include any of the following: siderophores, antimicrobial peptides, cell-penetrating peptides, antibodies, or even nanoparticles. In recent years, the Trojan horse-inspired delivery systems have been increasingly reported as efficient strategies to expand the arsenal of therapeutic solutions and/or reinforce the effectiveness of conventional ATBs against drug-resistant microbes, while also minimizing the side effects of these drugs. In this paper, we aim to review and report on the recent progress made in these newly prevalent ATB delivery strategies, within the current context of increasing ATB resistance.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | - Pauline Loupias
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | | | - Pascal Sonnet
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| |
Collapse
|
18
|
Conroy BS, Grigg JC, Kolesnikov M, Morales LD, Murphy MEP. Staphylococcus aureus heme and siderophore-iron acquisition pathways. Biometals 2019; 32:409-424. [PMID: 30911924 DOI: 10.1007/s10534-019-00188-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus is a versatile opportunistic human pathogen. Infection by this bacterium requires uptake of iron from the human host, but iron is highly restricted in this environment. Staphylococcus aureus iron sufficiency is achieved primarily through uptake of heme and high-affinity iron chelators, known as siderophores. Two siderophores (staphyloferrins) are produced and secreted by S. aureus into the extracellular environment to capture iron. Staphylococcus aureus expresses specific uptake systems for staphyloferrins and more general uptake systems for siderophores produced by other microorganisms. The S. aureus heme uptake system uses highly-specific cell surface receptors to extract heme from hemoglobin and hemoglobin-haptoglobin complexes for transport into the cytoplasm where it is degraded to liberate iron. Initially thought to be independent systems, recent findings indicate that these iron uptake pathways intersect. IruO is a reductase that releases iron from heme and some ferric-siderophores. Moreover, multifunctional SbnI produces a precursor for staphyloferrin B biosynthesis, and also binds heme to regulate expression of the staphyloferrin B biosynthesis pathway. Intersection of the S. aureus iron uptake pathways is hypothesized to be important for rapid adaptation to available iron sources. Components of the heme and siderophore uptake systems are currently being targeted in the development of therapeutics against S. aureus.
Collapse
Affiliation(s)
- Brigid S Conroy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - L Daniela Morales
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
19
|
Bailey DC, Bohac TJ, Shapiro JA, Giblin DE, Wencewicz TA, Gulick AM. Crystal Structure of the Siderophore Binding Protein BauB Bound to an Unusual 2:1 Complex Between Acinetobactin and Ferric Iron. Biochemistry 2018; 57:6653-6661. [PMID: 30406986 DOI: 10.1021/acs.biochem.8b00986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The critical role that iron plays in many biochemical processes has led to an elaborate battle between bacterial pathogens and their hosts to acquire and withhold this critical nutrient. Exploitation of iron nutritional immunity is being increasingly appreciated as a potential antivirulence therapeutic strategy, especially against problematic multidrug resistant Gram-negative pathogens such as Acinetobacter baumannii. To facilitate iron uptake and promote growth, A. baumannii produces a nonribosomally synthesized peptide siderophore called acinetobactin. Acinetobactin is unusual in that it is first biosynthesized in an oxazoline form called preacinetobactin that spontaneously isomerizes to the final isoxazolidinone acinetobactin. Interestingly, both isomers can bind iron and both support growth of A. baumannii. To address how the two isomers chelate their ferric cargo and how the complexes are used by A. baumannii, structural studies were carried out with the ferric acinetobactin complex and its periplasmic siderophore binding protein BauB. Herein, we present the crystal structure of BauB bound to a bis-tridentate (Fe3+L2) siderophore complex. Additionally, we present binding studies that show multiple variants of acinetobactin bind BauB with no apparent change in affinity. These results are consistent with the structural model that depicts few direct polar interactions between BauB and the acinetobactin backbone. This structural and functional characterization of acinetobactin and its requisite binding protein BauB provides insight that could be exploited to target this critical iron acquisition system and provide a novel approach to treat infections caused by this important multidrug resistant pathogen.
Collapse
Affiliation(s)
- Daniel C Bailey
- Department of Structural Biology , Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo , 955 Main Street , Buffalo , New York 14203 , United States
| | - Tabbetha J Bohac
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Justin A Shapiro
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Daryl E Giblin
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Timothy A Wencewicz
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Andrew M Gulick
- Department of Structural Biology , Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo , 955 Main Street , Buffalo , New York 14203 , United States
| |
Collapse
|
20
|
Bartual SG, Alcorlo M, Martínez-Caballero S, Molina R, Hermoso JA. Three-dimensional structures of Lipoproteins from Streptococcus pneumoniae and Staphylococcus aureus. Int J Med Microbiol 2018; 308:692-704. [DOI: 10.1016/j.ijmm.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/21/2017] [Indexed: 01/01/2023] Open
|
21
|
Endicott NP, Lee E, Wencewicz TA. Structural Basis for Xenosiderophore Utilization by the Human Pathogen Staphylococcus aureus. ACS Infect Dis 2017; 3:542-553. [PMID: 28505405 DOI: 10.1021/acsinfecdis.7b00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus produces a cocktail of metallophores (staphylopine, staphyloferrin A, and staphyloferrin B) to scavenge transition metals during infection of a host. In addition, S. aureus displays the extracellular surface lipoproteins FhuD1 and FhuD2 along with the ABC transporter complex FhuCBG to facilitate the use of hydroxamate xenosiderophores such as desferrioxamine B (DFOB) for iron acquisition. DFOB is used as a chelation therapy to treat human iron overload diseases and has been linked to an increased risk of S. aureus infections. We used a panel of synthetic DFOB analogs and a FhuD2-selective trihydroxamate sideromycin to probe xenosiderophore utilization in S. aureus and establish structure-activity relationships for Fe(III) binding, FhuD2 binding, S. aureus growth promotion, and competition for S. aureus cell entry. Fe(III) binding assays and FhuD2 intrinsic fluorescence quenching experiments revealed that diverse chemical modifications of the terminal ends of linear ferrioxamine siderophores influences Fe(III) affinity but not FhuD2 binding. Siderophore-sideromycin competition assays and xenosiderophore growth promotion assays revealed that S. aureus SG511 and ATCC 11632 can distinguish between competing siderophores based exclusively on net charge of the siderophore-Fe(III) complex. Our work provides a roadmap for tuning hydroxamate xenosiderophore scaffolds to suppress (net negative charge) or enhance (net positive or neutral charge) uptake by S. aureus for applications in metal chelation therapy and siderophore-mediated antibiotic delivery, respectively.
Collapse
Affiliation(s)
- Nathaniel P. Endicott
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Eries Lee
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Vu CH, Kolata J, Stentzel S, Beyer A, Gesell Salazar M, Steil L, Pané-Farré J, Rühmling V, Engelmann S, Götz F, van Dijl JM, Hecker M, Mäder U, Schmidt F, Völker U, Bröker BM. Adaptive immune response to lipoproteins of Staphylococcus aureus in healthy subjects. Proteomics 2016; 16:2667-2677. [PMID: 27324828 PMCID: PMC5096053 DOI: 10.1002/pmic.201600151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus is a frequent commensal but also a dangerous pathogen, causing many forms of infection ranging from mild to life‐threatening conditions. Among its virulence factors are lipoproteins, which are anchored in the bacterial cell membrane. Lipoproteins perform various functions in colonization, immune evasion, and immunomodulation. These proteins are potent activators of innate immune receptors termed Toll‐like receptors 2 and 6. This study addressed the specific B‐cell and T‐cell responses directed to lipoproteins in human S. aureus carriers and non‐carriers. 2D immune proteomics and ELISA approaches revealed that titers of antibodies (IgG) binding to S. aureus lipoproteins were very low. Proliferation assays and cytokine profiling data showed only subtle responses of T cells; some lipoproteins did not elicit proliferation. Hence, the robust activation of the innate immune system by S. aureus lipoproteins does not translate into a strong adaptive immune response. Reasons for this may include inaccessibility of lipoproteins for B cells as well as ineffective processing and presentation of the antigens to T cells.
Collapse
Affiliation(s)
- Chi Hai Vu
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Julia Kolata
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sebastian Stentzel
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anica Beyer
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Vanessa Rühmling
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Engelmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Helmholtz Center for Infection Research, Microbial Proteomics, Braunschweig, Germany.,Institute for Microbiology, University of Braunschweig, Braunschweig, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
23
|
Weiss A, Broach WH, Shaw LN. Characterizing the transcriptional adaptation of Staphylococcus aureus to stationary phase growth. Pathog Dis 2016; 74:ftw046. [PMID: 27162210 PMCID: PMC5985488 DOI: 10.1093/femspd/ftw046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/10/2016] [Accepted: 05/05/2016] [Indexed: 11/12/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that causes life-threatening infections, and is resistant to the majority of our antibiotic arsenal. This resistance is complicated by the observation that most antibacterial agents target actively growing cells, thus, proving ineffective against slow growing populations, such as cells within a biofilm or in stationary phase. Recently, our group generated updated genome annotation files for S. aureus that not only include protein-coding genes but also regulatory and small RNAs. As such, these annotation files were used to perform a transcriptomic analysis in order to understand the metabolic and physiological changes that occur during transition from active growth to stationary phase; with a focus on sRNAs. We observed ∼24% of protein-coding and 34% of sRNA genes displaying changes in expression by ≥3-fold. Collectively, this study adds to our understanding of S. aureus adaptation to nutrient-limiting conditions, and sheds new light onto the contribution of sRNAs to this process.
Collapse
Affiliation(s)
- Andy Weiss
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - William H Broach
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
24
|
Fazary AE, Ju YH, Al-Shihri AS, Alfaifi MY, Alshehri MA. Biodegradable siderophores: survey on their production, chelating and complexing properties. REV INORG CHEM 2016. [DOI: 10.1515/revic-2016-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe academic and industrial research on the interactions of complexing agents with the environment has received more attention for more than half a century ago and has always been concerned with the applications of chelating agents in the environment. In contrast, in recent years, an increasing scholarly interest has been demonstrated in the chemical and biological degradation of chelating agents. This is reflected by the increasing number of chelating agents-related publications between 1950 and middle of 2016. Consequently, the discovery of new green biodegradable chelating agents is of great importance and has an impact in the non-biodegradable chelating agent’s replacement with their green chemistry analogs. To acquire iron, many bacteria growing aerobically, including marine species, produce siderophores, which are low-molecular-weight compounds produced to facilitate acquisition of iron. To date and to the best of our knowledge, this is a concise and complete review article of the current and previous relevant studies conducted in the field of production, purification of siderophore compounds and their metal complexes, and their roles in biology and medicine.
Collapse
|
25
|
Microbial Virulence and Interactions With Metals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:27-49. [DOI: 10.1016/bs.pmbts.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Louzao I, Sui C, Winzer K, Fernandez-Trillo F, Alexander C. Cationic polymer mediated bacterial clustering: Cell-adhesive properties of homo- and copolymers. Eur J Pharm Biopharm 2015; 95:47-62. [DOI: 10.1016/j.ejpb.2015.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022]
|
27
|
Madsen JLH, Johnstone TC, Nolan EM. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. J Am Chem Soc 2015; 137:9117-27. [DOI: 10.1021/jacs.5b04557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julie L. H. Madsen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Hannauer M, Arifin AJ, Heinrichs DE. Involvement of reductases IruO and NtrA in iron acquisition byStaphylococcus aureus. Mol Microbiol 2015; 96:1192-210. [DOI: 10.1111/mmi.13000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Mélissa Hannauer
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
| | - Andrew J. Arifin
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
| | - David E. Heinrichs
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
- Centre for Human Immunology; University of Western Ontario; London ON Canada N6A 5C1
| |
Collapse
|
29
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
30
|
Hexadentate 3-hydroxypyridin-4-ones with high iron(III) affinity: design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains. Eur J Med Chem 2015; 94:8-21. [PMID: 25747496 DOI: 10.1016/j.ejmech.2015.02.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 02/05/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
Abstract
A range of hexadentate 3-hydroxypyridin-4-ones have been synthesized. These compounds were found to possess a high affinity for iron(III), with logK1 values of about 34 and pFe values over 30. Antimicrobial assays indicated that they can inhibit the growth of three clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) and three clinical isolates of Pseudomonas, suggesting that hexadentate 3-hydroxypyridin-4-ones have potential application in the treatment of wound infections.
Collapse
|
31
|
Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus. FEBS Lett 2015; 589:730-7. [PMID: 25680529 DOI: 10.1016/j.febslet.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
A paucity of information exists concerning the mechanism(s) by which bacteria secrete siderophores into the extracellular compartment. We investigated the role of SfaA and SbnD, two major facilitator superfamily (MFS)-type efflux proteins, in the secretion of the Staphylococcus aureus siderophores staphyloferrin A (SA) and staphyloferrin B (SB), respectively. Deletion of sfaA resulted in a drastic reduction of SA secreted into the supernatant with a corresponding accumulation of SA in the cytoplasm and a significant growth defect in cells devoid of SB synthesis. In contrast, sbnD mutants showed transiently lowered levels of secreted SB, suggesting the involvement of additional efflux mechanisms.
Collapse
|
32
|
Zhou YJ, Kong XL, Li JP, Ma YM, Hider RC, Zhou T. Novel 3-hydroxypyridin-4-one hexadentate ligand-based polymeric iron chelator: synthesis, characterization and antimicrobial evaluation. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00264h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 3-hydroxypyridin-4-one hexadentate-based copolymeric iron chelator was prepared. The polymer was found to possess high iron affinity and appreciable inhibitory activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- PR China
| | - Xiao-Le Kong
- Division of Pharmaceutical Science
- King's College London
- London
- UK
| | - Jun-Pei Li
- Division of Pharmaceutical Science
- King's College London
- London
- UK
| | - Yong-Min Ma
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- PR China
| | - Robert C Hider
- Division of Pharmaceutical Science
- King's College London
- London
- UK
| | - Tao Zhou
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- PR China
| |
Collapse
|
33
|
Chu BCH, Otten R, Krewulak KD, Mulder FAA, Vogel HJ. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. J Biol Chem 2014; 289:29219-34. [PMID: 25173704 DOI: 10.1074/jbc.m114.564021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large "Venus flytrap" conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225-250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs.
Collapse
Affiliation(s)
- Byron C H Chu
- From the Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Renee Otten
- the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands, and
| | - Karla D Krewulak
- From the Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Frans A A Mulder
- the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands, and the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, 8000 Aarhus C, Denmark
| | - Hans J Vogel
- From the Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada,
| |
Collapse
|
34
|
Cooper JD, Hannauer M, Marolda CL, Briere LAK, Heinrichs DE. Identification of a Positively Charged Platform in Staphylococcus aureus HtsA That Is Essential for Ferric Staphyloferrin A Transport. Biochemistry 2014; 53:5060-9. [DOI: 10.1021/bi500729h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- John D. Cooper
- Department
of Microbiology and Immunology, ‡Centre for Human Immunology,
and §Department of
Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Mélissa Hannauer
- Department
of Microbiology and Immunology, ‡Centre for Human Immunology,
and §Department of
Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Cristina L. Marolda
- Department
of Microbiology and Immunology, ‡Centre for Human Immunology,
and §Department of
Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Lee-Ann K. Briere
- Department
of Microbiology and Immunology, ‡Centre for Human Immunology,
and §Department of
Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - David E. Heinrichs
- Department
of Microbiology and Immunology, ‡Centre for Human Immunology,
and §Department of
Biochemistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
35
|
Zhang MX, Zhu CF, Zhou YJ, Kong XL, Hider RC, Zhou T. Design, Synthesis, and Antimicrobial Evaluation of Hexadentate Hydroxypyridinones with High Iron(III) Affinity. Chem Biol Drug Des 2014; 84:659-68. [DOI: 10.1111/cbdd.12358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Ming-Xia Zhang
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou Zhejiang 310018 P. R. China
| | - Chun-Feng Zhu
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou Zhejiang 310018 P. R. China
| | - Ying-Jun Zhou
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou Zhejiang 310018 P. R. China
| | - Xiao-Le Kong
- Division of Pharmaceutical Science; King's College London; Franklin-Wilkins Building 150 Stamford Street London SE1 9NH UK
| | - Robert C Hider
- Division of Pharmaceutical Science; King's College London; Franklin-Wilkins Building 150 Stamford Street London SE1 9NH UK
| | - Tao Zhou
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou Zhejiang 310018 P. R. China
| |
Collapse
|
36
|
Role of the siderophore transporter SirABC in the Staphylococcus aureus resistance to oxidative stress. Curr Microbiol 2014; 69:164-8. [PMID: 24682218 DOI: 10.1007/s00284-014-0567-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
In Staphylococcus aureus, the intracellular siderophore staphyloferrin B, which has been shown to chelate iron-bound to serum transferrin, is transported into cells by the SirABC system. In this work, we have analysed the role of the Sir transporter under stress conditions that resemble those imposed by the mammalian innate immune system. We show that exposure of S. aureus to oxidative and nitrosative stress generated by hydrogen peroxide and S-nitrosoglutathione, respectively, induced the expression of the sirA gene. The disruption of the sir operon led to a strain with lower viability and decreased resistance to oxidative stress. S. aureus sir null mutant was also analysed during infection of murine macrophages and shown to contribute to S. aureus survival inside macrophages. Altogether, our results indicate that the Sir transport system confers protection against reactive oxygen species, therefore, contributing to the virulence of S. aureus.
Collapse
|
37
|
Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Future Med Chem 2014; 5:1391-403. [PMID: 23919550 DOI: 10.4155/fmc.13.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) acquires non-heme iron through salicylate-derived siderophores termed mycobactins whereas heme iron is obtained through a cascade of heme uptake proteins. Three proteins are proposed to mediate Mtb heme iron uptake, a secreted heme transporter (Rv0203), and MmpL3 and MmpL11, which are potential transmembrane heme transfer proteins. Furthermore, MhuD, a cytoplasmic heme-degrading enzyme, has been identified. Rv0203, MmpL3 and MmpL11 are mycobacteria-specific proteins, making them excellent drug targets. Importantly, MmpL3, a necessary protein, has also been implicated in trehalose monomycolate export. Recent drug-discovery efforts revealed that MmpL3 is the target of several compounds with antimycobacterial activity. Inhibition of the Mtb heme uptake pathway has yet to be explored. We propose that inhibitor design could focus on heme analogs, with the goal of blocking specific steps of this pathway. In addition, heme uptake could be hijacked as a method of importing drugs into the mycobacterial cytosol.
Collapse
|
38
|
Brozyna JR, Sheldon JR, Heinrichs DE. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus. Microbiologyopen 2014; 3:182-95. [PMID: 24515974 PMCID: PMC3996567 DOI: 10.1002/mbo3.162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/24/2013] [Accepted: 12/30/2013] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus lugdunensis is both a commensal of humans and an opportunistic pathogen. Little is currently known about the molecular mechanisms underpinning the virulence of this bacterium. Here, we demonstrate that in contrast to S. aureus,S. lugdunensis makes neither staphyloferrin A (SA) nor staphyloferrin B (SB) in response to iron deprivation, owing to the absence of the SB gene cluster, and a large deletion in the SA biosynthetic gene cluster. As a result, the species grows poorly in serum-containing media, and this defect was complemented by introduction of the S. aureusSA gene cluster into S. lugdunensis. S. lugdunensis expresses the HtsABC and SirABC transporters for SA and SB, respectively; the latter gene set is found within the isd (heme acquisition) gene cluster. An isd deletion strain was significantly debilitated for iron acquisition from both heme and hemoglobin, and was also incapable of utilizing ferric-SB as an iron source, while an hts mutant could not grow on ferric-SA as an iron source. In iron-restricted coculture experiments, S. aureus significantly enhanced the growth of S. lugdunensis, in a manner dependent on staphyloferrin production by S. aureus, and the expression of the cognate transporters by S. lugdunensis.
Collapse
Affiliation(s)
- Jeremy R Brozyna
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | | |
Collapse
|
39
|
Kobylarz MJ, Grigg JC, Takayama SIJ, Rai DK, Heinrichs DE, Murphy MEP. Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor. ACTA ACUST UNITED AC 2014; 21:379-88. [PMID: 24485762 DOI: 10.1016/j.chembiol.2013.12.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 11/29/2022]
Abstract
L-2,3-diaminopropionic acid (L-Dap) is an amino acid that is a precursor of antibiotics and staphyloferrin B a siderophore produced by Staphylococcus aureus. SbnA and SbnB are encoded by the staphyloferrin B biosynthetic gene cluster and are implicated in L-Dap biosynthesis. We demonstrate here that SbnA uses PLP and substrates O-phospho-L-serine and L-glutamate to produce a metabolite N-(1-amino-1-carboxyl-2-ethyl)-glutamic acid (ACEGA). SbnB is shown to use NAD(+) to oxidatively hydrolyze ACEGA to yield α-ketoglutarate and L-Dap. Also, we describe crystal structures of SbnB in complex with NADH and ACEGA as well as with NAD(+) and α-ketoglutarate to reveal the residues required for substrate binding, oxidation, and hydrolysis. SbnA and SbnB contribute to the iron sparing response of S. aureus that enables staphyloferrin B biosynthesis in the absence of an active tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Marek J Kobylarz
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shin-ichi J Takayama
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Dushyant K Rai
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, The Centre for Human Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
40
|
Owens CP, Chim N, Graves AB, Harmston CA, Iniguez A, Contreras H, Liptak MD, Goulding CW. The Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J Biol Chem 2013; 288:21714-28. [PMID: 23760277 DOI: 10.1074/jbc.m113.453076] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival. M. tuberculosis has two iron uptake mechanisms, one that utilizes non-heme iron and another that taps into the vast host heme-iron pool. To date, proteins known to be involved in mycobacterial heme uptake are Rv0203, MmpL3, and MmpL11. Whereas Rv0203 transports heme across the bacterial periplasm or scavenges heme from host heme proteins, MmpL3 and MmpL11 are thought to transport heme across the membrane. In this work, we characterize the heme-binding properties of the predicted extracellular soluble E1 domains of both MmpL3 and MmpL11 utilizing absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopic methods. Furthermore, we demonstrate that Rv0203 transfers heme to both MmpL3-E1 and MmpL11-E1 domains at a rate faster than passive heme dissociation from Rv0203. This work elucidates a key step in the mycobacterial uptake of heme, and it may be useful in the development of anti-tuberculosis drugs targeting this pathway.
Collapse
Affiliation(s)
- Cedric P Owens
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2. Biochem J 2013; 449:683-93. [PMID: 23113737 DOI: 10.1042/bj20121426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus is a human pathogen causing globally significant morbidity and mortality. The development of antibiotic resistance in S. aureus highlights the need for a preventive vaccine. In the present paper we explore the structure and function of FhuD2 (ferric-hydroxamate uptake D2), a staphylococcal surface lipoprotein mediating iron uptake during invasive infection, recently described as a promising vaccine candidate. Differential scanning fluorimetry and calorimetry studies revealed that FhuD2 is stabilized by hydroxamate siderophores. The FhuD2-ferrichrome interaction was of nanomolar affinity in surface plasmon resonance experiments and fully iron(III)-dependent. We determined the X-ray crystallographic structure of ligand-bound FhuD2 at 1.9 Å (1 Å=0.1 nm) resolution, revealing the bilobate fold of class III SBPs (solute-binding proteins). The ligand, ferrichrome, occupies a cleft between the FhuD2 N- and C-terminal lobes. Many FhuD2-siderophore interactions enable the specific recognition of ferrichrome. Biochemical data suggest that FhuD2 does not undergo significant conformational changes upon siderophore binding, supporting the hypothesis that the ligand-bound complex is essential for receptor engagement and uptake. Finally, immunizations with FhuD2 alone or FhuD2 formulated with hydroxamate siderophores were equally protective in a murine staphylococcal infection model, confirming the suitability and efficacy of apo-FhuD2 as a protective antigen, and suggesting that other class III SBPs might also be exploited as vaccine candidates.
Collapse
|
42
|
Nobre LS, Saraiva LM. Effect of combined oxidative and nitrosative stresses on Staphylococcus aureus transcriptome. Appl Microbiol Biotechnol 2013; 97:2563-73. [PMID: 23389340 DOI: 10.1007/s00253-013-4730-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a pathogen responsible for severe community- and nosocomially acquired infections. To fight pathogen intrusion, the innate immune system uses a plethora of weapons, with the generation of oxidative and nitrosative stresses among the most efficient. In this work, the S. aureus genome-wide transcriptional responses to oxidative stress generated by hydrogen peroxide, to nitrosative stress imposed by S-nitrosoglutathione (GSNO), and to the combination of the two were investigated using microarray analysis. The results showed that these stresses have a significant impact on the transcriptome of S. aureus. Hydrogen peroxide modified mainly the mRNA abundance of genes involved in oxidative detoxification and DNA metabolism, which together represent 14 % of the total number of upregulated genes. GSNO caused significant alteration of the expression of gene products with regulatory function. However, the simultaneous addition of GSNO and hydrogen peroxide was found to cause the more significant transcriptomic alteration, affecting ∼10 % of the total transcriptome. In particular, exposure of S. aureus to GSNO plus hydrogen peroxide modified the transcription of genes associated with cell envelope and iron metabolism, including induction of ftnA and dps genes that encode iron-storage and oxidative-protecting proteins. Further studies revealed that when exposed to combined GSNO-hydrogen peroxide stresses, S. aureus has decreased viability, which is enhanced in the presence of iron, and low siderophore activity. Altogether, this study revealed, for the first time, how the combined oxidative and nitrosative stresses inflicted during phagocytosis interfere at the transcriptional level with the S. aureus cellular metabolism.
Collapse
Affiliation(s)
- Lígia S Nobre
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | | |
Collapse
|
43
|
Zhu CF, Qiu DH, Kong XL, Hider RC, Zhou T. Synthesis and in-vitro antimicrobial evaluation of a high-affinity iron chelator in combination with chloramphenicol. J Pharm Pharmacol 2012; 65:512-20. [DOI: 10.1111/jphp.12013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/14/2012] [Indexed: 01/03/2023]
Abstract
Abstract
Objectives
The objectives of this study were first to design and synthesize a hexadentate chelator with high iron(III) affinity and, second, to evaluate its antimicrobial activity in the presence and absence of chloramphenicol.
Methods
A hexadentate ligand was synthesized by conjugating a protected bidentate compound onto a tripodal structure. The pKa values and iron affinity of the chelator were determined by spectophotometric titration. Minimum inhibitory concentrations were determined by visual inspection of broth turbidity. The bactericidal rates were calculated by counting the colony numbers on a light board after incubation with and without an antimicrobial agent.
Key findings
A hexadentate 3-hydroxypyridin-4-one was found to possess a high affinity for iron(III), with a pFe value of 31.2 (negative logarithm of concentration of the free iron(III) in solution (when [Fe3+]Total = 10−6 m; [Ligand]Total = 10−5 m; pH = 7.4). We found that this chelator had an appreciable inhibitory effect in vitro against the two bacterial strains Providencia stuartii and Staphylococcus aureus, particularly in the presence of chloramphenicol.
Conclusions
A 3-hydroxypyridin-4-one hexadentate ligand has potential as an antimicrobial agent. Combination therapy with this iron chelator plus chloramphenicol has potential for the treatment of extracellular infections.
Collapse
Affiliation(s)
- Chun-Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Di-Hong Qiu
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo, China
| | - Xiao-Le Kong
- Division of Pharmaceutical Science, King's College London, London, UK
| | - Robert C Hider
- Division of Pharmaceutical Science, King's College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
44
|
Discovery of an Iron-Regulated Citrate Synthase in Staphylococcus aureus. ACTA ACUST UNITED AC 2012; 19:1568-78. [DOI: 10.1016/j.chembiol.2012.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/06/2012] [Accepted: 10/03/2012] [Indexed: 11/21/2022]
|
45
|
Sheldon JR, Heinrichs DE. The iron-regulated staphylococcal lipoproteins. Front Cell Infect Microbiol 2012; 2:41. [PMID: 22919632 PMCID: PMC3417571 DOI: 10.3389/fcimb.2012.00041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/13/2012] [Indexed: 01/01/2023] Open
Abstract
Lipoproteins fulfill diverse roles in antibiotic resistance, adhesion, protein secretion, signaling and sensing, and many also serve as the substrate binding protein (SBP) partner to ABC transporters for the acquisition of a diverse array of nutrients including peptides, sugars, and scarcely abundant metals. In the staphylococci, the iron-regulated SBPs are significantly upregulated during iron starvation and function to sequester and deliver iron into the bacterial cell, enabling staphylococci to circumvent iron restriction imposed by the host environment. Accordingly, this subset of lipoproteins has been implicated in staphylococcal pathogenesis and virulence. Lipoproteins also activate the host innate immune response, triggered through Toll-like receptor-2 (TLR2) and, notably, the iron-regulated subset of lipoproteins are particularly immunogenic. In this review, we discuss the iron-regulated staphylococcal lipoproteins with regard to their biogenesis, substrate specificity, and impact on the host innate immune response.
Collapse
Affiliation(s)
- Jessica R Sheldon
- Department of Microbiology and Immunology, Western University, London ON, Canada
| | | |
Collapse
|
46
|
DeDent A, Kim HK, Missiakas D, Schneewind O. Exploring Staphylococcus aureus pathways to disease for vaccine development. Semin Immunopathol 2012; 34:317-33. [PMID: 22130613 PMCID: PMC3539746 DOI: 10.1007/s00281-011-0299-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is a commensal of the human skin or nares and a pathogen that frequently causes skin and soft tissue infections as well as bacteremia and sepsis. Recent efforts in understanding the molecular mechanisms of pathogenesis revealed key virulence strategies of S. aureus in host tissues: bacterial scavenging of iron, induction of coagulation pathways to promote staphylococcal agglutination in the vasculature, and suppression of innate and adaptive immune responses. Advances in all three areas have been explored for opportunities in vaccine design in an effort to identify the critical protective antigens of S. aureus. Human clinical trials with specific subunit vaccines have failed, yet provide important insights for the design of future trials that must address the current epidemic of S. aureus infections with drug-resistant isolates (MRSA, methicillin-resistant S. aureus).
Collapse
Affiliation(s)
- Andrea DeDent
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
47
|
Cassat JE, Skaar EP. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin Immunopathol 2012; 34:215-35. [PMID: 22048835 PMCID: PMC3796439 DOI: 10.1007/s00281-011-0294-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022]
Abstract
Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed "nutritional immunity." To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection.
Collapse
Affiliation(s)
- James E. Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave South, A-5102 MCN, Nashville, TN 37232-2363, USA
| |
Collapse
|
48
|
Abstract
The unique redox potential of iron makes it an ideal cofactor in diverse biochemical reactions. Iron is therefore vital for the growth and proliferation of nearly all organisms, including pathogenic bacteria. Vertebrates sequester excess iron within proteins in order to alleviate toxicity and restrict the amount of free iron available for invading pathogens. Restricting the growth of infectious microorganisms by sequestering essential nutrients is referred to as nutritional immunity. In order to circumvent nutritional immunity, bacterial pathogens have evolved elegant systems that allow for the acquisition of iron during infection. The gram-positive extracellular pathogen Staphylococcus aureus is a commensal organism that can cause severe disease when it gains access to underlying tissues. Iron acquisition is required for S. aureus colonization and subsequent pathogenesis. Herein we review the strategies S. aureus employs to obtain iron through the production of siderophores and the consumption of host heme.
Collapse
Affiliation(s)
- Neal D Hammer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA.
| | | |
Collapse
|
49
|
Beasley FC, Cheung J, Heinrichs DE. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus. BMC Microbiol 2011; 11:199. [PMID: 21906287 PMCID: PMC3179956 DOI: 10.1186/1471-2180-11-199] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves. RESULTS Using mutants carrying insertions in sbnA and sbnB, we show that these two genes are essential for the synthesis of staphyloferrin B, and that supplementation of the growth medium with L-2,3-diaminopropionic acid can bypass the block in staphyloferrin B synthesis displayed by the mutants. Several mechanisms are proposed for how the enzymes SbnA, with similarity to cysteine synthase enzymes, and SbnB, with similarity to amino acid dehydrogenases and ornithine cyclodeaminases, function together in the synthesis of this unusual nonproteinogenic amino acid L-2,3-diaminopropionic acid. CONCLUSIONS Mutation of either sbnA or sbnB result in abrogation of synthesis of staphyloferrin B, a siderophore that contributes to iron-restricted growth of S. aureus. The loss of staphyloferrin B synthesis is due to an inability to synthesize the unusual amino acid L-2,3-diaminopropionic acid which is an important, iron-liganding component of the siderophore structure. It is proposed that SbnA and SbnB function together as an L-Dap synthase in the S. aureus cell.
Collapse
Affiliation(s)
- Federico C Beasley
- Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
50
|
Peuckert F, Ramos-Vega A, Miethke M, Schwörer C, Albrecht A, Oberthür M, Marahiel M. The Siderophore Binding Protein FeuA Shows Limited Promiscuity toward Exogenous Triscatecholates. ACTA ACUST UNITED AC 2011; 18:907-19. [DOI: 10.1016/j.chembiol.2011.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/14/2011] [Accepted: 05/04/2011] [Indexed: 11/24/2022]
|