1
|
Guo H, Li J, Lu P. Systematic review and meta-analysis of mass spectrometry proteomics applied to ocular fluids to assess potential biomarkers of age-related macular degeneration. BMC Ophthalmol 2023; 23:507. [PMID: 38087257 PMCID: PMC10717315 DOI: 10.1186/s12886-023-03237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a significant cause of severe vision loss. The main purpose of this study was to identify mass spectrometry proteomics-based potential biomarkers of AMD that contribute to understanding the mechanisms of disease and aiding in early diagnosis. METHODS This study retrieved studies that aim to detect differences relate to proteomics in AMD patients and healthy control groups by mass spectrometry (MS) proteomics approaches. The search process was accord with PRISMA guidelines (PROSPERO database: CRD42023388093). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes Pathway Analysis (KEGG) were performed on differentially expressed proteins (DEPs) in the included articles using the DAVID database. DEPs were included in a meta-analysis when their effect size could be computed in at least two research studies. The effect size of measured proteins was transformed to the log2-fold change. Protein‒protein interaction (PPI) analysis was conducted on proteins that were statistically significant in the meta-analysis using the String online database. RESULTS Eleven studies fulfilled the inclusion criteria, and 161 DEPs were identified. The GO analysis showed that AMD is significantly related to proteolysis, extracellular exosome and protein binding. In KEGG, the most significant pathway was the complement and coagulation cascades. Meta-analysis results suggested that eight proteins were statistically significant, and according to PPI results, the most significant four proteins were serotransferrin (TF), apolipoprotein A1 (APOA1), complement C3 (C3) and lipocalin-1 (LCN1). CONCLUSIONS Four possible biomarkers, TF, APOA1, C3 and LCN1, were found to be significant in the pathogenesis of AMD and need to be further validated. Further studies should be performed to evaluate diagnostic and therapeutic value of these proteins.
Collapse
Affiliation(s)
- Hanmu Guo
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianqing Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
GGA3 interacts with L-type prostaglandin D synthase and regulates the recycling and signaling of the DP1 receptor for prostaglandin D2 in a Rab4-dependent mechanism. Cell Signal 2020; 72:109641. [DOI: 10.1016/j.cellsig.2020.109641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
|
3
|
Binda C, Génier S, Degrandmaison J, Picard S, Fréchette L, Jean S, Marsault E, Parent JL. L-type prostaglandin D synthase regulates the trafficking of the PGD 2 DP1 receptor by interacting with the GTPase Rab4. J Biol Chem 2019; 294:16865-16883. [PMID: 31575663 DOI: 10.1074/jbc.ra119.008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates that G protein-coupled receptors (GPCRs) interact with Rab GTPases during their intracellular trafficking. How GPCRs recruit and activate the Rabs is unclear. Here, we report that depletion of endogenous L-type prostaglandin D synthase (L-PGDS) in HeLa cells inhibited recycling of the prostaglandin D2 (PGD2) DP1 receptor (DP1) to the cell surface after agonist-induced internalization and that L-PGDS overexpression had the opposite effect. Depletion of endogenous Rab4 prevented l-PGDS-mediated recycling of DP1, and l-PGDS depletion inhibited Rab4-dependent recycling of DP1, indicating that both proteins are mutually involved in this pathway. DP1 stimulation promoted its interaction through its intracellular C terminus with Rab4, which was increased by l-PGDS. Confocal microscopy revealed that DP1 activation induces l-PGDS/Rab4 co-localization. l-PGDS/Rab4 and DP1/Rab4 co-immunoprecipitation levels were increased by DP1 agonist treatment. Pulldown assays with purified GST-l-PGDS and His6-Rab4 indicated that both proteins interact directly. l-PGDS interacted preferentially with the inactive, GDP-locked Rab4S22N variant rather than with WT Rab4 or with constitutively active Rab4Q67L proteins. Overexpression and depletion experiments disclosed that l-PGDS partakes in Rab4 activation following DP1 stimulation. Experiments with deletion mutants and synthetic peptides revealed that amino acids 85-92 in l-PGDS are involved in its interaction with Rab4 and in its effect on DP1 recycling. Of note, GTPγS loading and time-resolved FRET assays with purified proteins suggested that l-PGDS enhances GDP-GTP exchange on Rab4. Our results reveal how l-PGDS, which produces the agonist for DP1, regulates DP1 recycling by participating in Rab4 recruitment and activation.
Collapse
Affiliation(s)
- Chantal Binda
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Génier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Picard
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Fréchette
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steve Jean
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada .,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
4
|
Koyani CN, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, Windischhofer W, Sattler W, Malle E. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol 2016; 104:29-41. [PMID: 26801686 PMCID: PMC4782222 DOI: 10.1016/j.bcp.2016.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Despite considerable efforts to improve treatment modalities for osteosarcoma (OS), patient survival remains poor mainly due to pro-survival pathways in OS cells. Among others, prostaglandins (PGs) are the potent regulators of bone homoeostasis and OS pathophysiology. Therefore, the present study aimed to elucidate the impact of 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, a stable PGD2 degradation product) on cell death/cell survival pathways in p53-deficient MG-63 OS cells. Our findings show that 15d-PGJ2 induces generation of reactive oxygen species that promote p38 MAPK activation and subsequent Akt phosphorylation. This pathway induced nuclear expression of Nrf2 and Egr1, and increased transcription of haem oxygenase-1 (HO-1) and the catalytic subunit of glutamate cysteine ligase (GCLc), catalysing the first step in GSH synthesis. Silencing of Nrf2, Egr1 and HO-1 significantly elevated 15d-PGJ2-mediated reduction of cellular metabolic activity. Activation of cell survival genes including HO-1 and GCLc inhibited 15d-PGJ2-induced cleavage of pro-caspase-3 and PARP. Annexin V/propidium iodide staining showed an increase in early/late apoptotic cells in response to 15d-PGJ2. The observed 15d-PGJ2-mediated signalling events are independent of PGD2 receptors (DP1 and DP2) and PPARγ. In addition, the electrophilic carbon atom C9 is a prerequisite for the observed activity of 15d-PGJ2. The present data show that the intracellular redox imbalance acted as a node and triggered both death and survival pathways in response to 15d-PGJ2. Pharmacological or genetic interference of the pro-survival pathway, the p38 MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis, sensitizes MG-63 cells towards 15d-PGJ2-mediated apoptosis.
Collapse
Affiliation(s)
- Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Kerstin Kitz
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Evelyn Huber
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christopher Trummer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Nobl M, Reich M, Dacheva I, Siwy J, Mullen W, Schanstra JP, Choi CY, Kopitz J, Kretz FTA, Auffarth GU, Koch F, Koss MJ. Proteomics of vitreous in neovascular age-related macular degeneration. Exp Eye Res 2016; 146:107-117. [PMID: 26769219 DOI: 10.1016/j.exer.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 01/02/2016] [Indexed: 01/02/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) has been described as a predominantly inflammatory and proangiogenic retino-choroidal disease. Vitreous humor (VH) is the adjacent and accessible compartment which, due to the vicinity to the retina, might best represent changes of protein-based mediators of nAMD. The aim of this clinical-experimental study was to analyze the nAMD associated VH proteome of previously untreated patients whilst taking different groups of nAMD into account, based on their clinical presentation (clinical diagnosis groups). Electrophoresis coupled online to mass spectrometry (CE-MS) as well as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were used to analyze VH of 108 nAMD patients and 24 controls with idiopathic floaters. A total of 101 different proteins with at least two unique peptides could be identified. Using a stringent statistical analysis with implementation of the closed test principle, we were able to identify four proteins that may be involved in the pathophysiology of nAMD: Clusterin, opticin, pigment epithelium-derived factor and prostaglandin-H2 d-isomerase. Using independent samples, ROC-Area under the curve was determined proving the validity of the results: Clusterin 0.747, opticin 0.656, pigment epithelium-derived factor 0.514, prostaglandin-H2 d-isomerase 0.712. In addition, validation through ELISA measurements was performed. The identified proteins may serve as potential biomarkers or even targets of therapy for nAMD.
Collapse
Affiliation(s)
- Matthias Nobl
- Department of Ophthalmology, University of Heidelberg, Germany
| | - Michael Reich
- Department of Ophthalmology, University of Heidelberg, Germany; Department of Ophthalmology, University of Freiburg, Germany
| | - Ivanka Dacheva
- Department of Ophthalmology, University of Heidelberg, Germany
| | | | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Chul Young Choi
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; David J Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Pathology, University of Heidelberg, Germany
| | | | - Gerd U Auffarth
- Department of Ophthalmology, University of Heidelberg, Germany; David J Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Heidelberg, Germany
| | - Frank Koch
- Department of Ophthalmology, Goethe University, Frankfurt am Main, Germany
| | - Michael J Koss
- Department of Ophthalmology, University of Heidelberg, Germany; David J Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Heidelberg, Germany; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Binda C, Génier S, Cartier A, Larrivée JF, Stankova J, Young JC, Parent JL. A G protein-coupled receptor and the intracellular synthase of its agonist functionally cooperate. ACTA ACUST UNITED AC 2014; 204:377-93. [PMID: 24493589 PMCID: PMC3912537 DOI: 10.1083/jcb.201304015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The GPCR DP1 promotes the activity of L-PGDS, the enzyme that produces the DP1 agonist PGD2, while at the same time L-PGDS promotes the export and activity of DP1 in response to PGD2. Export of newly synthesized G protein–coupled receptors (GPCRs) remains poorly characterized. We show in this paper that lipocalin-type prostaglandin D2 (PGD2) synthase (L-PGDS) interacts intracellularly with the GPCR DP1 in an agonist-independent manner. L-PGDS promotes cell surface expression of DP1, but not of other GPCRs, in HEK293 and HeLa cells, independent of L-PGDS enzyme activity. In addition, formation of a DP1–Hsp90 complex necessary for DP1 export to the cell surface is dependent on the interaction between L-PGDS and the C-terminal MEEVD residues of Hsp90. Surprisingly, PGD2 synthesis by L-PGDS is promoted by coexpression of DP1, suggesting a possible intracrine/autocrine signaling mechanism. In this regard, L-PGDS increases the formation of a DP1–ERK1/2 complex and increases DP1-mediated ERK1/2 signaling. Our findings define a novel cooperative mechanism in which a GPCR (DP1) promotes the activity of the enzyme (L-PGDS) that produces its agonist (PGD2) and in which this enzyme in turn acts as a cofactor (of Hsp90) to promote export and agonist-dependent activity of the receptor.
Collapse
Affiliation(s)
- Chantal Binda
- Service de Rhumatologie, Département de Médecine, 2 Programme d'Immunologie, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, and 3 Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
7
|
Yue L, Haroun S, Parent JL, de Brum-Fernandes AJ. Prostaglandin D(2) induces apoptosis of human osteoclasts through ERK1/2 and Akt signaling pathways. Bone 2014; 60:112-21. [PMID: 24345643 DOI: 10.1016/j.bone.2013.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/20/2022]
Abstract
In a recent study we have shown that prostaglandin D2 (PGD2) induces human osteoclast (OC) apoptosis through the activation of the chemoattractant receptor homologous molecule expressed on T-helper type 2 cell (CRTH2) receptor and the intrinsic apoptotic pathway. However, the molecular mechanisms underlying this response remain elusive. The objective of this study is to investigate the intracellular signaling pathways mediating PGD2-induced OC apoptosis. OCs were generated by in vitro differentiation of human peripheral blood mononuclear cells (PBMCs), and then treated with or without the selective inhibitors of mitogen-activated protein kinase-extracellular signal-regulated kinase (ERK) kinase, (MEK)-1/2, phosphatidylinositol3-kinase (PI3K) and NF-κB/IκB kinase-2 (IKK2) prior to the treatments of PGD2 as well as its agonists and antagonists. Fluorogenic substrate assay and immunoblotting were performed to determine the caspase-3 activity and key proteins involved in Akt, ERK1/2 and NF-κB signaling pathways. Treatments with both PGD2 and a CRTH2 agonist decreased ERK1/2 (Thr202/Tyr204) and Akt (Ser473) phosphorylation, whereas both treatments increased β-arrestin-1 phosphorylation (Ser412) in the presence of naproxen, which was used to eliminate endogenous prostaglandin production. In the absence of naproxen, treatment with a CRTH2 antagonist increased both ERK1/2 and Akt phosphorylations, and reduced the phosphorylation of β-arrestin-1. Treatment of OCs with a selective MEK-1/2 inhibitor increased caspase-3 activity and OC apoptosis induced by both PGD2 and a CRTH2 agonist. Moreover, a CRTH2 antagonist diminished the selective MEK-1/2 inhibitor-induced increase in caspase-3 activity in the presence of endogenous prostaglandins. In addition, treatment of OCs with a selective PI3K inhibitor decreased ERK1/2 (Thr202/Tyr204) phosphorylation caused by PGD2, whereas increased ERK1/2 (Thr202/Tyr204) phosphorylation by a CRTH2 antagonist was attenuated with a PI3K inhibitor treatment. The DP receptor was not implicated in any of the parameters evaluated. Treatment of OCs with PGD2 as well as its receptor agonists and antagonists did not alter the phosphorylation of RelA/p65 (Ser536). Moreover, the caspase-3 activity was not altered in OCs treated with a selective IKK2/NF-κB inhibitor. In conclusion, endogenous or exogenous PGD2 induces CRTH2-dependent apoptosis in human differentiated OCs; β-arrestin-1, ERK1/2, and Akt, but not IKK2/NF-κB are probably implicated in the signaling pathways of this receptor in the model studied.
Collapse
Affiliation(s)
- Li Yue
- Department of Pharmacology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada; Division of Rheumatology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada.
| | - Sonia Haroun
- Division of Rheumatology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada.
| | - Jean-Luc Parent
- Department of Pharmacology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada; Division of Rheumatology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada.
| | - Artur J de Brum-Fernandes
- Department of Pharmacology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada; Division of Rheumatology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
8
|
Labrecque P, Roy SJ, Fréchette L, Iorio-Morin C, Gallant MA, Parent JL. Inverse agonist and pharmacochaperone properties of MK-0524 on the prostanoid DP1 receptor. PLoS One 2013; 8:e65767. [PMID: 23762421 PMCID: PMC3677937 DOI: 10.1371/journal.pone.0065767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 05/01/2013] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin D₂ (PGD₂) acts through two G protein-coupled receptors (GPCRs), the prostanoid DP receptor and CRTH2 also known as DP1 and DP2, respectively. Several previously characterized GPCR antagonists are now classified as inverse agonists and a number of GPCR ligands are known to display pharmacochaperone activity towards a given receptor. Here, we demonstrate that a DP1 specific antagonist, MK-0524 (also known as laropiprant), decreased basal levels of intracellular cAMP produced by DP1, a Gα(s)-coupled receptor, in HEK293 cells. This reduction in cAMP levels was not altered by pertussis toxin treatment, indicating that MK-0524 did not induce coupling of DP1 to Gα(i/o) proteins and that this ligand is a DP1 inverse agonist. Basal ERK1/2 activation by DP1 was not modulated by MK-0524. Interestingly, treatment of HEK293 cells expressing Flag-tagged DP1 with MK-0524 promoted DP1 cell surface expression time-dependently to reach a maximum increase of 50% compared to control after 24 h. In contrast, PGD₂ induced the internalization of 75% of cell surface DP1 after the same time of stimulation. The increase in DP1 cell surface targeting by MK-0524 was inhibited by Brefeldin A, an inhibitor of transport from the endoplasmic reticulum-Golgi to the plasma membrane. Confocal microscopy confirmed that a large population of DP1 remained trapped intracellularly and co-localized with calnexin, an endoplasmic reticulum marker. Redistribution of DP1 from intracellular compartments to the plasma membrane was observed following treatment with MK-0524 for 24 h. Furthermore, MK-0524 promoted the interaction between DP1 and the ANKRD13C protein, which we showed previously to display chaperone-like effects towards the receptor. We thus report that MK-0524 is an inverse agonist and a pharmacochaperone of DP1. Our findings may have important implications during therapeutic treatments with MK-0524 and for the development of new molecules targeting DP1.
Collapse
Affiliation(s)
- Pascale Labrecque
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien J. Roy
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis Fréchette
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christian Iorio-Morin
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maxime A. Gallant
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Luc Parent
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
9
|
Nichols HL, Saffeddine M, Theriot BS, Hegde A, Polley D, El-Mays T, Vliagoftis H, Hollenberg MD, Wilson EH, Walker JKL, DeFea KA. β-Arrestin-2 mediates the proinflammatory effects of proteinase-activated receptor-2 in the airway. Proc Natl Acad Sci U S A 2012; 109:16660-5. [PMID: 23012429 PMCID: PMC3478622 DOI: 10.1073/pnas.1208881109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteinase-Activated receptor-2 (PAR(2)), a G-protein-coupled Receptor, activated by serine proteinases, is reported to have both protective and proinflammatory effects in the airway. Given these opposing actions, both inhibitors and activators of PAR(2) have been proposed for treating asthma. PAR(2) can signal through two independent pathways: a β-arrestin-dependent one that promotes leukocyte migration, and a G-protein/Ca(2+) one that is required for prostaglandin E(2) (PGE(2)) production and bronchiolar smooth muscle relaxation. We hypothesized that the proinflammatory responses to PAR(2) activation are mediated by β-arrestins, whereas the protective effects are not. Using a mouse ovalbumin model for PAR(2)-modulated airway inflammation, we observed decreased leukocyte recruitment, cytokine production, and mucin production in β-arrestin-2(-/-) mice. In contrast, PAR(2)-mediated PGE(2) production, smooth muscle relaxation, and decreased baseline airway resistance (measures of putative PAR(2) "protective" effects) were independent of β-arrestin-2. Flow cytometry and cytospins reveal that lung eosinophil and CD4 T-cell infiltration, and production of IL-4, IL-6, IL-13, and TNFα, were enhanced in wild-type but not β-arrestin-2(-/-) mice. Using the forced oscillation technique to measure airway resistance reveals that PAR(2) activation protects against airway hyperresponsiveness by an unknown mechanism, possibly involving smooth muscle relaxation. Our data suggest that the PAR(2)-enhanced inflammatory process is β-arrestin-2 dependent, whereas the protective anticonstrictor effect of bronchial epithelial PAR(2) may be β-arrestin independent.
Collapse
Affiliation(s)
- Heddie L. Nichols
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | | | - Barbara S. Theriot
- Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Akhil Hegde
- Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710; and
| | | | - Tamer El-Mays
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | | | | - Emma H. Wilson
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - Julia K. L. Walker
- Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Kathryn A. DeFea
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
10
|
Yue L, Durand M, Lebeau Jacob MC, Hogan P, McManus S, Roux S, de Brum-Fernandes AJ. Prostaglandin D2 induces apoptosis of human osteoclasts by activating the CRTH2 receptor and the intrinsic apoptosis pathway. Bone 2012; 51:338-46. [PMID: 22705147 DOI: 10.1016/j.bone.2012.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022]
Abstract
Prostaglandin D(2) (PGD(2)) is a lipid mediator synthesized from arachidonic acid that directly activates two specific receptors, the D-type prostanoid (DP) receptor and chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). PGD(2) can affect bone metabolism by influencing both osteoblast and osteoclast (OC) functions, both cells involved in bone remodeling and in in vivo fracture repair as well. The objective of the present study was to determine the effects of PGD(2), acting through its two specific receptors, on human OC apoptosis. Human OCs were differentiated in vitro from peripheral blood mononuclear cells in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and treated with PGD(2), its specific agonists and antagonists. Treatment with PGD(2) for 24hours in the presence of naproxen (10μM) to inhibit endogenous prostaglandin production increased the percentage of apoptotic OCs in a dose-dependent manner, as did the specific CRTH2 agonist compound DK-PGD(2) but not the DP agonist compound BW 245C. In the absence of naproxen, the CRTH2 antagonist compound CAY 10471 reduced OC apoptosis rate but the DP antagonist BW A868C had no effect. The induction of PGD(2)-CRTH2 dependent apoptosis was associated with the activation of caspase-9, but not caspase-8, leading to caspase-3 cleavage. These data show that PGD(2) induces human OC apoptosis through activation of CRTH2 and the apoptosis intrinsic pathway.
Collapse
Affiliation(s)
- Li Yue
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|