1
|
Red Algal Sulfated Galactan Binds and Protects Neural Cells from HIV-1 gp120 and Tat. Pharmaceuticals (Basel) 2021; 14:ph14080714. [PMID: 34451811 PMCID: PMC8398392 DOI: 10.3390/ph14080714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/31/2023] Open
Abstract
The potential neuroprotective capacity of four different sulfated glycans: Botryocladia occidentalis-derived sulfated galactan (BoSG) (MW > 100 kDa), Lytechinus variegatus-derived sulfated fucan (LvSF) (MW~90 kDa), high-molecular weight dextran sulfate (DxS) (MW 100 kDa), and unfractionated heparin (UFH) (MW~15 kDa), was assessed in response to the HIV-1 proteins, R5-tropic glycoprotein 120 (gp120) and/or trans-activator of transcription (Tat), using primary murine neurons co-cultured with mixed glia. Compared to control-treated cells in which HIV-1 proteins alone or combined were neurotoxic, BoSG was, among the four tested sulfated glycans, the only one capable of showing significant concentration-dependent neuroprotection against Tat and/or gp120, alone or combined. Surface plasmon resonance-based data indicate that BoSG can bind both HIV-1 proteins at nM concentrations with preference for Tat (7.5 × 10−8 M) over gp120 (3.2 × 10−7 M) as compared to UFH, which bound gp120 (8.7 × 10−7 M) over Tat (5.7 × 10−6 M). Overall, these data support the notion that sulfated glycan extracted from the red alga B. occidentalis, BoSG, can exert neuroprotection against HIV-1 Tat and gp120, potentially via direct molecular interactions.
Collapse
|
2
|
Nijmeijer BM, Eder J, Langedijk CJM, Kaptein TM, Meeussen S, Zimmermann P, Ribeiro CMS, Geijtenbeek TBH. Syndecan 4 Upregulation on Activated Langerhans Cells Counteracts Langerin Restriction to Facilitate Hepatitis C Virus Transmission. Front Immunol 2020; 11:503. [PMID: 32292405 PMCID: PMC7118926 DOI: 10.3389/fimmu.2020.00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Sexually transmitted Hepatitis C virus (HCV) infections and high reinfections are a major concern amongst men who have sex with men (MSM) living with HIV-1 and HIV-negative MSM. Immune activation and/or HIV-1 coinfection enhance HCV susceptibility via sexual contact, suggesting that changes in immune cells or external factors are involved in increased susceptibility. Activation of anal mucosal Langerhans cells (LCs) has been implicated in increased HCV susceptibility as activated but not immature LCs efficiently retain and transmit HCV to other cells. However, the underlying molecular mechanism of transmission remains unclear. Here we identified the Heparan Sulfate Proteoglycan Syndecan 4 as the molecular switch, controlling HCV transmission by LCs. Syndecan 4 was highly upregulated upon activation of LCs and interference with Heparan Sulfate Proteoglycans or silencing of Syndecan 4 abrogated HCV transmission. These data strongly suggest that Syndecan 4 mediates HCV transmission by activated LCs. Notably, our data also identified the C-type lectin receptor langerin as a restriction factor for HCV infection and transmission. Langerin expression abrogated HCV infection in HCV permissive cells, whereas langerin expression on the Syndecan 4 expressing cell line strongly decreased HCV transmission to a target hepatoma cell line. These data suggest that the balanced interplay between langerin restriction and Syndecan 4 transmission determines HCV dissemination. Silencing of langerin enhanced HCV transmission whereas silencing Syndecan 4 on activated LCs decreased transmission. Blocking Heparan Sulfate Proteoglycans abrogated HCV transmission by LCs ex vivo identifying Heparan Sulfate Proteoglycans and Syndecan 4 as potential targets to prevent sexual transmission of HCV. Thus, our data strongly suggest that the interplay between receptors promotes or restricts transmission and further indicate that Syndecan 4 is the molecular switch controlling HCV susceptibility after sexual contact.
Collapse
Affiliation(s)
- Bernadien M. Nijmeijer
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Julia Eder
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Catharina J. M. Langedijk
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sofie Meeussen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
| | - Carla M. S. Ribeiro
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
4
|
Henrick BM, Yao XD, Zahoor MA, Abimiku A, Osawe S, Rosenthal KL. TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. Front Immunol 2019; 10:482. [PMID: 30930906 PMCID: PMC6430187 DOI: 10.3389/fimmu.2019.00482] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity and provide a first line of host defense against invading pathogens. Of the identified human TLRs, TLR10 remains an orphan receptor whose ligands and functions are poorly understood. In the present study, we sought to evaluate the level of TLR10 expression in breast milk (BM) and explore its potential function in the context of HIV-1 infection. We evaluated HIV-1-infected (Nigerian: n = 40) and uninfected (Nigerian: n = 27; Canadian: n = 15) BM samples for TLR expression (i.e., TLR10, TLR2, and TLR1) and report here that HIV-1-infected BM from Nigerian women showed significantly higher levels of TLR10, TLR1, and TLR2 expression. Moreover, the level of TLR10 expression in HIV-1-infected BM was upregulated by over 100-fold compared to that from uninfected control women. In vitro studies using TZMbl cells demonstrated that TLR10 overexpression contributes to higher HIV-1 infection and proviral DNA integration. Conversely, TLR10 inhibition significantly decreased HIV-1 infection. Notably, HIV-1 gp41 was recognized as a TLR10 ligand, leading to the induction of IL-8 and NF-κBα activation. The identification of a TLR10 ligand and its involvement in HIV-1 infection enhances our current understanding of HIV-1 replication and may assist in the development of improved future therapeutic strategies.
Collapse
Affiliation(s)
- Bethany M Henrick
- Evolve Biosystems, Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Xiao-Dan Yao
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Muhammad Atif Zahoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Sophia Osawe
- Institue of Human Virology-Nigeria, Abuja, Nigeria
| | - Kenneth L Rosenthal
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Delos M, Foulquier F, Hellec C, Vicogne D, Fifre A, Carpentier M, Papy-Garcia D, Allain F, Denys A. Heparan sulfate 3- O -sulfotransferase 2 (HS3ST2) displays an unexpected subcellular localization in the plasma membrane. Biochim Biophys Acta Gen Subj 2018; 1862:1644-1655. [DOI: 10.1016/j.bbagen.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
6
|
Zeinolabediny Y, Caccuri F, Colombo L, Morelli F, Romeo M, Rossi A, Schiarea S, Ciaramelli C, Airoldi C, Weston R, Donghui L, Krupinski J, Corpas R, García-Lara E, Sarroca S, Sanfeliu C, Slevin M, Caruso A, Salmona M, Diomede L. HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders. Sci Rep 2017; 7:10313. [PMID: 28871125 PMCID: PMC5583282 DOI: 10.1038/s41598-017-10875-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) remains an important neurological manifestation that adversely affects a patient’s quality of life. HIV-1 matrix protein p17 (p17) has been detected in autoptic brain tissue of HAND individuals who presented early with severe AIDS encephalopathy. We hypothesised that the ability of p17 to misfold may result in the generation of toxic assemblies in the brain and may be relevant for HAND pathogenesis. A multidisciplinary integrated approach has been applied to determine the ability of p17 to form soluble amyloidogenic assemblies in vitro. To provide new information into the potential pathogenic role of soluble p17 species in HAND, their toxicological capability was evaluated in vivo. In C. elegans, capable of recognising toxic assemblies of amyloidogenic proteins, p17 induces a specific toxic effect which can be counteracted by tetracyclines, drugs able to hinder the formation of large oligomers and consequently amyloid fibrils. The intrahippocampal injection of p17 in mice reduces their cognitive function and induces behavioral deficiencies. These findings offer a new way of thinking about the possible cause of neurodegeneration in HIV-1-seropositive patients, which engages the ability of p17 to form soluble toxic assemblies.
Collapse
Affiliation(s)
- Yasmin Zeinolabediny
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Federica Morelli
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Silvia Schiarea
- Department of Environmental Health Sciences, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnologies and Biosciences, University of Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnologies and Biosciences, University of Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Ria Weston
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Liu Donghui
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Jerzy Krupinski
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,Hospital Universitari Mútua de Terrassa, Department of Neurology, Terrassa, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Elisa García-Lara
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain.,University of Medicine and Pharmacy, Targu Mures, Romania
| | - Sara Sarroca
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Mark Slevin
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,University of Medicine and Pharmacy, Targu Mures, Romania.,Department of Pathology/Medicine, Griffith University, Brisbane, Australia
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy.
| |
Collapse
|
7
|
Choi S, Chung H, Hong H, Kim SY, Kim SE, Seoh JY, Moon CM, Yang EG, Oh ES. Inflammatory hypoxia induces syndecan-2 expression through IL-1β-mediated FOXO3a activation in colonic epithelia. FASEB J 2016; 31:1516-1530. [PMID: 28031321 DOI: 10.1096/fj.201601098r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is known to be a key causative factor in tumor progression, but we do not yet fully understand the molecular mechanism through which inflammation leads to cancer. Here, we report that the dextran sulfate sodium (DSS)-induced mouse model of chronic colitis is associated with increases in the serum level of IL-1β and the colonic epithelial expression of the cell-surface heparan sulfate proteoglycan, syndecan-2. We further show that IL-1β stimulated the transcription of syndecan-2 via NF-κB-dependent FOXO3a activation in CCD841CoN normal colonic epithelial cells and early-stage HT29 colon cancer cells. Inflammatory hypoxia was observed in the colonic epithelia of mice with chronic colitis, suggesting that hypoxic stress is involved in the regulation of syndecan-2 expression. Consistently, experimental inflammatory hypoxia induced hypoxia inducible factor-1α-dependent FOXO3a expression and the p38 MAPK-mediated nuclear localization of FOXO3a. FOXO3a directly mediated syndecan-2 expression in both cell lines and the colonic epithelia of mice with DSS-induced colitis. Moreover, syndecan-2 expression was detected in azoxymethane/DSS-induced colon tumors. Together, these data demonstrate that inflammatory hypoxia up-regulates syndecan-2 via the IL-1β-NF-κB-FOXO3a pathway. These findings provide new mechanistic insights into inflammatory hypoxia-mediated syndecan-2 expression to connect chronic inflammation and the development of colon cancer.-Choi, S., Chung, H., Hong, H., Kim, S. Y., Kim, S.-E., Seoh, J.-Y., Moon, C. M., Yang, E. G., Oh, E.-S. Inflammatory hypoxia induces syndecan-2 expression through IL-1β-mediated FOXO3a activation in colonic epithelia.
Collapse
Affiliation(s)
- Sojoong Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Heesung Chung
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea; .,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Heejeong Hong
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea; and
| | - Ju-Young Seoh
- Department of Microbiology, Graduate School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Chang Mo Moon
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea; and
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea;
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea; .,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
8
|
Renga B, Francisci D, Carino A, Marchianò S, Cipriani S, Chiara Monti M, Del Sordo R, Schiaroli E, Distrutti E, Baldelli F, Fiorucci S. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma. Sci Rep 2015; 5:15403. [PMID: 26469385 PMCID: PMC4606811 DOI: 10.1038/srep15403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the second most common cause of mortality in HIV-infected persons. Exactly how HIV infection per se affects liver disease progression is unknown. Here we have investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in HepG2 cells upon stimulation with the HIV matrix protein p17. This viral protein regulated mRNA expression of some NRs among which LXRα and its transcriptional co-activator MED1 were highly induced at mRNA level. Dissection of p17 downstream intracellular pathway demonstrated that p17 mediated activation of Jak/STAT signaling is responsible for the promoter dependent activation of LXR. The treatment of both HepG2 as well as primary hepatocytes with HIV p17 results in the transcriptional activation of LXR target genes (SREBP1c and FAS) and lipid accumulation. These effects are lost in HepG2 cells pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide as well as in HepG2 cells pre-incubated with the natural LXR antagonist gymnestrogenin. These results suggest that HIV p17 affects NRs and their related signal transduction thus contributing to the progression of liver disease in HIV infected patients.
Collapse
Affiliation(s)
- Barbara Renga
- Department of Surgical and Biomedical Sciences, Section of gastroenterology, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Department of Medicine, Section of Infectious diseases, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Surgical and Biomedical Sciences, Section of gastroenterology, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, Section of gastroenterology, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Department of Medicine, Section of Infectious diseases, University of Perugia, Perugia, Italy
| | - Maria Chiara Monti
- Department of Biomedical and Pharmaceutical Sciences, University of Salerno, Fisciano, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Medicine, Section of Infectious diseases, University of Perugia, Perugia, Italy
| | | | - Franco Baldelli
- Department of Medicine, Section of Infectious diseases, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, Section of gastroenterology, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
10
|
Tiwari V, Tarbutton MS, Shukla D. Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies. Molecules 2015; 20:2707-27. [PMID: 25665065 PMCID: PMC6272628 DOI: 10.3390/molecules20022707] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
A modified form of heparan sulfate (HS) known as 3-O-sulfated heparan sulfate (3-OS HS) generates fusion receptor for herpes simplex virus (HSV) entry and spread. Primary cultures of corneal fibroblasts derived from human eye donors have shown the clinical significance of this receptor during HSV corneal infection. 3-OS HS- is a product of a rare enzymatic modification at C3 position of glucosamine residue which is catalyzed by 3-O-sulfotransferases (3-OSTs) enzymes. From humans to zebrafish, the 3-OST enzymes are highly conserved and widely expressed in cells and tissues. There are multiple forms of 3-OSTs each producing unique subset of sulfated HS making it chemically diverse and heterogeneous. HSV infection of cells or zebrafish can be used as a unique tool to understand the structural-functional activities of HS and 3-OS HS and likewise, the infection can be used as a functional assay to screen phage display libraries for identifying HS and 3-OS HS binding peptides or small molecule inhibitors. Using this approach over 200 unique 12-mer HS and 3-OS HS recognizing peptides were isolated and characterized against HSV corneal infection where 3-OS HS is known to be a key receptor. In this review we discuss emerging role of 3-OS HS based therapeutic strategies in preventing viral infection and tissue damage.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Morgan S Tarbutton
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Microbiology & Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Renga B, Francisci D, Schiaroli E, Carino A, Cipriani S, D'Amore C, Sidoni A, Sordo RD, Ferri I, Lucattelli M, Lunghi B, Baldelli F, Fiorucci S. The HIV matrix protein p17 promotes the activation of human hepatic stellate cells through interactions with CXCR2 and Syndecan-2. PLoS One 2014; 9:e94798. [PMID: 24736615 PMCID: PMC3988079 DOI: 10.1371/journal.pone.0094798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders. AIM In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. METHODS LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. RESULTS Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. CONCLUSIONS The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.
Collapse
Affiliation(s)
- Barbara Renga
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Claudio D'Amore
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | | | | | - Franco Baldelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Caccuri F, Rueckert C, Giagulli C, Schulze K, Basta D, Zicari S, Marsico S, Cervi E, Fiorentini S, Slevin M, Guzman CA, Caruso A. HIV-1 matrix protein p17 promotes lymphangiogenesis and activates the endothelin-1/endothelin B receptor axis. Arterioscler Thromb Vasc Biol 2014; 34:846-56. [PMID: 24482377 DOI: 10.1161/atvbaha.113.302478] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE AIDS-related lymphomas are high grade and aggressively metastatic with poor prognosis. Lymphangiogenesis is essential in supporting proliferation and survival of lymphoma, as well as tumor dissemination. Data suggest that aberrant lymphangiogenesis relies on action of HIV-1 proteins rather than on a direct effect of the virus itself. HIV-1 matrix protein p17 was found to accumulate and persist in lymph nodes of patients even under highly active antiretroviral therapy. Because p17 was recently found to exert a potent proangiogenic activity by interacting with chemokine (C-X-C motif) receptors 1 and 2, we tested the prolymphangiogenic activity of the viral protein. APPROACH AND RESULTS Human primary lymph node-derived lymphatic endothelial cells were used to perform capillary-like structure formation, wound healing, spheroids, and Western blot assays after stimulation with or without p17. Here, we show that p17 promotes lymphangiogenesis by binding to chemokine (C-X-C motif) receptor-1 and chemokine (C-X-C motif) receptor-2 expressed on lymph node-derived lymphatic endothelial cells and activating the Akt/extracellular signal-regulated kinase signaling pathway. In particular, it was found to induce capillary-like structure formation, sprout formation from spheroids, and increase lymph node-derived lymphatic endothelial cells motility. The p17 lymphangiogenic activity was, in part, sustained by activation of the endothelin-1/endothelin receptor B axis. A Matrigel plug assay showed that p17 was able to promote the outgrowth of lymphatic vessels in vivo, demonstrating that p17 directly regulates lymphatic vessel formation. CONCLUSIONS Our results suggest that p17 may generate a prolymphangiogenic microenvironment and plays a role in predisposing the lymph node to lymphoma growth and metastasis. This finding offers new opportunities to identify treatment strategies in combating AIDS-related lymphomas.
Collapse
Affiliation(s)
- Francesca Caccuri
- From the Microbiology Section, Department of Molecular and Translational Medicine (F.C., C.G., D.B., S.Z., S.F., A.C.) and Section of Vascular Surgery, Department of Medical and Surgical Sciences (E.C.), University of Brescia, Brescia, Italy; Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD (F.C.); Department of Vaccinology and Applied Microbiology, Helmholtz Centre of Infection Research, Braunschweig, Germany (C.R., K.S., C.A.G.); Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy (S.M.); and School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom (M.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Warford J, Doucette CD, Hoskin DW, Easton AS. Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide). Biochem Biophys Res Commun 2013; 443:524-30. [PMID: 24315874 DOI: 10.1016/j.bbrc.2013.11.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/30/2013] [Indexed: 12/27/2022]
Abstract
Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycans which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell line CTLL-2. The effect of surfen was antagonized dose-dependently by co-treatment with heparin sulfate. We conclude that surfen inhibits T cell proliferation in vitro and in vivo. When T cell receptor-driven activation is bypassed surfen had a neutral or stimulatory effect on T cell proliferation. The results imply that endogenous GAGs and proteoglycans play a complex role in promoting or inhibiting different aspects of T cell activation.
Collapse
Affiliation(s)
- Jordan Warford
- Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Carolyn D Doucette
- Department of Microbiology & Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada.
| | - David W Hoskin
- Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Alexander S Easton
- Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada; Department of Surgery (Neurosurgery), Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
14
|
Bugatti A, Giagulli C, Urbinati C, Caccuri F, Chiodelli P, Oreste P, Fiorentini S, Orro A, Milanesi L, D'Ursi P, Caruso A, Rusnati M. Molecular interaction studies of HIV-1 matrix protein p17 and heparin: identification of the heparin-binding motif of p17 as a target for the development of multitarget antagonists. J Biol Chem 2012; 288:1150-61. [PMID: 23166320 DOI: 10.1074/jbc.m112.400077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Once released by HIV(+) cells, p17 binds heparan sulfate proteoglycans (HSPGs) and CXCR1 on leukocytes causing their dysfunction. By exploiting an approach integrating computational modeling, site-directed mutagenesis of p17, chemical desulfation of heparin, and surface plasmon resonance, we characterized the interaction of p17 with heparin, a HSPG structural analog, and CXCR1. p17 binds to heparin with an affinity (K(d) = 190 nm) that is similar to those of other heparin-binding viral proteins. Two stretches of basic amino acids (basic motifs) are present in p17 N and C termini. Neutralization (Arg→Ala substitution) of the N-terminal, but not of the C-terminal basic motif, causes the loss of p17 heparin-binding capacity. The N-terminal heparin-binding motif of p17 partially overlaps the CXCR1-binding domain. Accordingly, its neutralization prevents also p17 binding to the chemochine receptor. Competition experiments demonstrated that free heparin and heparan sulfate (HS), but not selectively 2-O-, 6-O-, and N-O desulfated heparins, prevent p17 binding to substrate-immobilized heparin, indicating that the sulfate groups of the glycosaminoglycan mediate p17 interaction. Evaluation of the p17 antagonist activity of a panel of biotechnological heparins derived by chemical sulfation of the Escherichia coli K5 polysaccharide revealed that the highly N,O-sulfated derivative prevents the binding of p17 to both heparin and CXCR1, thus inhibiting p17-driven chemotactic migration of human monocytes with an efficiency that is higher than those of heparin and HS. Here, we characterized at a molecular level the interaction of p17 with its cellular receptors, laying the basis for the development of heparin-mimicking p17 antagonists.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Experimental Oncology and Immunology, School of Medicine, University of Brescia, Brescia 25123, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tiwari V, Maus E, Sigar IM, Ramsey KH, Shukla D. Role of heparan sulfate in sexually transmitted infections. Glycobiology 2012; 22:1402-12. [PMID: 22773448 PMCID: PMC3481906 DOI: 10.1093/glycob/cws106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022] Open
Abstract
Cell surface heparan sulfate (HS), a polysaccharide composed of alternating uronic acid and glucosamine residues, represents a common link that many sexually transmitted infections (STIs) require for infection. Variable modifications within the monomeric units of HS chains together with their unique structural conformations generate heterogeneity, which expands the ability of HS to bind a diverse array of host and microbial proteins. Recent advances made in the field of glycobiology have critically enhanced our understanding of HS and its interactions with microbes and their significance in important human diseases. The role of HS has been elaborated for several STIs to include those caused by herpes simplex virus, human immunodeficiency virus, human papillomavirus, and Chlamydia. In addition, gonorrhea, syphilis, and yeast infections are also dependent on the presence of HS on human target cells. Critical steps such as pathogen adhesion or binding to host cells followed by internalization to enhance intracellular survival and possible spread to other cells are mediated by HS. In addition, HS guided cell signaling plays a role in the development of angiogenesis and inflammation associated with many STIs. Past and ongoing investigations are providing new push for the development of HS-mimetics and analogs as novel prevention strategies against many different STIs. This review article summarizes the significance of HS in STIs and describes how emerging new products that target HS can be used to control the spread of STIs.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
- Department of Ophthalmology and Visual Sciences
| | - Erika Maus
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Ira M Sigar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2. Proc Natl Acad Sci U S A 2012; 109:14580-5. [PMID: 22904195 DOI: 10.1073/pnas.1206605109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vascular diseases supported by aberrant angiogenesis have increased incidence in HIV-1-infected patients. Several data suggest that endothelium dysfunction relies on action of HIV-1 proteins rather than on a direct effect of the virus itself. The HIV-1 matrix protein p17 is known to deregulate the biological activity of different immune cells. Recently, p17 was found to mimic IL-8 chemokine activity by binding to the IL-8 receptor CXCR1. Here we show that p17 binds with high affinity to CXCR2, a CXCR1-related receptor, and promotes the formation of capillary-like structures on human endothelial cells (ECs) by interacting with both CXCR1 and CXCR2 expressed on the EC surface. ERK signaling via Akt was defined as the pathway responsible for p17-induced tube formation. Ex vivo and in vivo experimental models confirmed the provasculogenic activity of p17, which was comparable to that induced by VEGF-A. The hypothesis of a major role for p17 in HIV-1-induced aberrant angiogenesis is enforced by the finding that p17 is detected, as a single protein, in blood vessels of HIV-1-patients and in particular in the nucleus of ECs. Localization of p17 in the nucleus of ECs was evidenced also in in vitro experiments, suggesting the internalization of exogenous p17 in ECs by mechanisms of receptor-mediated endocytosis. Recognizing p17 interaction with CXCR1 and CXCR2 as the key event in sustaining EC aberrant angiogenesis could help us to identify new treatment strategies in combating AIDS-related vascular diseases.
Collapse
|
17
|
Renga B, Francisci D, D'Amore C, Schiaroli E, Mencarelli A, Cipriani S, Baldelli F, Fiorucci S. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes. PLoS One 2012; 7:e35924. [PMID: 22558273 PMCID: PMC3340403 DOI: 10.1371/journal.pone.0035924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/23/2012] [Indexed: 01/22/2023] Open
Abstract
Background Long-term remission of HIV-1 disease can be readily achieved by combinations of highly effective antiretroviral therapy (HAART). However, a residual persistent immune activation caused by circulating non infectious particles or viral proteins is observed under HAART and might contribute to an higher risk of non-AIDS pathologies and death in HIV infected persons. A sustained immune activation supports lipid dysmetabolism and increased risk for development of accelerated atehrosclerosis and ischemic complication in virologically suppressed HIV-infected persons receiving HAART. Aim While several HIV proteins have been identified and characterized for their ability to maintain immune activation, the role of HIV-p17, a matrix protein involved in the viral replication, is still undefined. Results Here, we report that exposure of macrophages to recombinant human p17 induces the expression of proinflammatory and proatherogenic genes (MCP-1, ICAM-1, CD40, CD86 and CD36) while downregulating the expression of nuclear receptors (FXR and PPARγ) that counter-regulate the proinflammatory response and modulate lipid metabolism in these cells. Exposure of macrophage cell lines to p17 activates a signaling pathway mediated by Rack-1/Jak-1/STAT-1 and causes a promoter-dependent regulation of STAT-1 target genes. These effects are abrogated by sera obtained from HIV-infected persons vaccinated with a p17 peptide. Ligands for FXR and PPARγ counteract the effects of p17. Conclusions The results of this study show that HIV p17 highjacks a Rack-1/Jak-1/STAT-1 pathway in macrophages, and that the activation of this pathway leads to a simultaneous dysregulation of immune and metabolic functions. The binding of STAT-1 to specific responsive elements in the promoter of PPARγ and FXR and MCP-1 shifts macrophages toward a pro-atherogenetic phenotype characterized by high levels of expression of the scavenger receptor CD36. The present work identifies p17 as a novel target in HIV therapy and grounds the development of anti-p17 small molecules or vaccines.
Collapse
Affiliation(s)
- Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Franco Baldelli
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
18
|
HIV-1 matrix protein p17 binds to the IL-8 receptor CXCR1 and shows IL-8–like chemokine activity on monocytes through Rho/ROCK activation. Blood 2012; 119:2274-83. [DOI: 10.1182/blood-2011-06-364083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractExogenous HIV-1 matrix protein p17 was found to deregulate biologic activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis after binding to unknown cellular receptor(s). In particular, p17 was found to induce a functional program in monocytes related to activation and inflammation. In the present study, we demonstrate that CXCR1 is the receptor molecule responsible for p17 chemokine–like activity on monocytes. After CXCR1 binding, p17 was capable of triggering rapid adhesion and chemotaxis of monocytes through a pathway that involved Rho/ROCK. Moreover, CXCR1-silenced primary monocytes lost responsiveness to p17 chemoattraction, whereas CXCR1-transfected Jurkat cells acquired responsiveness. Surface plasmon resonance studies confirmed the capacity of p17 to bind CXCR1 and showed that the p17/CXCR1 interaction occurred with a low affinity compared with that measured for IL-8, the physiologic CXCR1 ligand. In all of its activities, p17 mimicked IL-8, the natural high-affinity ligand of CXCR1. Recent studies have highlighted the role of IL-8 and CXCR1 in HIV-1 replication and AIDS pathogenesis. Our findings herein call for an exploration of the therapeutic potential of blocking the p17/IL-8/CXCR1 axis in HIV-1 infection.
Collapse
|