1
|
Li P, Zeng B, Xie W, Xiao X, Lin L, Yu D, Zhao W. Enamel Structure Defects in Kdf1 Missense Mutation Knock-in Mice. Biomedicines 2023; 11:biomedicines11020482. [PMID: 36831017 PMCID: PMC9953722 DOI: 10.3390/biomedicines11020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The Keratinocyte differentiation factor 1 (KDF1) is reported to take part in tooth formation in humans, but the dental phenotype of Kdf1 mutant mice has not been understood. Additionally, the role of the KDF1 gene in dental hard tissue development is rarely known. In this study, we constructed a Kdf1 missense mutation knock-in mouse model through CRISPR/Cas9 gene-editing technology. Enamel samples from wildtypes (WT) and Kdf1 homozygous mutants (HO) were examined using micro-computed tomography (micro-CT), scanning electron microscopy (SEM), an atomic force microscope (AFM) and Raman microspectroscopy. The results showed that a novel Kdf1 missense mutation (c. 908G>C, p.R303P) knock-in mice model was constructed successfully. The enamel of HO mice incisors appeared chalky and defective, exposing the rough interior of the inner enamel and dentin. Micro-CT showed that HO mice had lower volume and mineral density in their tooth enamel. In addition, declined thickness was found in the unerupted enamel layer of incisors in the HO mice. Using SEM and AFM, it was found that enamel prisms in HO mice enamel were abnormally and variously shaped with loose decussating crystal arrangement, meanwhile the enamel rods were partially fused and collapsed, accompanied by large gaps. Furthermore, misshapen nanofibrous apatites were disorderly combined with each other. Raman microspectroscopy revealed a compromised degree of order within the crystals in the enamel after the Kdf1 mutation. To conclude, we identified enamel structure defects in the Kdf1 missense mutation knock-in mice, which displayed fragmentary appearance, abnormally shaped prism structure, decreased mineral density, altered crystal ordering degree and chemical composition of the enamel layer. This may support the potential role of the KDF1 gene in the natural development of enamel.
Collapse
|
2
|
Elzein R, Abdel-Sater F, Mehawej C, Jalkh N, Ayoub F, Chouery E. Identification by whole-exome sequencing of new single-nucleotide polymorphisms associated with molar-incisor hypomineralisation among the Lebanese population. Eur Arch Paediatr Dent 2022; 23:919-928. [PMID: 35986881 DOI: 10.1007/s40368-022-00738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Molar-incisor hypomineralization (MIH) is a developmental qualitative enamel defect, causing a worldwide challenging dental problem. The etiology of this defect remains unclear. Here we identify by whole-exome sequencing (WES) new single-nucleotide polymorphisms (SNPs) in genes expressed during enamel mineralization and in those modulating prenatal, natal and postnatal risk factors among the Lebanese MIH children: immune system and xenobiotic detoxification. DESIGN Dental examination for MIH was performed based on the MIH index for diagnostic criteria. Saliva samples were collected from 37 non-related, MIH-diagnosed subjects for DNA extraction. WES was performed on the Illumina HiSeq2000 platform. The χ2 test and Fisher's exact test were used to determine relationship between SNPs frequencies and MIH. OR and its 95% CI were used to report the strength of association. The significance threshold was set at 0.05. RESULTS Among the Lebanese population, 37 SNPs presented a significant association with MIH in the following genes: AMTN, MMP-20, STIM1, STIM2, ORAI1, SLC34A2, SLC34A3, VDR, PVALB, HSP90B1, TRPM7, SLC24A4, CA6, SLC4A2, TNFRSF11A, IL10RB, ARNT, ESR1 and CYP1B1. CONCLUSION This is the first WES study conducted in patients with MIH. Yet, interactions between polymorphisms in different gene categories are to be investigated for a better assessment of MIH susceptibility.
Collapse
Affiliation(s)
- R Elzein
- Department of Pediatric Dentistry and Public Dental Health, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon. .,Medical Genetics Unit, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon.
| | - F Abdel-Sater
- Laboratory of Cancer Biology and Cellular Immunology, Department of Biological Sciences, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - C Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - N Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - F Ayoub
- Department of Forensic Odontology, Human Identification and Anthropology, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - E Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
3
|
Surface and Structural Studies of Age-Related Changes in Dental Enamel: An Animal Model. MATERIALS 2022; 15:ma15113993. [PMID: 35683290 PMCID: PMC9182525 DOI: 10.3390/ma15113993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In the animal kingdom, continuously erupting incisors provided an attractive model for studying the enamel matrix and mineral composition of teeth during development. Enamel, the hardest mineral tissue in the vertebrates, is a tissue sensitive to external conditions, reflecting various disturbances in its structure. The developing dental enamel was monitored in a series of incisor samples extending the first four weeks of postnatal life in the spiny mouse. The age-dependent changes in enamel surface morphology in the micrometre and nanometre-scale and a qualitative assessment of its mechanical features were examined by applying scanning electron microscopy (SEM) and atomic force microscopy (AFM). At the same time, structural studies using XRD and vibrational spectroscopy made it possible to assess crystallinity and carbonate content in enamel mineral composition. Finally, a model for predicting the maturation based on chemical composition and structural factors was constructed using artificial neural networks (ANNs). The research presented here can extend the existing knowledge by proposing a pattern of enamel development that could be used as a comparative material in environmental, nutritional, and pharmaceutical research.
Collapse
|
4
|
Reibring CG, El Shahawy M, Hallberg K, Harfe BD, Linde A, Gritli-Linde A. Loss of BMP2 and BMP4 Signaling in the Dental Epithelium Causes Defective Enamel Maturation and Aberrant Development of Ameloblasts. Int J Mol Sci 2022; 23:6095. [PMID: 35682776 PMCID: PMC9180982 DOI: 10.3390/ijms23116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
BMP signaling is crucial for differentiation of secretory ameloblasts, the cells that secrete enamel matrix. However, whether BMP signaling is required for differentiation of maturation-stage ameloblasts (MA), which are instrumental for enamel maturation into hard tissue, is hitherto unknown. To address this, we used an in vivo genetic approach which revealed that combined deactivation of the Bmp2 and Bmp4 genes in the murine dental epithelium causes development of dysmorphic and dysfunctional MA. These fail to exhibit a ruffled apical plasma membrane and to reabsorb enamel matrix proteins, leading to enamel defects mimicking hypomaturation amelogenesis imperfecta. Furthermore, subsets of mutant MA underwent pathological single or collective cell migration away from the ameloblast layer, forming cysts and/or exuberant tumor-like and gland-like structures. Massive apoptosis in the adjacent stratum intermedium and the abnormal cell-cell contacts and cell-matrix adhesion of MA may contribute to this aberrant behavior. The mutant MA also exhibited severely diminished tissue non-specific alkaline phosphatase activity, revealing that this enzyme's activity in MA crucially depends on BMP2 and BMP4 inputs. Our findings show that combined BMP2 and BMP4 signaling is crucial for survival of the stratum intermedium and for proper development and function of MA to ensure normal enamel maturation.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Maha El Shahawy
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia 61511, Egypt
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| |
Collapse
|
5
|
Cell-Free Biomimetic Mineralization Strategies to Regenerate the Enamel Microstructure. CRYSTALS 2021. [DOI: 10.3390/cryst11111385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The distinct architecture of native enamel gives it its exquisite appearance and excellent intrinsic-extrinsic fracture toughening properties. However, damage to the enamel is irreversible. At present, the clinical treatment for enamel lesion is an invasive method; besides, its limitations, caused by the chemical and physical difference between restorative materials and dental hard tissue, makes the restorative effects far from ideal. With more investigations on the mechanism of amelogenesis, biomimetic mineralization techniques for enamel regeneration have been well developed, which hold great promise as a non-invasive strategy for enamel restoration. This review disclosed the chemical and physical mechanism of amelogenesis; meanwhile, it overviewed and summarized studies involving the regeneration of enamel microstructure in cell-free biomineralization approaches, which could bring new prospects for resolving the challenges in enamel regeneration.
Collapse
|
6
|
Wang S, Zhang H, Chavez MB, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Colvin CD, Kolli TN, Tan MH, Wang Y, Lu P, Kim J, Foster BL, Bartlett JD, Simmer JP, Hu JC. Dental malformations associated with biallelic MMP20 mutations. Mol Genet Genomic Med 2020; 8:e1307. [PMID: 32495503 PMCID: PMC7434610 DOI: 10.1002/mgg3.1307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Matrix metallopeptidase 20 (MMP20) is an evolutionarily conserved protease that is essential for processing enamel matrix proteins during dental enamel formation. MMP20 mutations cause human autosomal recessive pigmented hypomaturation-type amelogenesis imperfecta (AI2A2; OMIM #612529). MMP20 is expressed in both odontoblasts and ameloblasts, but its function during dentinogenesis is unclear. METHODS We characterized 10 AI kindreds with MMP20 defects, characterized human third molars and/or Mmp20-/- mice by histology, Backscattered Scanning Electron Microscopy (bSEM), µCT, and nanohardness testing. RESULTS We identified six novel MMP20 disease-causing mutations. Four pathogenic variants were associated with exons encoding the MMP20 hemopexin-like (PEX) domain, suggesting a necessary regulatory function. Mutant human enamel hardness was softest (13% of normal) midway between the dentinoenamel junction (DEJ) and the enamel surface. bSEM and µCT analyses of the third molars revealed reduced mineral density in both enamel and dentin. Dentin close to the DEJ showed an average hardness number 62%-69% of control. Characterization of Mmp20-/- mouse dentin revealed a significant reduction in dentin thickness and mineral density and a transient increase in predentin thickness, indicating disturbances in dentin matrix secretion and mineralization. CONCLUSION These results expand the spectrum of MMP20 disease-causing mutations and provide the first evidence for MMP20 function during dentin formation.
Collapse
Affiliation(s)
- Shih‐Kai Wang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
- Department of Pediatric DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C.
| | - Hong Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Michael B. Chavez
- Division of BiosciencesCollege of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Figen Seymen
- Department of PedodonticsIstanbul University Faculty of DentistryIstanbulTurkey
| | - Mine Koruyucu
- Department of PedodonticsIstanbul University Faculty of DentistryIstanbulTurkey
| | - Yelda Kasimoglu
- Department of PedodonticsIstanbul University Faculty of DentistryIstanbulTurkey
| | - Connor D. Colvin
- Division of BiosciencesCollege of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Tamara N. Kolli
- Division of BiosciencesCollege of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Michelle H. Tan
- Division of BiosciencesCollege of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Yin‐Lin Wang
- Department of Pediatric DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C.
| | - Pei‐Ying Lu
- Department of Pediatric DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C.
| | - Jung‐Wook Kim
- Department of Pediatric Dentistry & Dental Research InstituteSchool of DentistrySeoul National UniversitySeoulRepublic of Korea
- Department of Molecular Genetics & Dental Research InstituteSchool of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Brian L. Foster
- Division of BiosciencesCollege of DentistryThe Ohio State UniversityColumbusOHUSA
| | - John D. Bartlett
- Division of BiosciencesCollege of DentistryThe Ohio State UniversityColumbusOHUSA
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Jan C.‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| |
Collapse
|
7
|
de Andrade Dantas EL, de Figueiredo JT, Macedo-Ribeiro N, Oliezer RS, Gerlach RF, de Sousa FB. Variation in mineral, organic, and water volumes at the neonatal line and in pre- and postnatal enamel. Arch Oral Biol 2020; 118:104850. [PMID: 32736142 DOI: 10.1016/j.archoralbio.2020.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
OBJETIVES The neonatal line (NNL) in enamel is hypomineralized, but quantitative data on the enamel component volumes of the NNL are lacking. This study aimed at quantifying the variation in the mineral, organic, and water volumes at the NNL and in pre- and postnatal enamel. MATERIALS AND METHODS In buccal enamel longitudinal ground sections of exfoliated primary incisors (upper and lower; n = 17), the enamel component volumes were quantified at five histological sites (located at 40 μm intervals along a transversal line): the NNL, two sites in prenatal enamel, and two sites in postnatal enamel. Mineral volume was quantified using microradiography, and non-mineral volumes were quantified using polarizing microscopy. RESULTS Differences in component volumes between the NNL and pre- and postnatal enamel had high effect sizes (Hedge's G ranging from 0.89, for the water volume, to 1.88, for the mineral volume; power > 90 %). The distance from the NNL correlated with the normalized component volume: r = 0.459, 95 % CI = 0.274/0.612 (mineral); r = -0.504; 95 % CI= -0.328/-0.647 (organic), and r = -0.294; 95 % CI= -0.087/-0.476 (water). Approaching the NNL from postnatal enamel, the percentage differences in component volumes were: -1.93 to -3.22 % for the mineral volume, +21.26 to +35.42 % for the organic volume, and +3.86 to +6.03 % for the water volume. Towards postnatal enamel, the percentage differences had the opposite trend. CONCLUSIONS The enamel NNL is slightly hypomineralized with an increased organic volume one order of magnitude higher than the percentage differences in both mineral and water volumes.
Collapse
Affiliation(s)
- Eugênia Lívia de Andrade Dantas
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Cidade Universitária, 58051-900, João Pessoa, Paraiba, Brazil
| | - Jonas Tostes de Figueiredo
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirao Preto, University of São Paulo (FORP/USP), Ribeirão Preto, 14040-904, São Paulo, Brazil
| | - Natália Macedo-Ribeiro
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirao Preto, University of São Paulo (FORP/USP), Ribeirão Preto, 14040-904, São Paulo, Brazil
| | - Renê Seabra Oliezer
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirao Preto, University of São Paulo (FORP/USP), Ribeirão Preto, 14040-904, São Paulo, Brazil
| | - Raquel Fernanda Gerlach
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirao Preto, University of São Paulo (FORP/USP), Ribeirão Preto, 14040-904, São Paulo, Brazil
| | - Frederico Barbosa de Sousa
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Cidade Universitária, 58051-900, João Pessoa, Paraiba, Brazil; Department of Morphology, Health Science Center, Federal University of Paraiba, Cidade Universitária, 58051-900, João Pessoa, Paraiba, Brazil.
| |
Collapse
|
8
|
Gil-Bona A, Bidlack FB. Tooth Enamel and its Dynamic Protein Matrix. Int J Mol Sci 2020; 21:ijms21124458. [PMID: 32585904 PMCID: PMC7352428 DOI: 10.3390/ijms21124458] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
Collapse
Affiliation(s)
- Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| |
Collapse
|
9
|
Yamada A, Kawasaki M, Miake Y, Yamada Y, Blackburn J, Kawasaki K, Trakanant S, Nagai T, Nihara J, Kudo T, Meguro F, Schmidt-Ullrich R, Liu B, Hu Y, Page A, Ramírez Á, Sharpe PT, Maeda T, Takagi R, Ohazama A. Overactivation of the NF-κB pathway impairs molar enamel formation. Oral Dis 2020; 26:1513-1522. [PMID: 32369672 DOI: 10.1111/odi.13384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Hypohidrotic ectodermal dysplasia (HED) is a hereditary disorder characterized by abnormal structures and functions of the ectoderm-derived organs, including teeth. HED patients exhibit a variety of dental symptoms, such as hypodontia. Although disruption of the EDA/EDAR/EDARADD/NF-κB pathway is known to be responsible for HED, it remains unclear whether this pathway is involved in the process of enamel formation. EXPERIMENTAL SUBJECTS AND METHODS To address this question, we examined the mice overexpressing Ikkβ (an essential component required for the activation of NF-κB pathway) under the keratin 5 promoter (K5-Ikkβ). RESULTS Upregulation of the NF-κB pathway was confirmed in the ameloblasts of K5-Ikkβ mice. Premature abrasion was observed in the molars of K5-Ikkβ mice, which was accompanied by less mineralized enamel. However, no significant changes were observed in the enamel thickness and the pattern of enamel rods in K5-Ikkβ mice. Klk4 expression was significantly upregulated in the ameloblasts of K5-Ikkβ mice at the maturation stage, and the expression of its substrate, amelogenin, was remarkably reduced. This suggests that abnormal enamel observed in K5-Ikkβ mice was likely due to the compromised degradation of enamel protein at the maturation stage. CONCLUSION Therefore, we could conclude that the overactivation of the NF-κB pathway impairs the process of amelogenesis.
Collapse
Affiliation(s)
- Akane Yamada
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuo Miake
- Department of Oral Anatomy, School of Dental Medicine, Tsurumi University, Tsurumi, Japan
| | - Yurie Yamada
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - James Blackburn
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - Supaluk Trakanant
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Nihara
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bigang Liu
- University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Yinling Hu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Hospital12 de Octubre (imas12), CIBERONC, Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Hospital12 de Octubre (imas12), CIBERONC, Madrid, Spain
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Takeyasu Maeda
- Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
10
|
Wang S, Hu Y, Smith CE, Yang J, Zeng C, Kim J, Hu JC, Simmer JP. The Enamel Phenotype in Homozygous Fam83h Truncation Mice. Mol Genet Genomic Med 2019; 7:e724. [PMID: 31060110 PMCID: PMC6565571 DOI: 10.1002/mgg3.724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Truncation FAM83H mutations cause human autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI), an inherited disorder characterized by severe hardness defects in dental enamel. No enamel defects were observed in Fam83h null mice suggesting that Fam83h truncation mice would better replicate human mutations. METHODS We generated and characterized a mouse model (Fam83hTr/Tr ) expressing a truncated FAM83H protein (amino acids 1-296), which recapitulated the ADHCAI-causing human FAM83H p.Tyr297* mutation. RESULTS Day 14 and 7-week Fam83hTr/Tr molars exhibited rough enamel surfaces and slender cusps resulting from hypoplastic enamel defects. The lateral third of the Fam83hTr/Tr incisor enamel layer was thinner, with surface roughness and altered enamel rod orientation, suggesting disturbed enamel matrix secretion. Regular electron density in mandibular incisor enamel indicated normal enamel maturation. Only mildly increased posteruption attrition of Fam83hTr/Tr molar enamel was observed at 7-weeks. Histologically, the Fam83hTr/Tr enamel organ, including ameloblasts, and enamel matrices at sequential stages of amelogenesis exhibited comparable morphology without overt abnormalities, except irregular and less evident ameloblast Tomes' processes in specific areas. CONCLUSIONS Considering Fam83h-/- mice showed no enamel phenotype, while Fam83hTr/Tr (p.Tyr297*) mice displayed obvious enamel malformations, we conclude that FAM83H truncation mutations causing ADHCAI in humans disturb amelogenesis through a neomorphic mechanism, rather than haploinsufficiency.
Collapse
Affiliation(s)
- Shih‐Kai Wang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Present address:
Department of DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Charles E. Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Department of Anatomy and Cell BiologyMcGill UniversityQuebecCanada
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Present address:
Department of Pediatric Dentistry, School and Hospital of StomatologyPeking UniversityBeijingP. R. China
| | - Chunhua Zeng
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Present address:
Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouP.R. China
| | - Jung‐Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of DentistrySeoul National UniversitySeoulKorea
| | - Jan C‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| |
Collapse
|
11
|
An F, Du J, Wang J, Zhao L, Ma C, Zhao J, Wang J. MMP20 Single-Nucleotide Polymorphisms Correlate with Susceptibility to Alcohol-Induced Osteonecrosis of the Femoral Head in Chinese Males. Med Sci Monit 2019; 25:3750-3761. [PMID: 31106781 PMCID: PMC6540618 DOI: 10.12659/msm.913918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Alcohol-induced osteonecrosis of the femoral head (ONFH) is caused by the interaction of genetic and environmental factors. Genetic variations of matrix metalloproteinase (MMP) system are associated with ONFH development and progression. In this study, we aimed to evaluate the relationships between MMP20 gene polymorphisms and the risk of alcohol-induced ONFH in Chinese Han males. Material/Methods In this case-control study, genotypes of 14 selected SNPs in the MMP20 gene were assayed using MassARRAY in 299 male cases with alcohol-induced ONFH and in 197 healthy males. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the influence of gene polymorphism on occurrence of alcohol-induced ONFH by allelic model analysis, genotype model analysis and haplotype analysis. Results After allelic model analysis, the minimum alleles of rs10895322, rs1784424, rs3781788, and rs1573954 correlated with an increased risk of alcohol-induced ONFH (P<0.05). Genetic model analysis revealed significant associations of 9 SNPs with alcohol-induced ONFH occurrence even after adjustment for age (P<0.05): 2 protective SNPs (rs1711423 and rs1784418) and 7 high-risk SNPs (rs10895322, rs1784424, rs3781788, rs7126560, rs1573954, rs1711399, and rs2292730). Moreover, 8 SNPs showed a statistically significant association with different clinical phenotypes (P<0.05). Beyond that, haplotype “CGGTTCCA” in MMP20 was discovered to correlate with a 1.63-fold increased risk of alcohol-induced ONFH (OR: 1.63, 95% CI: 1.15–2.30, P=0.0058). Conclusions Our data sheds new light on the associations of MMP20 gene polymorphisms with alcohol-induced ONFH predisposition in Chinese Han males.
Collapse
Affiliation(s)
- Feimeng An
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland).,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Jieli Du
- Department of Orthopedics, Cangzhou People's Hospital, Cangzhou, Hebei, China (mainland)
| | - Jiaqi Wang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland).,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Liang Zhao
- Department of Orthopedics, Cangzhou People's Hospital, Cangzhou, Hebei, China (mainland)
| | - Chao Ma
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Jian Zhao
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Jianzhong Wang
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
12
|
Yamazaki H, Tran B, Beniash E, Kwak SY, Margolis HC. Proteolysis by MMP20 Prevents Aberrant Mineralization in Secretory Enamel. J Dent Res 2019; 98:468-475. [PMID: 30744480 DOI: 10.1177/0022034518823537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to investigate the role of proteolysis by matrix metalloproteinase 20 (MMP20) in regulating the initial formation of the enamel mineral structure during the secretory stage of amelogenesis, utilizing Mmp20-null mice that lack this essential protease. Ultrathin sagittal sections of maxillary incisors from 8-wk-old wild-type (WT), Mmp20-null (KO), and heterozygous (HET) littermates were prepared. Secretory-stage enamel ultrastructures from each genotype as a function of development were compared using transmission electron microscopy, selected area electron diffraction, and Raman microspectroscopy. Characteristic rod structures observed in WT enamel exhibited amorphous features in newly deposited enamel, which subsequently transformed into apatite-like crystals in older enamel. Surprisingly, initial mineral formation in KO enamel was found to proceed in the same manner as in the WT. However, soon after a rod structure began to form, large plate-like crystals appeared randomly within the developing KO enamel layer. As development continued, observed plate-like crystals became dominant and obscured the appearance of the enamel rod structure. Upon formation of these plate-like crystals, the KO enamel layer stopped growing in thickness, unlike WT and HET enamel layers that continued to grow at the same rate. Raman results indicated that Mmp20-KO enamel contains a significant portion of octacalcium phosphate, unlike WT enamel. Although normal in all other respects, large, randomly dispersed mineral crystals were observed in secretory HET enamel, although to a lesser extent than that seen in KO enamel, indicating that the level of MMP20 expression has a proportional effect on suppressing aberrant mineral formation. In conclusion, we found that proteolysis of extracellular enamel matrix proteins by MMP20 is not required for the initial development of the enamel rod structure during the early secretory stage of amelogenesis. Proteolysis by MMP20, however, is essential for the prevention of abnormal crystal formation during amelogenesis.
Collapse
Affiliation(s)
- H Yamazaki
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - B Tran
- 3 Simmons College, Boston, MA, USA
| | - E Beniash
- 4 Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - S Y Kwak
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - H C Margolis
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Khayal LA, Grünhagen J, Provazník I, Mundlos S, Kornak U, Robinson PN, Ott CE. Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses. Bone 2018; 113:29-40. [PMID: 29653293 DOI: 10.1016/j.bone.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Abstract
Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology.
Collapse
Affiliation(s)
- Layal Abo Khayal
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Johannes Grünhagen
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ivo Provazník
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic; International Clinical Research Center, Center of Biomedical Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter N Robinson
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
14
|
Tian Z, Lv X, Zhang M, Wang X, Chen Y, Tang P, Xu P, Zhang L, Wu B, Zhang L. Deletion of epithelial cell-specific Cdc42 leads to enamel hypermaturation in a conditional knockout mouse model. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2623-2632. [DOI: 10.1016/j.bbadis.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 12/01/2022]
|
15
|
Rathsam C, Farahani RM, Hains PG, Valova VA, Charadram N, Zoellner H, Swain M, Hunter N. Characterization of inter-crystallite peptides in human enamel rods reveals contribution by the Y allele of amelogenin. J Struct Biol 2018; 204:26-37. [PMID: 29959991 DOI: 10.1016/j.jsb.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/18/2022]
Abstract
Proteins of the inter-rod sheath and peptides within the narrow inter-crystallite space of the rod structure are considered largely responsible for visco-elastic and visco-plastic properties of enamel. The present study was designed to investigate putative peptides of the inter-crystallite space. Entities of 1-6 kDa extracted from enamel rods of erupted permanent teeth were analysed by mass spectrometry (MS) and shown to comprise N-terminal amelogenin (AMEL) peptides either containing or not containing exon 4 product. Other dominant entities consisted of an N-terminal peptide from ameloblastin (AMBN) and a series of the most hydrophobic peptides from serum albumin (ALBN). Amelogenin peptides encoded by the Y-chromosome allele were strongly detected in Enamel from male teeth. Location of N-terminal AMEL peptides as well as AMBN and ALBN, between apatite crystallites, was disclosed by immunogold scanning electron microscopy (SEM). Density plots confirmed the relative abundance of these products including exon 4+ AMEL peptides that have greater capacity for binding to hydroxyapatite. Hydrophilic X and Y peptides encoded in exon 4 differ only in substitution of non-polar isoleucine in Y for polar threonine in X with reduced disruption of the hydrophobic N-terminal structure in the Y form. Despite similarity of X and Y alleles of AMEL the non-coding region upstream from exon 4 shows significant variation with implications for segregation of processing of transcripts from exon 4. Detection of fragments from multiple additional proteins including keratins (KER), fetuin A (FETUA), proteinases and proteinase inhibitors, likely reflect biochemical events during enamel formation.
Collapse
Affiliation(s)
- Catherine Rathsam
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia.
| | - Ramin M Farahani
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia; Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| | - Peter G Hains
- Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Valentina A Valova
- Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Nattida Charadram
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia; Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| | - Hans Zoellner
- Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| | - Michael Swain
- Faculty of Dentistry, The University of Sydney, New South Wales, Australia; Faculty of Dentistry, Kuwait University, Kuwait
| | - Neil Hunter
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia; Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Perez VA, Mangum JE, Hubbard MJ. Direct evidence that KLK4 is a hydroxyapatite-binding protein. Biochem Biophys Res Commun 2017; 495:1896-1900. [PMID: 29229389 DOI: 10.1016/j.bbrc.2017.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
Abstract
The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation.
Collapse
Affiliation(s)
- Vidal A Perez
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia; Department of Pediatric Stomatology, University of Talca, Talca, Chile
| | - Jonathan E Mangum
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Michael J Hubbard
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Jinping Z, Qing C, Wenying S, Chunyan Y, Lili X, Yao S, Yumin W, Zhenzhen X, Li Z, Yuguang G. Overexpression of constitutively active MAP3K7 in ameloblasts causes enamel defects of mouse teeth. Arch Oral Biol 2017; 84:169-175. [PMID: 29024853 DOI: 10.1016/j.archoralbio.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/05/2017] [Accepted: 09/24/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Compelling evidence suggests that mitogen-activated protein kinases (Mapks) play an important role in amelogenesis. However, the role of transforming growth factor (TGF)-β-activating kinase 1 (Tak1, Map3k7), which is a known upstream kinase of Mapks, during amelogenesis remains to be determined. The aim of this study was to investigate the possible involvement of Map3k7 in amelogenesis. DESIGN We generated transgenic mice that produced constitutively active human MAP3K7 (caMAP3K7) under the control of amelogenin (Amelx) gene promoter. Radiography and micro-computed tomography (μCT) analysis was used to detect the radio-opacity and density of the teeth. The enamel microstructure was observed with a scanning electron microscope. Histological analysis was used to observe the adhesion between ameloblasts and residual organic matrix of the enamel. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression of enamel matrix protein. RESULTS The enamel of mandibular molars in caMAP3K7-overexpressing mice displayed pigmentation and a highly irregular structure compared with the wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. The gross histological appearances of ameloblasts and supporting cellular structures, as well as the expression of the enamel protein amelotin (Amtn) were altered by the overexpression of caMAP3K7. CONCLUSIONS Our data demonstrated that protein expression, processing and secretion occurred abnormally in transgenic mice overexpressing caMAP3K7. The overexpression of caMAP3K7 had a profound effect on enamel structure by disrupting the orderly growth of enamel prisms.
Collapse
Affiliation(s)
- Zhao Jinping
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Chu Qing
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Song Wenying
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Yang Chunyan
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Xiang Lili
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Shi Yao
- Oral and Maxillofacial Surgery, Central Hospital of Zibo, Zibo, Shandong Province 255000, People's Republic of China
| | - Wang Yumin
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Xu Zhenzhen
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Zhang Li
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Gao Yuguang
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China.
| |
Collapse
|
18
|
Smith CEL, Kirkham J, Day PF, Soldani F, McDerra EJ, Poulter JA, Inglehearn CF, Mighell AJ, Brookes SJ. A Fourth KLK4 Mutation Is Associated with Enamel Hypomineralisation and Structural Abnormalities. Front Physiol 2017; 8:333. [PMID: 28611678 PMCID: PMC5447068 DOI: 10.3389/fphys.2017.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/30/2022] Open
Abstract
“Amelogenesis imperfecta” (AI) describes a group of genetic conditions that result in defects in tooth enamel formation. Mutations in many genes are known to cause AI, including the gene encoding the serine protease, kallikrein related peptidase 4 (KLK4), expressed during the maturation stage of amelogenesis. In this study we report the fourth KLK4 mutation to be identified in autosomal recessively-inherited hypomaturation type AI, c.632delT, p.(L211Rfs*37) (NM_004917.4, NP_004908.4). This homozygous variant was identified in five Pakistani AI families and is predicted to result in a transcript with a premature stop codon that escapes nonsense mediated decay. However, the protein may misfold, as three of six disulphide bonds would be disrupted, and may be degraded or non-functional as a result. Primary teeth were obtained from one affected individual. The enamel phenotype was characterized using high-resolution computerized X-ray tomography (CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and microhardness testing (MH). Enamel from the affected individual (referred to as KLK4 enamel) was hypomineralised in comparison with matched control enamel. Furthermore, KLK4 inner enamel was hypomineralised compared with KLK4 outer enamel. SEM showed a clear structural demarcation between KLK4 inner and outer enamel, although enamel structure was similar to control tissue overall. EDX showed that KLK4 inner enamel contained less calcium and phosphorus and more nitrogen than control inner enamel and KLK4 outer enamel. MH testing showed that KLK4 inner enamel was significantly softer than KLK4 outer enamel (p < 0.001). However, the hardness of control inner enamel was not significantly different to that of control outer enamel. Overall, these findings suggest that the KLK4 c.632delT mutation may be a common cause of autosomal recessive AI in the Pakistani population. The phenotype data obtained mirror findings in the Klk4−/− mouse and suggest that KLK4 is required for the hardening and mineralization of the inner enamel layer but is less essential for hardening and mineralization of the outer enamel layer.
Collapse
Affiliation(s)
- Claire E L Smith
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Peter F Day
- School of Dentistry, University of LeedsLeeds, United Kingdom.,Bradford District Care NHS Foundation Trust, Community Dental Service, Horton Park Health CentreBradford, United Kingdom
| | - Francesca Soldani
- Bradford District Care NHS Foundation Trust, Community Dental Service, Horton Park Health CentreBradford, United Kingdom
| | - Esther J McDerra
- School of Dentistry, University of LeedsLeeds, United Kingdom.,Locala Dental Care, Dental Department, Batley Health CentreBatley, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Christopher F Inglehearn
- Section of Ophthalmology and Neuroscience, St James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St James's University Hospital, University of LeedsLeeds, United Kingdom.,School of Dentistry, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of LeedsLeeds, United Kingdom
| |
Collapse
|
19
|
Hu Y, Smith CE, Cai Z, Donnelly LAJ, Yang J, Hu JCC, Simmer JP. Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 2016; 4:641-661. [PMID: 27896287 PMCID: PMC5118209 DOI: 10.1002/mgg3.252] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. METHODS Amelx+/+, Amelx+/- , and Amelx-/- molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. RESULTS No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx-/- mice. Amelx-/- incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelx-/- incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx+/- incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx-/- enamel and varied levels of amelogenin in Amelx+/- incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelx-/- enamel extending from mineralized dentin collagen to the ameloblast. The Amelx-/- enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx-/- enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx-/- ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx-/- and Amelx+/- molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. CONCLUSION Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell BiologyFaculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Zhonghou Cai
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave Building 431-B005 Argonne Illinois 60439
| | - Lorenza A-J Donnelly
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
20
|
Núñez SM, Chun YHP, Ganss B, Hu Y, Richardson AS, Schmitz JE, Fajardo R, Yang J, Hu JCC, Simmer JP. Maturation stage enamel malformations in Amtn and Klk4 null mice. Matrix Biol 2016; 52-54:219-233. [PMID: 26620968 PMCID: PMC4875837 DOI: 10.1016/j.matbio.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn(-/-), Klk4(-/-), Amtn(+/-)Klk4(+/-) and Amtn(-/-)Klk4(-/-) mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (μCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice, demonstrating a delay in enamel maturation in Amtn(-/-) incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4gHA/cm(3)) in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice respectively, compared with wild-type enamel (3.1gHA/cm(3)). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice. The Knoop hardness of the Amtn(-/-) outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4(-/-) enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn(-/-) and Klk4(-/-) mice were distinctly different, while the Amtn(-/-)Klk4(-/-) outer enamel was not as hard as in the Amtn(-/-) and Klk4(-/-) mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation.
Collapse
Affiliation(s)
- Stephanie M Núñez
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Yong-Hee P Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78240, USA.
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, Fitzgerald Building, Toronto, ON M5S 3E2, Canada.
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Amelia S Richardson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James E Schmitz
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Roberto Fajardo
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Jie Yang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108; Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, 22 South Avenue, Zhongguancun Haidian District, Beijing 100081, PR China.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| |
Collapse
|
21
|
Affiliation(s)
- M V Korolenkova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
22
|
Hu Y, Smith CE, Richardson AS, Bartlett JD, Hu JCC, Simmer JP. MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Mol Genet Genomic Med 2015; 4:178-96. [PMID: 27066511 PMCID: PMC4799876 DOI: 10.1002/mgg3.194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteinase 20 (MMP20) and kallikrein‐related peptidase 4 (KLK4) are secreted proteinases that are essential for proper dental enamel formation. We characterized and compared enamel formed in wild‐type, Mmp20−/−, Klk4−/−, Mmp20+/−Klk4+/−, and Mmp20−/−Klk4−/− mice using dissecting and light microscopy, backscattered scanning electron microscopy (bSEM), SEM, microcomputed tomography (μCT), and energy‐dispersive X‐ray analysis (EDX). Following eruption, fractures were observed on Mmp20−/−, Klk4−/−, Mmp20+/−Klk4+/−, and Mmp20−/−Klk4−/− molars. Failure of the enamel in the Mmp20+/−Klk4+/− molars was unexpected and suggested that digenic effects could contribute to the etiology of amelogenesis imperfecta in humans. Micro‐CT analyses of hemimandibles demonstrated significantly reduced high‐density enamel volume in the Mmp20−/− and Klk4−/− mice relative to the wild‐type, which was further reduced in Mmp20−/−Klk4−/− mice. bSEM images of 7‐week Mmp20−/− and Mmp20−/−Klk4−/− mandibular incisors showed rough, pitted enamel surfaces with numerous indentations and protruding nodules. The Mmp20+/− and Mmp20+/−Klk4+/− incisors showed prominent, evenly spaced, horizontal ridges that were more distinct in Mmp20+/−Klk4+/− incisors relative to Mmp20+/− incisors due to the darkening of the valleys between the ridges. In cross sections, the Mmp20−/− and Mmp20−/−Klk4−/− exhibited three distinct layers. The outer layer exhibited a disturbed elemental composition and an irregular enamel surface covered with nodules. The Mmp20 null enamel was apparently unable to withstand the sheer forces associated with eruption and separated from dentin during development. Cells invaded the cracks and interposed between the dentin and enamel layers. MMP20 and KLK4 serve overlapping and complementary functions to harden enamel by removing protein, but MMP20 potentially serves multiple additional functions necessary for the adherence of enamel to dentin, the release of intercellular protein stores into the enamel matrix, the retreat of ameloblasts to facilitate thickening of the enamel layer, and the timely transition of ameloblasts to maturation.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Departments of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Departments of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210 Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell Biology and Faculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Amelia S Richardson
- Departments of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - John D Bartlett
- Office of Research College of Dentistry Ohio State University 4139 Postle Hall, 305 W. 12th Ave. Columbus Ohio 43210
| | - Jan C C Hu
- Departments of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Departments of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
23
|
Wang SK, Hu Y, Yang J, Smith CE, Richardson AS, Yamakoshi Y, Lee YL, Seymen F, Koruyucu M, Gencay K, Lee M, Choi M, Kim JW, Hu JCC, Simmer JP. Fam83h null mice support a neomorphic mechanism for human ADHCAI. Mol Genet Genomic Med 2015; 4:46-67. [PMID: 26788537 PMCID: PMC4707031 DOI: 10.1002/mgg3.178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022] Open
Abstract
Truncation mutations in FAM83H (family with sequence similarity 83, member H) cause autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI), but little is known about FAM83H function and the pathogenesis of ADHCAI. We recruited three ADHCAI families and identified two novel (p.Gln457*; p.Lys639*) and one previously documented (p.Q452*) disease‐causing FAM83H mutations. We generated and characterized Fam83h‐knockout/lacZ‐knockin mice. Surprisingly, enamel thickness, density, Knoop hardness, morphology, and prism patterns were similar in Fam83h+/+, Fam83h+/−, and Fam83h−/− mice. The histology of ameloblasts in all stages of development, in both molars and incisors, was virtually identical in all three genotypes and showed no signs of pathology, although the Fam83h−/− mice usually died after 2 weeks and rarely survived to 7 weeks. LacZ expression in the knockin mice was used to report Fam83h expression in the epithelial tissues of many organs, notably in skin and hair follicles, which manifested a disease phenotype. Pull‐down studies determined that FAM83H dimerizes through its N‐terminal phospholipase D‐like (PLD‐like) domain and identified potential FAM83H interacting proteins. Casein kinase 1 (CK1) interacts with the FAM83H PLD‐like domain via an F270‐X‐X‐X‐F274‐X‐X‐X‐F278 motif. CK1 can phosphorylate FAM83H in vitro, and many phosphorylation sites were identified in the FAM83H C‐terminus. Truncation of FAM83H alters its subcellular localization and that of CK1. Our results support the conclusion that FAM83H is not necessary for proper dental enamel formation in mice, but may act as a scaffold protein that localizes CK1. ADHCAI is likely caused by gain‐of‐function effects mediated by truncated FAM83H, which potentially mislocalizes CK1 as part of its pathological mechanism.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210 Eisenhower Pl.Ann ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South Avenue ZhongguancunHaidian DistrictBeijing100081China
| | - Charles E Smith
- Facility for Electron Microscopy Research Department of Anatomy and Cell Biology and Faculty of Dentistry McGill University 3640 University Street Montreal Quebec H3A 2C7 Canada
| | - Amelia S Richardson
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology School of Dental Medicine Tsurumi University 2-1-3 Tsurumi Tsurumi-ku Yokohama 230-8501 Japan
| | - Yuan-Ling Lee
- Graduate Institute of Clinical Dentistry National Taiwan University No. 1, Chang-Te St Taipei 10048 Taiwan
| | - Figen Seymen
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Mine Koruyucu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Koray Gencay
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Moses Lee
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong Chongno-gu Seoul 110-768 Korea
| | - Murim Choi
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong Chongno-gu Seoul 110-768 Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute School of Dentistry Seoul National University 275-1 Yongon-dong Chongno-gu Seoul 110-768 Korea
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| |
Collapse
|
24
|
Kawasaki K, Hu JCC, Simmer JP. Evolution of Klk4 and enamel maturation in eutherians. Biol Chem 2015; 395:1003-13. [PMID: 25153384 DOI: 10.1515/hsz-2014-0122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
Abstract
Kallikrein-related peptidase 4 (KLK4) is a secreted serine protease that degrades residual enamel proteins to facilitate their removal by ameloblasts, which increases mineralization and hardens the enamel. Mutations in human KLK4 cause hypomaturation amelogenesis imperfecta. Enamel formed by Klk4 null mice is normal in thickness and prism structure, but the enamel layer retains proteins, is hypomineralized, and undergoes rapid attrition following tooth eruption. We searched multiple databases, retrieved Klk4 and Klk5 from various mammalian genomes, and identified Klk4 in 46 boreoeutherian genomes. In non-Boreoeutheria, Klk4 was detected in only one afrotherian genome (as a pseudogene), and not in the other six afrotherian, two xenarthran, or three marsupial genomes. In contrast, Klk5 was detected in both marsupial and eutherian mammals. Our phylogenetic and mutation rate analyses support the hypothesis that Klk4 arose from Klk5 by gene duplication near the divergence of Afrotheria, Xenarthra and Boreoeutheria, and that functionally-differentiated Klk4 survived only in Boreoeutheria. Afrotherian mammals share the feature of delayed dental eruption relative to boreoeutherian mammals. KLK4 shortens the time required for enamel maturation and could have alleviated negative selection following mutations that resulted in thicker enamel or earlier tooth eruption, without reducing enamel hardness or causing dental attrition.
Collapse
|
25
|
Abbarin N, San Miguel S, Holcroft J, Iwasaki K, Ganss B. The enamel protein amelotin is a promoter of hydroxyapatite mineralization. J Bone Miner Res 2015; 30:775-85. [PMID: 25407797 DOI: 10.1002/jbmr.2411] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 01/29/2023]
Abstract
Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation. It is localized at the interface between the enamel surface and the apical surface of ameloblasts. AMTN knock-out mice have hypomineralized enamel, whereas transgenic mice overexpressing AMTN have a compact but disorganized enamel hydroxyapatite (HA) microstructure, indicating a possible involvement of AMTN in regulating HA mineralization directly. In this study, we demonstrated that recombinant human (rh) AMTN dissolved in a metastable buffer system, based on light scattering measurements, promotes HA precipitation. The mineral precipitates were characterized by scanning and transmission electron microscopy and electron diffraction. Colloidal gold immunolabeling of AMTN in the mineral deposits showed that protein molecules were associated with HA crystals. The binding affinity of rh-AMTN to HA was found to be comparable to that of amelogenin, the major protein of the forming enamel matrix. Overexpression of AMTN in mouse calvaria cells also increased the formation of calcium deposits in the culture medium. Overexpression of AMTN during the secretory stage of enamel formation in vivo resulted in rapid and uncontrolled enamel mineralization. Site-specific mutagenesis of the potential serine phosphorylation motif SSEEL reduced the in vitro mineral precipitation to less than 25%, revealing that this motif is important for the HA mineralizing function of the protein. A synthetic short peptide containing the SSEEL motif was only able to facilitate mineralization in its phosphorylated form ((P)S(P) SEEL), indicating that this motif is necessary but not sufficient for the mineralizing properties of AMTN. These findings demonstrate that AMTN has a direct influence on biomineralization by promoting HA mineralization and suggest a critical role for AMTN in the formation of the compact aprismatic enamel surface layer during the maturation stage of amelogenesis.
Collapse
Affiliation(s)
- Nastaran Abbarin
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
26
|
Wang SK, Hu Y, Yang J, Smith CE, Nunez SM, Richardson AS, Pal S, Samann AC, Hu JCC, Simmer JP. Critical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation. Mol Genet Genomic Med 2015; 3:302-19. [PMID: 26247047 PMCID: PMC4521966 DOI: 10.1002/mgg3.143] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early during the maturation stage but soon arrested. The null enamel layer was only a tenth as hard as wild-type enamel and underwent rapid attrition following eruption. Despite the failure to further mineralize enamel deposited during the secretory stage, ectopic mineral formed on the enamel surface and penetrated into the overlying soft tissue. While the proteins in the enamel matrix were successfully degraded, the digestion products remained inside the enamel. Interactome analysis of WDR72 protein revealed potential interactions with clathrin-associated proteins and involvement in ameloblastic endocytosis. The maturation stage mandibular incisor enamel did not stain with methyl red, indicating that the enamel did not acidify beneath ruffle-ended ameloblasts. Attachment of maturation ameloblasts to the enamel layer was weakened, and SLC24A4, a critical ameloblast calcium transporter, did not localize appropriately along the ameloblast distal membrane. Fewer blood vessels were observed in the papillary layer supporting ameloblasts. Specific WDR72 expression by maturation stage ameloblasts explained the observation that enamel thickness and rod decussation (established during the secretory stage) are normal in the Wdr72 null mice. We conclude that WDR72 serves critical functions specifically during the maturation stage of amelogenesis and is required for both protein removal and enamel mineralization.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| | - Jie Yang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108 ; Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, China
| | - Charles E Smith
- Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University 3640 University Street, Montreal, Quebec, Canada, H3A 2B2
| | - Stephanie M Nunez
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| | - Amelia S Richardson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| | - Soumya Pal
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| | - Andrew C Samann
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry 1210 Eisenhower Pl., Ann Arbor, Michigan, 48108
| |
Collapse
|
27
|
van Soom J, Cuzzucoli Crucitti G, Gladysz R, van der Veken P, Di Santo R, Stuyver I, Buck V, Lambeir AM, Magdolen V, Joossens J, Augustyns K. The first potent diphenyl phosphonate KLK4 inhibitors with unexpected binding kinetics. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00288e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the first highly potent and selective small-molecule KLK4 inhibitors, showing surprising reversible binding kinetics.
Collapse
|
28
|
Goldberg M, Kellermann O, Dimitrova-Nakov S, Harichane Y, Baudry A. Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity. Front Physiol 2014; 5:359. [PMID: 25285079 PMCID: PMC4168675 DOI: 10.3389/fphys.2014.00359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023] Open
Abstract
In the field of dentistry, the murine incisor has long been considered as an outstanding model to study amelogenesis. However, it clearly appears that enamel from wild type mouse incisors and molars presents several structural differences. In incisor, exclusively radial enamel is observed. In molars, enamel displays a high level of complexity since the inner part is lamellar whereas the outer enamel shows radial and tangential structures. Recently, the serotonin 2B receptor (5-HT2BR) was shown to be involved in ameloblast function and enamel mineralization. The incisors from 5HT2BR knockout (KO) mice exhibit mineralization defects mostly in the outer maturation zone and porous matrix network in the inner zone. In the molars, the mutation affects both secretory and maturation stages of amelogenesis since pronounced alterations concern overall enamel structures. Molars from 5HT2BR KO mice display reduction in enamel thickness, alterations of inner enamel architecture including defects in Hunter-Schreger Bands arrangements, and altered maturation of the outer radial enamel. Differences of enamel structure were also observed between incisor and molar from other KO mice depleted for genes encoding enamel extracellular matrix proteins. Thus, upon mutation, enamel analysis based exclusively on incisor defects would be biased. In view of the functional relationship between enamel structure and tooth morphogenesis, identification of molecular actors involved in amelogenesis requires comparative studies between mice molars and incisors.
Collapse
Affiliation(s)
- Michel Goldberg
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - O Kellermann
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - S Dimitrova-Nakov
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - Y Harichane
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - A Baudry
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| |
Collapse
|
29
|
Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol 2014; 5:313. [PMID: 25278900 PMCID: PMC4166228 DOI: 10.3389/fphys.2014.00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022] Open
Abstract
A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI). Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: (1) generating transgenic, knockout, and knockin mouse models, and (2) analyzing rodent enamel mineral density and functional properties (structure and mechanics) of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure, and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.
Collapse
Affiliation(s)
- Megan K Pugach
- Department of Mineralized Tissue Biology, The Forsyth Institute, Harvard School of Dental Medicine, Harvard University Cambridge, MA, USA
| | - Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
30
|
Suzuki M, Shin M, Simmer JP, Bartlett JD. Fluoride affects enamel protein content via TGF-β1-mediated KLK4 inhibition. J Dent Res 2014; 93:1022-7. [PMID: 25074495 DOI: 10.1177/0022034514545629] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dental fluorosis is caused by chronic high-level fluoride (F(-)) exposure during enamel development, and fluorosed enamel has a higher than normal protein content. Matrix metalloproteinase 20 cleaves enamel matrix proteins during the secretory stage, and KLK4 further cleaves these proteins during the maturation stage so that the proteins can be reabsorbed from the hardening enamel. We show that transforming growth factor β1 (TGF-β1) can induce Klk4 expression, and we examine the effect of F(-) on TGF-β1 and KLK4 expression. We found that in vivo F(-) inhibits Klk4 but not Mmp20 transcript levels. LacZ-C57BL/6-Klk4 (+/LacZ) mice have LacZ inserted in frame at the Klk4 translation initiation site so that the endogenous Klk4 promoter drives LacZ expression in the same temporal/spatial way as it does for Klk4. KLK4 protein levels in rat enamel and β-galactosidase staining in LacZ-C57BL/6-Klk4 (+/LacZ) mouse enamel were both significantly reduced by F(-) treatment. Since TGF-β1 induces KLK4 expression, we tested and found that F(-) significantly reduced Tgf-β1 transcript levels in rat enamel organ. These data suggest that F(-)-mediated downregulation of TGF-β1 expression contributes to reduced KLK4 protein levels in fluorosed enamel and provides an explanation for why fluorosed enamel has a higher than normal protein content.
Collapse
Affiliation(s)
- M Suzuki
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA, USA, and Harvard School of Dental Medicine, Boston, MA, USA
| | - M Shin
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA, USA, and Harvard School of Dental Medicine, Boston, MA, USA
| | - J P Simmer
- Department of Biological and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA, USA, and Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Bartlett JD, Simmer JP. Kallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice. Front Physiol 2014; 5:240. [PMID: 25071586 PMCID: PMC4082239 DOI: 10.3389/fphys.2014.00240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
Abstract
Enamel development occurs in stages. During the secretory stage, a soft protein rich enamel layer is produced that expands to reach its final thickness. During the maturation stage, proteins are removed and the enamel matures into the hardest substance in the body. KLK4 is expressed during the transition from secretory to the maturation stage and its expression continues throughout maturation. KLK4 is a glycosylated chymotrypsin-like serine protease that cleaves enamel matrix proteins prior to their export out of the hardening enamel layer. Mutations in KLK4 can cause autosomal recessive, non-syndromic enamel malformations in humans and mice. Klk4 ablated mice initially have normal-looking teeth with enamel of full thickness. However, the enamel is soft and protein-rich. Three findings are notable from Klk4 ablated mice: first, enamel rods fall from the interrod enamel leaving behind empty holes where the enamel fractures near the underlying dentin surface. Second, the ~10,000 crystallites that normally fuse to form a solid enamel rod fail to grow together in the ablated mice and can fall out of the rods. Third, and most striking, the crystallites grow substantially in width and thickness (a- and b-axis) in the ablated mice until they almost interlock. The crystallites grow in defined enamel rods, but interlocking is prevented presumably because too much protein remains. Conventional thought holds that enamel proteins bind specifically to the sides of enamel crystals to inhibit growth in width and thickness so that the thin, ribbon-like enamel crystallites grow predominantly in length. Results from Klk4 ablated mice demonstrate that this convention requires updating. An alternative mechanism is proposed whereby enamel proteins serve to form a mold or support structure that shapes and orients the mineral ribbons as they grow in length. The remnants of this support structure must be removed by KLK4 so that the crystallites can interlock to form fully hardened enamel.
Collapse
Affiliation(s)
- John D Bartlett
- Harvard School of Dental Medicine Boston, MA ; Department of Mineralized Tissue Biology, The Forsyth Institute Cambridge, MA
| | - James P Simmer
- Department of Biological and Material Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| |
Collapse
|
32
|
Schmitz JE, Teepe JD, Hu Y, Smith CE, Fajardo RJ, Chun YHP. Estimating mineral changes in enamel formation by ashing/BSE and microCT. J Dent Res 2014; 93:256-62. [PMID: 24470541 DOI: 10.1177/0022034513520548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enamel formation produces the most highly mineralized tissue in the human body. The growth of enamel crystallites is assisted by enamel proteins and proteinases. As enamel formation progresses from secretory to maturation stages, the composition of the matrix with its mineral and non-mineral components dynamically changes in an inverse fashion. We hypothesized that appropriately calibrated micro-computed tomography (µCT) technology is suitable to estimate the mineral content (weight and/or density) and volume comparable in accuracy with that for directly weighed and sectioned enamel. Different sets of mouse mandibular incisors of C57BL/6 mice were used for dissections and µCT reconstructions. Calibration phantoms corresponding to the range of enamel mineral densities were used. Secretory-stage enamel contained little mineral and was consequently too poor in contrast for enamel volumes to be accurately estimated by µCT. Maturation-stage enamel, however, showed remarkable correspondence for total mineral content per volume where comparisons were possible between and among the different analytical techniques used. The main advantages of the µCT approach are that it is non-destructive, time-efficient, and can monitor changes in mineral content of the most mature enamel, which is too physically hard to dissect away from the tooth.
Collapse
Affiliation(s)
- J E Schmitz
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, USA
| | | | | | | | | | | |
Collapse
|
33
|
TGF-ß regulates enamel mineralization and maturation through KLK4 expression. PLoS One 2013; 8:e82267. [PMID: 24278477 PMCID: PMC3835418 DOI: 10.1371/journal.pone.0082267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 10/31/2013] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor-ß (TGF-ß) signaling plays an important role in regulating crucial biological processes such as cell proliferation, differentiation, apoptosis, and extracellular matrix remodeling. Many of these processes are also an integral part of amelogenesis. In order to delineate a precise role of TGF-ß signaling during amelogenesis, we developed a transgenic mouse line that harbors bovine amelogenin promoter-driven Cre recombinase, and bred this line with TGF-ß receptor II floxed mice to generate ameloblast-specific TGF-ß receptor II conditional knockout (cKO) mice. Histological analysis of the teeth at postnatal day 7 (P7) showed altered enamel matrix composition in the cKO mice as compared to the floxed mice that had enamel similar to the wild-type mice. The µCT and SEM analyses revealed decreased mineral content in the cKO enamel concomitant with increased attrition and thinner enamel crystallites. Although the mRNA levels remained unaltered, immunostaining revealed increased amelogenin, ameloblastin, and enamelin localization in the cKO enamel at the maturation stage. Interestingly, KLK4 mRNA levels were significantly reduced in the cKO teeth along with a slight increase in MMP-20 levels, suggesting that normal enamel maturation is regulated by TGF-ß signaling through the expression of KLK4. Thus, our study indicates that TGF-ß signaling plays an important role in ameloblast functions and enamel maturation.
Collapse
|
34
|
Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN DENTISTRY 2013; 2013:684607. [PMID: 24159389 PMCID: PMC3789414 DOI: 10.1155/2013/684607] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development.
Collapse
Affiliation(s)
- John D. Bartlett
- Harvard School of Dental Medicine & Chair, Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge MA 02142, USA
| |
Collapse
|
35
|
Yamakoshi Y, Simmer JP, Bartlett JD, Karakida T, Oida S. MMP20 and KLK4 activation and inactivation interactions in vitro. Arch Oral Biol 2013; 58:1569-77. [PMID: 24112721 DOI: 10.1016/j.archoralbio.2013.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/18/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Enamelysin (MMP20) and kallikrein 4 (KLK4) are believed to be necessary to clear proteins from the enamel matrix of developing teeth. MMP20 is expressed by secretory stage ameloblasts, while KLK4 is expressed from the transition stage throughout the maturation stage. The aim of this study is to investigate the activation of KLK4 by MMP20 and the inactivation of MMP20 by KLK4. DESIGN Native pig MMP20 (pMMP20) and KLK4 (pKLK4) were isolated directly from enamel scrapings from developing molars. Recombinant human proKLK4 (rh-proKLK4) was activated by incubation with pMMP20 or recombinant human MMP20 (rhMMP20), and the resulting KLK4 activity was detected by zymography. Reaction products were isolated by reverse-phase high performance liquid chromatography (RP-HPLC), and their N-termini characterized by Edman degradation. The pMMP20 was incubated with pKLK4 under mildly acidic or under physiologic conditions, and enzyme activity was analyzed by zymography. The catalytic domain of rhMMP20 was incubated with pKLK4 or recombinant human KLK4 (rhKLK4) and the digestion products were characterized by zymography and Edman degradation. RESULTS Both pMMP20 and rhMMP20 activated rh-proKLK4 by cleaving at the propeptide-enzyme junction used in vivo. The pMMP20 was inactivated by pKLK4 under physiologic conditions, but not under mildly acidic conditions. Both pKLK4 and rhKLK4 cleaved MMP20 principally at two sites in the catalytic domain of MMP20. CONCLUSIONS MMP20 activates proKLK4 and KLK4 inactivates MMP20 in vitro, and these actions are likely to occur during enamel formation in vivo.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | | | | | | | | |
Collapse
|
36
|
Bronckers ALJJ, Gueneli N, Lüllmann-Rauch R, Schneppenheim J, Moraru AP, Himmerkus N, Bervoets TJ, Fluhrer R, Everts V, Saftig P, Schröder B. The intramembrane protease SPPL2A is critical for tooth enamel formation. J Bone Miner Res 2013; 28:1622-30. [PMID: 23426979 DOI: 10.1002/jbmr.1895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/15/2022]
Abstract
Intramembrane proteases are critically involved in signal transduction and membrane protein turnover. Signal-peptide-peptidase-like 2a (SPPL2A), a presenilin-homologue residing in lysosomes/late endosomes, cleaves type II-oriented transmembrane proteins. We recently identified SPPL2A as the enzyme controlling turnover and functions of the invariant chain (CD74) of the major histocompatibility complex II (MHCII) and demonstrated critical importance of this process for B cell development. Surprisingly, we found that SPPL2A is critical for formation of dental enamel. In Sppl2a knockout mice, enamel of the erupted incisors was chalky white and rapidly eroded after eruption. SPPL2A was found to be expressed in enamel epithelium during secretory and maturation stage amelogenesis. Mineral content of enamel in Sppl2a⁻/⁻ incisors was inhomogeneous and reduced by ∼20% compared to wild-type mice with the most pronounced reduction at the mesial side. Frequently, disruption of the enamel layer and localized detachment of the most superficial enamel layer was observed in the knockout incisors leading to an uneven enamel surface. In Sppl2a null mice, morphology and function of secretory stage ameloblasts were not noticeably different from that of wild-type mice. However, maturation stage ameloblasts showed reduced height and a characteristic undulation of the ameloblast layer with localized adherence of the cells to the outer enamel. This was reflected in a delayed and incomplete resorption of the proteinaceous enamel matrix. Thus, we conclude that intramembrane proteolysis by SPPL2A is essential for maintaining cellular homeostasis of ameloblasts. Because modulation of SPPL2A activity appears to be an attractive therapeutic target to deplete B cells and treat autoimmunity, interference with tooth enamel formation should be investigated as a possible adverse effect of pharmacological SPPL2A inhibitors in humans.
Collapse
|
37
|
Wang SK, Hu Y, Simmer JP, Seymen F, Estrella NMRP, Pal S, Reid BM, Yildirim M, Bayram M, Bartlett JD, Hu JCC. Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing. J Dent Res 2013; 92:266-71. [PMID: 23355523 DOI: 10.1177/0022034513475626] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Non-syndromic amelogenesis imperfecta (AI) is a collection of isolated inherited enamel malformations that follow X-linked, autosomal-dominant, or autosomal-recessive patterns of inheritance. The AI phenotype is also found in syndromes. We hypothesized that whole-exome sequencing of AI probands showing simplex or recessive patterns of inheritance would identify causative mutations among the known candidate genes for AI. DNA samples obtained from 12 unrelated probands with AI were analyzed. Disease-causing mutations were identified in three of the probands: a novel single-nucleotide deletion in both KLK4 alleles (g.6930delG; c.245delG; p.Gly82Alafs*87) that shifted the reading frame, a novel missense transition mutation in both MMP20 alleles (g.15390A>G; c.611A>G; p.His204Arg) that substituted arginine for an invariant histidine known to coordinate a structural zinc ion, and a previously described nonsense transition mutation in a single allele of FAM83H (c.1379G>A; g.5663G>A; p.W460*). Erupted molars and cross-sections from unerupted parts of the mandibular incisors of Mmp20 null mice were characterized by scanning electron microscopy. Their enamel malformations closely correlated with the enamel defects displayed by the proband with the MMP20 mutation. We conclude that whole-exome sequencing is an effective means of identifying disease-causing mutations in kindreds with AI, and this technique should prove clinically useful for this purpose.
Collapse
Affiliation(s)
- S-K Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Simmer JP, Richardson AS, Hu YY, Smith CE, Ching-Chun Hu J. A post-classical theory of enamel biomineralization… and why we need one. Int J Oral Sci 2012; 4:129-34. [PMID: 22996272 PMCID: PMC3464985 DOI: 10.1038/ijos.2012.59] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.
Collapse
Affiliation(s)
- James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MD, USA.
| | | | | | | | | |
Collapse
|
39
|
Vogel P, Hansen GM, Read RW, Vance RB, Thiel M, Liu J, Wronski TJ, Smith DD, Jeter-Jones S, Brommage R. Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet Pathol 2012; 49:998-1017. [PMID: 22732358 DOI: 10.1177/0300985812453177] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The FAM20 family of secreted proteins consists of three members (FAM20A, FAM20B, and FAM20C) recently linked to developmental disorders suggesting roles for FAM20 proteins in modulating biomineralization processes. The authors report here findings in knockout mice having null mutations affecting each of the three FAM20 proteins. Both Fam20a and Fam20c null mice survived to adulthood and showed biomineralization defects. Fam20b (-/-) embryos showed severe stunting and increased mortality at E13.5, although early lethality precluded detailed investigations. Physiologic calcification or biomineralization of extracellular matrices is a normal process in the development and functioning of various tissues (eg, bones and teeth). The lesions that developed in teeth, bones, or blood vessels after functional deletion of either Fam20a or Fam20c support a significant role for their encoded proteins in modulating biomineralization processes. Severe amelogenesis imperfecta (AI) was present in both Fam20a and Fam20c null mice. In addition, Fam20a (-/-) mice developed disseminated calcifications of muscular arteries and intrapulmonary calcifications, similar to those of fetuin-A deficient mice, although they were normocalcemic and normophosphatemic, with normal dentin and bone. Fam20a gene expression was detected in ameloblasts, odontoblasts, and the parathyroid gland, with local and systemic effects suggesting both local and/or systemic effects for FAM20A. In contrast, Fam20c (-/-) mice lacked ectopic calcifications but were severely hypophosphatemic and developed notable lesions in both dentin and bone to accompany the AI. The bone and dentin lesions, plus the marked hypophosphatemia and elevated serum alkaline phosphatase and FGF23 levels, are indicative of autosomal recessive hypophosphatemic rickets/osteomalacia in Fam20c (-/-) mice.
Collapse
Affiliation(s)
- P Vogel
- Department of Pathology, Lexicon Pharmaceuticals, Inc., 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Simmer JP, Richardson AS, Smith CE, Hu Y, Hu JCC. Expression of kallikrein-related peptidase 4 in dental and non-dental tissues. Eur J Oral Sci 2012; 119 Suppl 1:226-33. [PMID: 22243250 DOI: 10.1111/j.1600-0722.2011.00834.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Kallikrein-related peptidase 4 (KLK4) is critical for proper dental enamel formation. Klk4 null mice, and humans with two defective KLK4 alleles have obvious enamel defects, with no other apparent phenotype. KLK4 mRNA or protein is reported to be present in tissues besides teeth, including prostate, ovary, kidney, liver, and salivary gland. In this study we used the Klk4 knockout/NLS-lacZ knockin mouse to assay Klk4 expression using β-galactosidase histochemistry. Incubations for 5 h were used to detect KLK4 expression with minimal endogenous background, while overnight incubations susceptible to false positives were used to look for trace KLK4 expression. Developing maxillary molars at postnatal days 5, 6, 7, 8, and 14, developing mandibular incisors at postnatal day 14, and selected non-dental tissues from adult wild-type and Klk4(lacZ/lacZ) mice were examined by X-gal histochemistry. After 5 h of incubation, X-gal staining was observed specifically in the nuclei of maturation-stage ameloblasts in molars and incisors from Klk4(lacZ/lacZ) mice and was detected weakly in the nuclei of salivary gland ducts and in patches of prostate epithelia. We conclude that KLK4 is predominantly a tooth-specific protease with low expression in submandibular salivary gland and prostate, and with no detectable expression in liver, kidney, testis, ovary, oviduct, epididymis, and vas deferens.
Collapse
Affiliation(s)
- James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA.
| | | | | | | | | |
Collapse
|
41
|
Smith CE, Hu Y, Richardson AS, Bartlett JD, Hu JCC, Simmer JP. Relationships between protein and mineral during enamel development in normal and genetically altered mice. Eur J Oral Sci 2012; 119 Suppl 1:125-35. [PMID: 22243238 DOI: 10.1111/j.1600-0722.2011.00871.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles and a similar weight of mineral at locations on incisors normally associated with early maturation. Thereafter, the content of volatiles on normal incisors declined rapidly by as much as 62%, but not by 100%, over 2 mm, accompanied by increases of ≈ threefold in mineral weights. Enamelin heterozygous mice (lower incisors) showed a decrease in volatile content across the maturation stage, yet mineral failed to increase significantly. Mmp20 null mice showed no significant loss of volatiles from maturing enamel, yet the amount of mineral increased. Klk4 null mice showed normal mineral acquisition up to early maturation, but the input of new volatiles in mid to late maturation caused the final mineralization to slow below normal levels. These results suggest that it is not only the amount of protein but also the nature or type of protein or fragments present in the local crystallite environment that affects their volumetric expansion as they mature.
Collapse
Affiliation(s)
- Charles E Smith
- Facility for Electron Microscopy Research, Department of Anatomy & Cell Biology, and Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Hu Y, Hu JCC, Smith CE, Bartlett JD, Simmer JP. Kallikrein-related peptidase 4, matrix metalloproteinase 20, and the maturation of murine and porcine enamel. Eur J Oral Sci 2012; 119 Suppl 1:217-25. [PMID: 22243249 DOI: 10.1111/j.1600-0722.2011.00859.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crowns of matrix metalloproteinase 20 (Mmp20) null mice fracture at the dentino-enamel junction (DEJ), whereas the crowns of kallikrein-related peptidase 4 (Klk4) null mice fracture in the deep enamel just above the DEJ. We used backscatter scanning electron microscopy to assess enamel mineralization in incisors from 9-wk-old wild-type, Klk4 null, and Mmp20 null mice, and in developing pig molars. We observed a line of hypermineralization along the DEJ in developing wild-type mouse and pig teeth. This line was discernible from the early secretory stage until the enamel in the maturation stage reached a similar density. The line was apparent in Klk4 null mice, but absent in Mmp20 null mice. Enamel in the Klk4 null mice matured normally at the surface, but was progressively less mineralized with depth. Enamel in the Mmp20 null mice formed as a mineral bilayer, with neither layer looking like true enamel. The most superficial mineral layer expanded during the maturation stage and formed irregular surface nodules. A surprising finding was the observation of electron backscatter from mid-maturation wild-type ameloblasts, which we attributed to the accumulation and release of iron. We conclude that enamel breaks in the deep enamel of Klk4 null mice because of decreasing enamel maturation with depth, and at the DEJ in Mmp20 null mice because of hypomineralization at the DEJ.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principels of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties and the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
44
|
Genetic variation in MMP20 contributes to higher caries experience. J Dent 2012; 40:381-6. [PMID: 22330321 DOI: 10.1016/j.jdent.2012.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Matrix metalloproteinases play an important role during the initial process of enamel development and therefore may play a role in caries. OBJECTIVES To evaluate the association between MMP20 and caries experience in Brazilian children. METHODS Eligible unrelated children with or without caries were evaluated using a cohort design. Demographic data and oral health habits were obtained though a questionnaire. Caries data was collected by clinical examination. Genotyping of the selected polymorphism was carried out by real-time PCR from genomic DNA. Allele and genotype frequencies were compared between groups with distinct caries experience and oral health habits. RESULTS Of 388 subjects, 161 were caries free children. There were no differences between caries levels and genotype distribution in the total cohort. When ethnic background was considered, differences in genotype distribution were observed in caries free children vs. children with caries in Caucasians (p=0.03). Differences could also be seen when poor oral hygiene was used to stratify the analysis (p=0.02). Regression analysis, adjusted for genotype and ethnicity, confirmed that ingestion of sweets between meals increases the risk of presenting carious lesions (p=0.00001; OR=2.33; 95%CI 1.53-3.54). CONCLUSION Variation in MMP20 may be associated with caries experience mainly in Caucasian subjects with poor oral health habits.
Collapse
|
45
|
Mohazab L, Koivisto L, Jiang G, Kytömäki L, Haapasalo M, Owen G, Wiebe C, Xie Y, Heikinheimo K, Yoshida T, Smith C, Heino J, Häkkinen L, McKee M, Larjava H. Critical role for αvβ6 integrin in enamel biomineralization. J Cell Sci 2012; 126:732-44. [DOI: 10.1242/jcs.112599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tooth enamel has the highest degree of biomineralization of all vertebrate hard tissues. During the secretory stage of enamel formation, ameloblasts deposit an extracellular matrix that is in direct contact with ameloblast plasma membrane. Although it is known that integrins mediate cell-matrix adhesion and regulate cell signaling in most cell types, the receptors that regulate ameloblast adhesion and matrix production are not well characterized. Thus, we hypothesized that αvβ6 integrin is expressed in ameloblasts where it regulates biomineralization of enamel. Human and mouse ameloblasts were found to express both β6 integrin mRNA and protein. The maxillary incisors of Itgb6−/− mice lacked yellow pigment and their mandibular incisors appeared chalky and rounded. Molars of Itgb6−/− mice showed signs of reduced mineralization and severe attrition. The mineral-to-protein ratio in the incisors was significantly reduced in Itgb6−/− enamel, mimicking hypomineralized amelogenesis imperfecta. Interestingly, amelogenin-rich extracellular matrix abnormally accumulated between the ameloblast layer of Itgb6−/− mouse incisors and the forming enamel surface, and also between ameloblasts. This accumulation was related to increased synthesis of amelogenin, rather than to reduced removal of the matrix proteins. This was confirmed in cultured ameloblast-like cells, which did not use αvβ6 integrin as an endocytosis receptor for amelogenins, although it participated in cell adhesion on this matrix indirectly via endogenously produced matrix proteins. In summary, integrin αvβ6 is expressed by ameloblasts and it plays a crucial role in regulating amelogenin deposition/turnover and subsequent enamel biomineralization.
Collapse
|
46
|
Uskoković V, Khan F, Liu H, Witkowska HE, Zhu L, Li W, Habelitz S. Hydrolysis of amelogenin by matrix metalloprotease-20 accelerates mineralization in vitro. Arch Oral Biol 2011; 56:1548-59. [PMID: 21774914 PMCID: PMC3221888 DOI: 10.1016/j.archoralbio.2011.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
In the following respects, tooth enamel is a unique tissue in the mammalian body: (a) it is the most mineralized and hardest tissue in it comprising up to 95 wt% of apatite; (b) its microstructure is dominated by parallel rods composed of bundles of 40-60 nm wide apatite crystals with aspect ratios reaching up to 1:10,000 and (c) not only does the protein matrix that gives rise to enamel guides the crystal growth, but it also conducts its own degradation and removal in parallel. Hence, when mimicking the process of amelogenesis in vitro, crystal growth has to be coupled to proteolytic digestion of the amelogenin assemblies that are known to play a pivotal role in conducting the proper crystal growth. Experimental settings based on controlled and programmable titration of amelogenin sols digested by means of MMP-20 with buffered calcium and phosphate solutions were employed to imitate the formation of elongated, plate-shaped crystals. Whilst amelogenin can act as a promoter of nucleation and crystal growth alone, in this study we show that proteolysis exerts an additional nucleation- and growth-promoting effect. Hydrolysis of full-length amelogenin by MMP-20 decreases the critical time needed for the protein and peptides to adhere and to cover the substrate. The formation and immobilization of a protein layer subsequently reduces the time for calcium phosphate crystallization. Coupling the proteolytic reaction to titration in the presence of 0.4 mg/ml rH174 has been shown to have the same effect on the crystal growth promotion as quadrupling the concentration of rH174 to 1.6 mg/ml. Controlling the rate and the extent of the proteolytic cleavage can thus be used to control the nucleation and growth rates in a protein-guided crystallization system.
Collapse
Affiliation(s)
- Vuk Uskoković
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Yamakoshi Y, Richardson AS, Nunez SM, Yamakoshi F, Milkovich RN, Hu JCC, Bartlett JD, Simmer JP. Enamel proteins and proteases in Mmp20 and Klk4 null and double-null mice. Eur J Oral Sci 2011; 119 Suppl 1:206-16. [PMID: 22243248 PMCID: PMC3282035 DOI: 10.1111/j.1600-0722.2011.00866.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Matrix metalloproteinase 20 (MMP20) and kallikrein-related peptidase 4 (KLK4) are thought to be necessary to clear proteins from the enamel matrix of developing teeth. We characterized Mmp20 and Klk4 null mice to better understand their roles in matrix degradation and removal. Histological examination showed retained organic matrix in Mmp20, Klk4, and Mmp20/Klk4 double-null mouse enamel matrix, but not in the wild-type. X-gal histostaining of Mmp20 null mice heterozygous for the Klk4 knockout/lacZ knockin showed that Klk4 is expressed normally in the Mmp20 null background. This finding was corroborated by zymogram and western blotting, which discovered a 40-kDa protease induced in the maturation stage of Mmp20 null mice. Proteins were extracted from secretory-stage or maturation-stage maxillary first molars from wild-type, Mmp20 null, Klk4 null, and Mmp20/Klk4 double-null mice and were analyzed by SDS-PAGE and western blotting. Only intact amelogenins and ameloblastin were observed in secretory-stage enamel of Mmp20 null mice, whereas the secretory-stage matrix from Klk4 null mice was identical to the matrix from wild-type mice. More residual matrix was observed in the double-null mice compared with either of the single-null mice. These results support the importance of MMP20 during the secretory stage and of KLK4 during the maturation stage and show there is only limited functional redundancy for these enzymes.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Amelia S. Richardson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Stephanie M. Nunez
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Fumiko Yamakoshi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rachel N. Milkovich
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - John D. Bartlett
- Department of Cytokine Biology, Forsyth Institute and Department of Developmental Biology, Harvard School of Dental Medicine, Cambridge, MA, USA
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Chan HC, Estrella NMRP, Milkovich RN, Kim JW, Simmer JP, Hu JCC. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur J Oral Sci 2011; 119 Suppl 1:311-23. [PMID: 22243262 PMCID: PMC3292789 DOI: 10.1111/j.1600-0722.2011.00857.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.
Collapse
Affiliation(s)
- Hui-Chen Chan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ninna M. R. P. Estrella
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rachel N. Milkovich
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Yamakoshi Y, Yamakoshi F, Hu JCC, Simmer JP. Characterization of kallikrein-related peptidase 4 glycosylations. Eur J Oral Sci 2011; 119 Suppl 1:234-40. [PMID: 22243251 PMCID: PMC3282036 DOI: 10.1111/j.1600-0722.2011.00863.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1-6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | |
Collapse
|
50
|
Yang X, Sun Z, Ma R, Fan D, Moradian-Oldak J. Amelogenin "nanorods" formation during proteolysis by Mmp-20. J Struct Biol 2011; 176:220-8. [PMID: 21840397 PMCID: PMC3185149 DOI: 10.1016/j.jsb.2011.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
Amelogenin is cleaved by enamelysin (Mmp-20) soon after its secretion, and the cleavage products accumulate in specific locations during enamel formation, suggesting that parent amelogenin proteolysis is necessary for activating its functions. To investigate the precise roles of Mmp-20 and its influence on the assembly of amelogenin, an in vitro enzymatic digestion process mimicking the initial stages of amelogenin proteolysis was investigated at near-physiological conditions using recombinant porcine amelogenin (rP172) and enamelysin. Hierarchically organized nanorod structures formed during different digestion stages were detected by TEM. At the earliest stage, uniformly dispersed parent amelogenin spherical particles, mixed with some darker stained smaller spheres, and accompanying elongated chain-like nanostructures were observed. Cylindrical nanorods, which appeared to be the result of tight assembly of thin subunit cylindrical discs with thicknesses ranging from ∼2.5 to ∼6.0nm, were formed after an hour of proteolysis. These subunit building blocks stacked to form nanorods with maximum length of ∼100nm. With the production of more cleavage products, additional morphologies spontaneously evolved from the cylindrical nanorods. Larger ball-like aggregates ultimately formed at the end of proteolysis. The uniform spherical particles, nanorods, morphological patterns evolved from nanorods, and globular aggregated microstructures were successively formed by means of co-assembly of amelogenin and its cleavage products during a comparatively slow proteolysis process. We propose that, following the C-terminal cleavage of amelogenin, co-assembly with its fragments leads to formation of nanorod structures whose properties eventually dictate the super-structural organization of enamel matrix, controlling the elongated growth of enamel apatite crystals.
Collapse
Affiliation(s)
- Xiudong Yang
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, 2250 Alcazar St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|