1
|
Fenton AW, Hoffpauir ZA, Martin TA, Harris RA, Lamb AL. Are Allosteric Mechanisms Conserved Among Homologues? J Mol Biol 2025:169176. [PMID: 40306405 DOI: 10.1016/j.jmb.2025.169176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Conservation of allosteric mechanisms among homologues is often assumed but seldom tested. This assumption underpins key concepts like coevolution of residues involved in allosteric mechanisms and the comparison of structures of two different homologues to gain insights into allosteric mechanisms. As an initial assessment of whether allosteric mechanisms are conserved among homologues, this work reviews what is known about the allosteric mechanisms of liver pyruvate kinase (LPYK) vs. skeletal muscle pyruvate kinase (M1PYK), framed within a two-ligand allosteric energy cycle description of allosteric regulation. Selective observations from other PYK homologues are included when relevant. The primary focus of this review is on functional data, while expressing caution regarding the interpretation of allosteric mechanisms based solely on available X-ray crystallographic structures. Additionally, this review considers types of data that are currently lacking for these two PYK homologues, highlighting potential techniques that could be valuable for evaluating the conservation of allosteric mechanisms among homologues. In particular, a hybrid tetramer technique that has been used to study bacterial phosphofructokinases 1 is summarized. Interestingly, despite a high degree of similarity (66.5% sequence identity) between the LPYK and rM1PYK proteins, the available functional comparisons do not provide strong evidence for conserved allosteric mechanisms. Lastly, we consider whether insights into native allosteric mechanisms are relevant to allosteric mechanisms associated with allosteric drug designs.
Collapse
Affiliation(s)
- Aron W Fenton
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Zoe A Hoffpauir
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Tyler A Martin
- San Antonio Uniformed Services Health Education Consortium, Fort Sam Houston, TX 78234, USA
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Audrey L Lamb
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Morse M, Navarro Roby F, Kinare M, McIsaac J, Williams MC, Beuning PJ. DNA damage alters binding conformations of E. coli single-stranded DNA-binding protein. Biophys J 2023; 122:3950-3958. [PMID: 37632138 PMCID: PMC10560665 DOI: 10.1016/j.bpj.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential cellular components, binding to transiently exposed regions of single-stranded DNA (ssDNA) with high affinity and sequence non-specificity to coordinate DNA repair and replication. Escherichia coli SSB (EcSSB) is a homotetramer that wraps variable lengths of ssDNA in multiple conformations (typically occupying either 65 or 35 nt), which is well studied across experimental conditions of substrate length, salt, pH, temperature, etc. In this work, we use atomic force microscopy to investigate the binding of SSB to individual ssDNA molecules. We introduce non-canonical DNA bases that mimic naturally occurring DNA damage, synthetic abasic sites, as well as a non-DNA linker into our experimental constructs at sites predicted to interact with EcSSB. By measuring the fraction of DNA molecules with EcSSB bound as well as the volume of protein bound per DNA molecule, we determine the protein binding affinity, cooperativity, and conformation. We find that, with only one damaged nucleotide, the binding of EcSSB is unchanged relative to its binding to undamaged DNA. In the presence of either two tandem abasic sites or a non-DNA spacer, however, the binding affinity associated with a single EcSSB tetramer occupying the full substrate in the 65-nt mode is greatly reduced. In contrast, the binding of two EcSSB tetramers, each in the 35-nt mode, is preserved. Changes in the binding and cooperative behaviors of EcSSB across these constructs can inform how genomic repair and replication processes may change as environmental damage accumulates in DNA.
Collapse
Affiliation(s)
- Michael Morse
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Francesco Navarro Roby
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Mansi Kinare
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - James McIsaac
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts.
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
3
|
Ajoge HO, Renner TM, Bélanger K, Greig M, Dankar S, Kohio HP, Coleman MD, Ndashimye E, Arts EJ, Langlois MA, Barr SD. Antiretroviral APOBEC3 cytidine deaminases alter HIV-1 provirus integration site profiles. Nat Commun 2023; 14:16. [PMID: 36627271 PMCID: PMC9832166 DOI: 10.1038/s41467-022-35379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
APOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. Low levels of deamination are believed to contribute to the genetic evolution of HIV-1, while intense catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total HIV-1 restriction. So far, little is known about how A3 cytosine deaminases might impact HIV-1 proviral DNA integration sites in human chromosomal DNA. Using a deep sequencing approach, we analyze the influence of catalytic active and inactive APOBEC3F and APOBEC3G on HIV-1 integration site selections. Here we show that DNA editing is detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 mutants decrease insertions into gene coding sequences and increase integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicates A3 as a host factor influencing HIV-1 integration site selection and also promotes what appears to be a more latent expression profile.
Collapse
Affiliation(s)
- Hannah O Ajoge
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Tyler M Renner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Greig
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hinissan P Kohio
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Macon D Coleman
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Emmanuel Ndashimye
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Eric J Arts
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Ottawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, ON, Canada.
| | - Stephen D Barr
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada.
| |
Collapse
|
4
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
5
|
Botvinnik A, Shivam P, Smith Y, Sharma G, Olshevsky U, Moshel O, Manevitch Z, Climent N, Oliva H, Britan-Rosich E, Kotler M. APOBEC3G rescues cells from the deleterious effects of DNA damage. FEBS J 2021; 288:6063-6077. [PMID: 33999509 DOI: 10.1111/febs.16025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (hA3G), a member of the APOBEC family, was described as an anti-HIV-1 restriction factor, deaminating reverse transcripts of the HIV-1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B-cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double-strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.
Collapse
Affiliation(s)
- Alexander Botvinnik
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Pushkar Shivam
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Gunjan Sharma
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Udy Olshevsky
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofra Moshel
- Core Research Facility, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zakhariya Manevitch
- Core Research Facility, Light Microscopy and Image Analysis Laboratory, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Nuria Climent
- Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | | | - Elena Britan-Rosich
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Moshe Kotler
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
6
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
7
|
Naufer MN, Morse M, Möller GB, McIsaac J, Rouzina I, Beuning PJ, Williams MC. Multiprotein E. coli SSB-ssDNA complex shows both stable binding and rapid dissociation due to interprotein interactions. Nucleic Acids Res 2021; 49:1532-1549. [PMID: 33434279 PMCID: PMC7897507 DOI: 10.1093/nar/gkaa1267] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB-ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | - James McIsaac
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Cicconi A, Micheli E, Raffa GD, Cacchione S. Atomic Force Microscopy Reveals that the Drosophila Telomere-Capping Protein Verrocchio Is a Single-Stranded DNA-Binding Protein. Methods Mol Biol 2021; 2281:241-263. [PMID: 33847963 DOI: 10.1007/978-1-0716-1290-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of biological samples with a nanometric resolution. Determination of the physical properties of biological molecules at a single-molecule level is achieved through topographic analysis of the sample adsorbed on a flat and smooth surface. AFM has been widely used for the structural analysis of nucleic acid-protein interactions, providing insights on binding specificity and stoichiometry of proteins forming complexes with DNA substrates. Analysis of single-stranded DNA-binding proteins by AFM requires specific single-stranded/double-stranded hybrid DNA molecules as substrates for protein binding. In this chapter we describe the protocol for AFM characterization of binding properties of Drosophila telomeric protein Ver using DNA constructs that mimic the structure of chromosome ends. We provide details on the methodology used, including the procedures for the generation of DNA substrates, the preparation of samples for AFM visualization, and the data analysis of AFM images. The presented procedure can be adapted for the structural studies of any single-stranded DNA-binding protein.
Collapse
Affiliation(s)
- Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy.
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy.
| |
Collapse
|
9
|
Maiti A, Myint W, Delviks-Frankenberry KA, Hou S, Kanai T, Balachandran V, Sierra Rodriguez C, Tripathi R, Kurt Yilmaz N, Pathak VK, Schiffer CA, Matsuo H. Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains. J Mol Biol 2020; 432:6042-6060. [PMID: 33098858 DOI: 10.1016/j.jmb.2020.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 Å and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90° relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn2+, yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wazo Myint
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tapan Kanai
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Chemistry, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | | | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Pan Y, Shlyakhtenko LS, Lyubchenko YL. High-speed atomic force microscopy directly visualizes conformational dynamics of the HIV Vif protein in complex with three host proteins. J Biol Chem 2020; 295:11995-12001. [PMID: 32587092 PMCID: PMC7443491 DOI: 10.1074/jbc.ra120.014442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Indexed: 11/06/2022] Open
Abstract
Vif (viral infectivity factor) is a protein that is essential for the replication of the HIV-1 virus. The key function of Vif is to disrupt the antiviral activity of host APOBEC3 (apolipoprotein B mRNA-editing enzyme catalytic subunit 3) proteins, which mutate viral nucleic acids. Inside the cell, Vif binds to the host cell proteins Elongin-C, Elongin-B, and core-binding factor subunit β, forming a four-protein complex called VCBC. The structure of VCBC-Cullin5 has recently been solved by X-ray crystallography, and, using molecular dynamics simulations, the dynamics of VCBC have been characterized. Here, we applied time-lapse high-speed atomic force microscopy to visualize the conformational changes of the VCBC complex. We determined the three most favorable conformations of this complex, which we identified as the triangle, dumbbell, and globular structures. Moreover, we characterized the dynamics of each of these structures. Our data revealed the very dynamic behavior of all of them, with the triangle and dumbbell structures being the most dynamic. These findings provide insight into the structure and dynamics of the VCBC complex and may support efforts to improve HIV treatment, because Vif is essential for virus survival in the cell.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
11
|
Morse M, Naufer MN, Feng Y, Chelico L, Rouzina I, Williams MC. HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA. eLife 2019; 8:e52649. [PMID: 31850845 PMCID: PMC6946564 DOI: 10.7554/elife.52649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunodeficiency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interaction. A3G binds ssDNA in multiple steps and in two distinct conformations, distinguished by degree of ssDNA contraction. A3G stabilizes formation of ssDNA loops, an ability inhibited by A3G oligomerization. Our data suggests A3G securely binds ssDNA through the NTD, while the CTD samples and potentially deaminates the substrate. Oligomerization of A3G stabilizes ssDNA binding but inhibits the CTD's search function. These processes explain A3G's ability to efficiently deaminate numerous sites across a 10,000 base viral genome during the reverse transcription process.
Collapse
Affiliation(s)
- Michael Morse
- Department of PhysicsNortheastern UniversityBostonUnited States
| | - M Nabuan Naufer
- Department of PhysicsNortheastern UniversityBostonUnited States
| | - Yuqing Feng
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonCanada
| | - Linda Chelico
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonCanada
| | - Ioulia Rouzina
- Department of Chemistry and BiochemistryOhio State UniversityColumbusUnited States
| | - Mark C Williams
- Department of PhysicsNortheastern UniversityBostonUnited States
| |
Collapse
|
12
|
Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, Riethoven JJM, Clarke JL, Stepchenkova EI, Petrosyan A. Post-ER Stress Biogenesis of Golgi Is Governed by Giantin. Cells 2019; 8:E1631. [PMID: 31847122 PMCID: PMC6953117 DOI: 10.3390/cells8121631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.
Collapse
Affiliation(s)
- Cole P. Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
| | - Alexander Y. Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
| | - Alexey V. Krasnoslobodtsev
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
- Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Jennifer L. Clarke
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583-0963, USA
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia;
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
13
|
Kumari N, Yadav S. Modulation of protein oligomerization: An overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:99-113. [DOI: 10.1016/j.pbiomolbio.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
|
14
|
Pan Y, Shlyakhtenko LS, Lyubchenko YL. Insight into dynamics of APOBEC3G protein in complexes with DNA assessed by high speed AFM. NANOSCALE ADVANCES 2019; 1:4016-4024. [PMID: 33313478 PMCID: PMC7731963 DOI: 10.1039/c9na00457b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/03/2019] [Indexed: 06/12/2023]
Abstract
APOBEC3G (A3G) is a single-stranded DNA (ssDNA) binding protein that restricts the HIV virus by deamination of dC to dU during reverse transcription of the viral genome. A3G has two zing-binding domains: the N-terminal domain (NTD), which efficiently binds ssDNA, and the C-terminal catalytic domain (CTD), which supports deaminase activity of A3G. Until now, structural information on A3G has lacked, preventing elucidation of the molecular mechanisms underlying its interaction with ssDNA and deaminase activity. We have recently built a computational model for the full-length A3G monomer and validated its structure by data obtained from time-lapse High-Speed Atomic Force Microscopy (HS AFM). Here time-lapse HS AFM was applied to directly visualize the structure and dynamics of A3G in complexes with ssDNA. Our results demonstrate a highly dynamic structure of A3G, where two domains of the protein fluctuate between compact globular and extended dumbbell structures. Quantitative analysis of our data revealed a substantial increase in the number of A3G dumbbell structures in the presence of the DNA substrate, suggesting the interaction of A3G with the ssDNA substrate stabilizes this dumbbell structure. Based on these data, we proposed a model explaining the interaction of globular and dumbbell structures of A3G with ssDNA and suggested a possible role of the dumbbell structure in A3G function.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical CenterOmahaNebraska 68198-6025USA
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical CenterOmahaNebraska 68198-6025USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical CenterOmahaNebraska 68198-6025USA
| |
Collapse
|
15
|
Fukuda H, Li S, Sardo L, Smith JL, Yamashita K, Sarca AD, Shirakawa K, Standley DM, Takaori-Kondo A, Izumi T. Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association. Front Cell Infect Microbiol 2019; 9:129. [PMID: 31165049 PMCID: PMC6536580 DOI: 10.3389/fcimb.2019.00129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
APOBEC3G (A3G) is a cellular protein that inhibits HIV-1 infection through virion incorporation. The interaction of the A3G N-terminal domain (NTD) with RNA is essential for A3G incorporation in the HIV-1 virion. The interaction between A3G-NTD and RNA is not completely understood. The A3G-NTD is also recognized by HIV-1 Viral infectivity factor (Vif) and A3G-Vif binding leads to A3G degradation. Therefore, the A3G-Vif interaction is a target for the development of antiviral therapies that block HIV-1 replication. However, targeting the A3G-Vif interactions could disrupt the A3G-RNA interactions that are required for A3G's antiviral activity. To better understand A3G-RNA binding, we generated in silico docking models to simulate the RNA-binding propensity of A3G-NTD. We simulated the A3G-NTD residues with high RNA-binding propensity, experimentally validated our prediction by testing A3G-NTD mutations, and identified structural determinants of A3G-RNA binding. In addition, we found a novel amino acid residue, I26 responsible for RNA interaction. The new structural insights provided here will facilitate the design of pharmaceuticals that inhibit A3G-Vif interactions without negatively impacting A3G-RNA interactions.
Collapse
Affiliation(s)
- Hirofumi Fukuda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Songling Li
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, Philadelphia, PA, United States
| | - Jessica L Smith
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kazuo Yamashita
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Anamaria D Sarca
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daron M Standley
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taisuke Izumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Pan Y, Zagorski K, Shlyakhtenko LS, Lyubchenko YL. The Enzymatic Activity of APOBE3G Multimers. Sci Rep 2018; 8:17953. [PMID: 30560880 PMCID: PMC6298963 DOI: 10.1038/s41598-018-36372-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022] Open
Abstract
APOBEC3G (A3G) belongs to the family of cytosine deaminases that play an important role in the innate immune response. Similar to other, two-domain members of the APOBEC family, A3G is prone to concentration-dependent oligomerization, which is an integral for its function in the cell. It is shown that oligomerization of A3G is related to the packing mechanism into virus particle and, is critical for the so-called roadblock model during reverse transcription of proviral ssDNA. The role of oligomerization for deaminase activity of A3G is widely discussed in the literature; however, its relevance to deaminase activity for different oligomeric forms of A3G remains unclear. Here, using Atomic Force Microscopy, we directly visualized A3G-ssDNA complexes, determined their yield and stoichiometry and in parallel, using PCR assay, measured the deaminase activity of these complexes. Our data demonstrate a direct correlation between the total yield of A3G-ssDNA complexes and their total deaminase activity. Using these data, we calculated the relative deaminase activity for each individual oligomeric state of A3G in the complex. Our results show not only similar deaminase activity for monomer, dimer and tetramer of A3G in the complex, but indicate that larger oligomers of A3G retain their deaminase activity.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025, USA
| | - Karen Zagorski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025, USA.
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025, USA.
| |
Collapse
|
17
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
18
|
The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Mol Cell 2017; 69:75-86.e9. [PMID: 29290613 DOI: 10.1016/j.molcel.2017.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 12/13/2017] [Indexed: 01/23/2023]
Abstract
Human APOBEC3H and homologous single-stranded DNA cytosine deaminases are unique to mammals. These DNA-editing enzymes function in innate immunity by restricting the replication of viruses and transposons. APOBEC3H also contributes to cancer mutagenesis. Here, we address the fundamental nature of RNA in regulating human APOBEC3H activities. APOBEC3H co-purifies with RNA as an inactive protein, and RNase A treatment enables strong DNA deaminase activity. RNA-binding-defective mutants demonstrate clear separation of function by becoming DNA hypermutators. Biochemical and crystallographic data demonstrate a mechanism in which double-stranded RNA mediates enzyme dimerization. Additionally, APOBEC3H separation-of-function mutants show that RNA binding is required for cytoplasmic localization, packaging into HIV-1 particles, and antiviral activity. Overall, these results support a model in which structured RNA negatively regulates the potentially harmful DNA deamination activity of APOBEC3H while, at the same time, positively regulating its antiviral activity.
Collapse
|
19
|
Adolph MB, Love RP, Feng Y, Chelico L. Enzyme cycling contributes to efficient induction of genome mutagenesis by the cytidine deaminase APOBEC3B. Nucleic Acids Res 2017; 45:11925-11940. [PMID: 28981865 PMCID: PMC5714209 DOI: 10.1093/nar/gkx832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The single-stranded DNA cytidine deaminases APOBEC3B, APOBEC3H haplotype I, and APOBEC3A can contribute to cancer through deamination of cytosine to form promutagenic uracil in genomic DNA. The enzymes must access single-stranded DNA during the dynamic processes of DNA replication or transcription, but the enzymatic mechanisms enabling this activity are not known. To study this, we developed a method to purify full length APOBEC3B and characterized it in comparison to APOBEC3A and APOBEC3H on substrates relevant to cancer mutagenesis. We found that the ability of an APOBEC3 to cycle between DNA substrates determined whether it was able to efficiently deaminate single-stranded DNA produced by replication and single-stranded DNA bound by replication protein A (RPA). APOBEC3 deaminase activity during transcription had a size limitation that inhibited APOBEC3B tetramers, but not APOBEC3A monomers or APOBEC3H dimers. Altogether, the data support a model in which the availability of single-stranded DNA is necessary, but alone not sufficient for APOBEC3-induced mutagenesis in cells because there is also a dependence on the inherent biochemical properties of the enzymes. The biochemical properties identified in this study can be used to measure the mutagenic potential of other APOBEC enzymes in the genome.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
Gorle S, Pan Y, Sun Z, Shlyakhtenko LS, Harris RS, Lyubchenko YL, Vuković L. Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS CENTRAL SCIENCE 2017; 3:1180-1188. [PMID: 29202020 PMCID: PMC5704289 DOI: 10.1021/acscentsci.7b00346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 05/29/2023]
Abstract
APOBEC3G (A3G) is a restriction factor that provides innate immunity against HIV-1 in the absence of viral infectivity factor (Vif) protein. However, structural information about A3G, which can aid in unraveling the mechanisms that govern its interactions and define its antiviral activity, remains unknown. Here, we built a computer model of a full-length A3G using docking approaches and molecular dynamics simulations, based on the available X-ray and NMR structural data for the two protein domains. The model revealed a large-scale dynamics of the A3G monomer, as the two A3G domains can assume compact forms or extended dumbbell type forms with domains visibly separated from each other. To validate the A3G model, we performed time-lapse high-speed atomic force microscopy (HS-AFM) experiments enabling us to get images of a fully hydrated A3G and to directly visualize its dynamics. HS-AFM confirmed that A3G exists in two forms, a globular form (∼84% of the time) and a dumbbell form (∼16% of the time), and can dynamically switch from one form to the other. The obtained HS-AFM results are in line with the computer modeling, which demonstrates a similar distribution between two forms. Furthermore, our simulations capture the complete process of A3G switching from the DNA-bound state to the closed state. The revealed dynamic nature of monomeric A3G could aid in target recognition including scanning for cytosine locations along the DNA strand and in interactions with viral RNA during packaging into HIV-1 particles.
Collapse
Affiliation(s)
- Suresh Gorle
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Yangang Pan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Zhiqiang Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luda S. Shlyakhtenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Reuben S. Harris
- Department
of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular
Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Howard
Hughes Medical Institute, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuri L. Lyubchenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Lela Vuković
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| |
Collapse
|
21
|
Dimerization regulates both deaminase-dependent and deaminase-independent HIV-1 restriction by APOBEC3G. Nat Commun 2017; 8:597. [PMID: 28928403 PMCID: PMC5605669 DOI: 10.1038/s41467-017-00501-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
APOBEC3G (A3G) is a human enzyme that inhibits human immunodeficiency virus type 1 (HIV-1) infectivity, in the absence of the viral infectivity factor Vif, through deoxycytidine deamination and a deamination-independent mechanism. A3G converts from a fast to a slow binding state through oligomerization, which suggests that large A3G oligomers could block HIV-1 reverse transcriptase-mediated DNA synthesis, thereby inhibiting HIV-1 replication. However, it is unclear how the small number of A3G molecules found in the virus could form large oligomers. Here we measure the single-stranded DNA binding and oligomerization kinetics of wild-type and oligomerization-deficient A3G, and find that A3G first transiently binds DNA as a monomer. Subsequently, A3G forms N-terminal domain-mediated dimers, whose dissociation from DNA is reduced and their deaminase activity inhibited. Overall, our results suggest that the A3G molecules packaged in the virion first deaminate viral DNA as monomers before dimerizing to form multiple enzymatically deficient roadblocks that may inhibit reverse transcription. APOBEC3G inhibits HIV-1 viral replication via catalytic and non-catalytic processes. Here the authors show that APOBEC3G binds single-stranded DNA as an active deaminase monomer, subsequently forming catalytic-inactive dimers that block reverse transcriptase-mediated DNA synthesis.
Collapse
|
22
|
Beckwitt EC, Kong M, Van Houten B. Studying protein-DNA interactions using atomic force microscopy. Semin Cell Dev Biol 2017; 73:220-230. [PMID: 28673677 DOI: 10.1016/j.semcdb.2017.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Atomic force microscopy (AFM) has made significant contributions to the study of protein-DNA interactions by making it possible to topographically image biological samples. A single protein-DNA binding reaction imaged by AFM can reveal protein binding specificity and affinity, protein-induced DNA bending, and protein binding stoichiometry. Changes in DNA structure, complex conformation, and cooperativity, can also be analyzed. In this review we highlight some important examples in the literature and discuss the advantages and limitations of these measurements. We also discuss important advances in technology that will facilitate the progress of AFM in the future.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Muwen Kong
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
23
|
Polevoda B, Joseph R, Friedman AE, Bennett RP, Greiner R, De Zoysa T, Stewart RA, Smith HC. DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. J Biol Chem 2017; 292:8642-8656. [PMID: 28381554 DOI: 10.1074/jbc.m116.767889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181-194, 314-320, and 345-374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity.
Collapse
Affiliation(s)
- Bogdan Polevoda
- From the Departments of Biochemistry and Biophysics and.,Center for RNA Biology, and
| | | | | | | | | | | | | | - Harold C Smith
- From the Departments of Biochemistry and Biophysics and .,Center for RNA Biology, and.,OyaGen, Inc., Rochester, New York 14623.,Center for AIDS Research, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
24
|
Pan Y, Sun Z, Maiti A, Kanai T, Matsuo H, Li M, Harris RS, Shlyakhtenko LS, Lyubchenko YL. Nanoscale Characterization of Interaction of APOBEC3G with RNA. Biochemistry 2017; 56:1473-1481. [PMID: 28029777 DOI: 10.1021/acs.biochem.6b01189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of the HIV-1 virus in the absence of viral infectivity factor (Vif). The molecular mechanism of A3G antiviral activity is primarily attributed to deamination of single-stranded DNA (ssDNA); however, the nondeamination mechanism also contributes to HIV-1 restriction. The interaction of A3G with ssDNA and RNA is required for its antiviral activity. Here we used atomic force microscopy to directly visualize A3G-RNA and A3G-ssDNA complexes and compare them to each other. Our results showed that A3G in A3G-RNA complexes exists primarily in monomeric-dimeric states, similar to its stoichiometry in complexes with ssDNA. New A3G-RNA complexes in which A3G binds to two RNA molecules were identified. These data suggest the existence of two separate RNA binding sites on A3G. Such complexes were not observed with ssDNA substrates. Time-lapse high-speed atomic force microscopy was applied to characterize the dynamics of the complexes. The data revealed that the two RNA binding sites have different affinities for A3G. On the basis of the obtained results, a model for the interaction of A3G with RNA is proposed.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Atanu Maiti
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. , Advanced Technology Research Facility, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Tapan Kanai
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. , Advanced Technology Research Facility, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Hiroshi Matsuo
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. , Advanced Technology Research Facility, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Ming Li
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Howard Hughes Medical Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
25
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
26
|
Bouzidi MS, Caval V, Suspène R, Hallez C, Pineau P, Wain-Hobson S, Vartanian JP. APOBEC3DE Antagonizes Hepatitis B Virus Restriction Factors APOBEC3F and APOBEC3G. J Mol Biol 2016; 428:3514-28. [PMID: 27289067 DOI: 10.1016/j.jmb.2016.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/05/2023]
Abstract
The APOBEC3 locus consists of seven genes (A3A-A3C, A3DE, A3F-A3H) that encode DNA cytidine deaminases. These enzymes deaminate single-stranded DNA, the result being DNA peppered with CG →TA mutations preferentially in the context of 5'TpC with the exception of APOBEC3G (A3G), which prefers 5'CpC dinucleotides. Hepatitis B virus (HBV) DNA is vulnerable to genetic editing by APOBEC3 cytidine deaminases, A3G being a major restriction factor. APOBEC3DE (A3DE) stands out in that it is catalytically inactive due to a fixed Tyr320Cys substitution in the C-terminal domain. As A3DE is closely related to A3F and A3G, which can form homo- and heterodimers and multimers, the impact of A3DE on HBV replication via modulation of other APOBEC3 restriction factors was investigated. A3DE binds to itself, A3F, and A3G and antagonizes A3F and, to a lesser extent, A3G restriction of HBV replication. A3DE suppresses A3F and A3G from HBV particles, leading to enhanced HBV replication. Ironically, while being part of a cluster of innate restriction factors, the A3DE phenotype is proviral. As the gorilla genome encodes the same Tyr320Cys substitution, this proviral phenotype seems to have been selected for.
Collapse
Affiliation(s)
- Mohamed S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Camille Hallez
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Pascal Pineau
- Nuclear Organization and Oncogenesis Unit, Institut Pasteur, INSERM U579, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
27
|
The APOBEC Protein Family: United by Structure, Divergent in Function. Trends Biochem Sci 2016; 41:578-594. [PMID: 27283515 DOI: 10.1016/j.tibs.2016.05.001] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.
Collapse
|
28
|
Shlyakhtenko LS, Dutta S, Li M, Harris RS, Lyubchenko YL. Single-Molecule Force Spectroscopy Studies of APOBEC3A-Single-Stranded DNA Complexes. Biochemistry 2016; 55:3102-6. [PMID: 27182892 DOI: 10.1021/acs.biochem.6b00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
APOBEC3A (A3A) inhibits the replication of a range of viruses and transposons and might also play a role in carcinogenesis. It is a single-domain deaminase enzyme that interacts with single-stranded DNA (ssDNA) and converts cytidines to uridines within specific trinucleotide contexts. Although there is abundant information that describes the potential biological activities of A3A, the interplay between binding ssDNA and sequence-specific deaminase activity remains controversial. Using a single-molecule atomic force microscopy spectroscopy approach developed by Shlyakhtenko et al. [(2015) Sci. Rep. 5, 15648], we determine the stability of A3A in complex with different ssDNA sequences. We found that the strength of the complex is sequence-dependent, with more stable complexes formed with deaminase-specific sequences. A correlation between the deaminase activity of A3A and the complex strength was identified. The ssDNA binding properties of A3A and those for A3G are also compared and discussed.
Collapse
Affiliation(s)
- Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, Nebraska 68198-6000, United States
| | - Samrat Dutta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, Nebraska 68198-6000, United States
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Howard Hughes Medical Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, Nebraska 68198-6000, United States
| |
Collapse
|
29
|
Polevoda B, McDougall WM, Bennett RP, Salter JD, Smith HC. Structural and functional assessment of APOBEC3G macromolecular complexes. Methods 2016; 107:10-22. [PMID: 26988126 DOI: 10.1016/j.ymeth.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
There are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells. In both cases, formation of higher-order structures driven by APOBEC protein-protein interactions and binding to RNA and/or single stranded DNA are integral to their function. In some circumstances, these interactions are regulatory and modulate APOBEC activities. We are just beginning to understand how macromolecular interactions drive processes such as APOBEC subcellular compartmentalization, formation of holoenzyme complexes, gene targeting, foreign DNA restriction, anti-retroviral activity, formation of ribonucleoprotein particles and APOBEC degradation. Protein-protein and protein-nucleic acid cross-linking methods coupled with mass spectrometry, electrophoretic mobility shift assays, glycerol gradient sedimentation, fluorescence anisotropy and APOBEC deaminase assays are enabling mapping of interacting surfaces that are essential for these functions. The goal of this methods review is through example of our research on APOBEC3G, describe the application of cross-linking methods to characterize and quantify macromolecular interactions and their functional implications. Given the homology in structure and function, it is proposed that these methods will be generally applicable to the discovery process for other APOBEC and RNA and DNA editing and modifying proteins.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - William M McDougall
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Ryan P Bennett
- OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Jason D Salter
- OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Harold C Smith
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Wilmot Cancer Institute, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA; OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA; Center for AIDS Research, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
30
|
Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A 2016; 113:E1545-54. [PMID: 26929374 DOI: 10.1073/pnas.1601678113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.
Collapse
|
31
|
Abstract
This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein-DNA complexes, including recent advances in the visualization of protein-DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein-DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein-DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described.
Collapse
Affiliation(s)
- Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| |
Collapse
|
32
|
Marx A, Galilee M, Alian A. Zinc enhancement of cytidine deaminase activity highlights a potential allosteric role of loop-3 in regulating APOBEC3 enzymes. Sci Rep 2015; 5:18191. [PMID: 26678087 PMCID: PMC4683357 DOI: 10.1038/srep18191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/16/2015] [Indexed: 12/25/2022] Open
Abstract
The strong association of APOBEC3 cytidine deaminases with somatic mutations leading to cancers accentuates the importance of their tight intracellular regulation to minimize cellular transformations. We reveal a novel allosteric regulatory mechanism of APOBEC3 enzymes showing that APOBEC3G and APOBEC3A coordination of a secondary zinc ion, reminiscent to ancestral deoxycytidylate deaminases, enhances deamination activity. Zinc binding is pinpointed to loop-3 which whilst highly variable harbors a catalytically essential and spatially conserved asparagine at its N-terminus. We suggest that loop-3 may play a general role in allosterically tuning the activity of zinc-dependent cytidine deaminase family members.
Collapse
Affiliation(s)
- Ailie Marx
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Meytal Galilee
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| |
Collapse
|
33
|
Polevoda B, McDougall WM, Tun BN, Cheung M, Salter JD, Friedman AE, Smith HC. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates. Nucleic Acids Res 2015; 43:9434-45. [PMID: 26424853 PMCID: PMC4627094 DOI: 10.1093/nar/gkv970] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181-194 in the N-terminus and aa 314-320 and 345-374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15-29, 41-52 and 83-99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - William M McDougall
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Bradley N Tun
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael Cheung
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jason D Salter
- OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Alan E Friedman
- Environmental Health Sciences Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Harold C Smith
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA Environmental Health Sciences Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA Center for AIDS Research, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
34
|
APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies. Sci Rep 2015; 5:15648. [PMID: 26503602 PMCID: PMC4621513 DOI: 10.1038/srep15648] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/01/2015] [Indexed: 11/17/2022] Open
Abstract
APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.
Collapse
|
35
|
Bhattacharjee S, Brayden DJ. Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine (Lond) 2015; 10:2289-305. [DOI: 10.2217/nnm.15.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current nanotoxicology research suffers from suboptimal in vitro models, lack of in vitro–in vivo correlations, variability within in vitro protocols, deficits in both material purity and physicochemical characterization. Reliable nanomaterial toxicity and mechanistic insights are required for health and toxicity risk assessments. Much in vitro toxicological data is inconclusive in designating whether nanomaterials for drug delivery and medical device implants are truly safe. A critique is presented to analyze the interface between toxicology and nanopharmaceuticals. Deficiencies of existing practices in toxicology are reviewed and useful emerging techniques (e.g., lab-on-a-chip, tissue engineering, atomic force microscopy, high-content analysis) are highlighted. Cross-fertilization between disciplines will aid development of biocompatible delivery and implant platforms while improvements are being suggested for better translation of nanotoxicology.
Collapse
Affiliation(s)
| | - David J Brayden
- Conway Institute, University College Dublin (UCD), Dublin, Ireland
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
36
|
Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT. SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 2015; 43:6486-99. [PMID: 26101257 PMCID: PMC4513882 DOI: 10.1093/nar/gkv633] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 restriction factor SAMHD1 is a tetrameric enzyme activated by guanine nucleotides with dNTP triphosphate hydrolase activity (dNTPase). In addition to this established activity, there have been a series of conflicting reports as to whether the enzyme also possesses single-stranded DNA and/or RNA 3′-5′ exonuclease activity. SAMHD1 was purified using three chromatography steps, over which the DNase activity was largely separated from the dNTPase activity, but the RNase activity persisted. Surprisingly, we found that catalytic and nucleotide activator site mutants of SAMHD1 with no dNTPase activity retained the exonuclease activities. Thus, the exonuclease activity cannot be associated with any known dNTP binding site. Monomeric SAMHD1 was found to bind preferentially to single-stranded RNA, while the tetrameric form required for dNTPase action bound weakly. ssRNA binding, but not ssDNA, induces higher-order oligomeric states that are distinct from the tetrameric form that binds dNTPs. We conclude that the trace exonuclease activities detected in SAMHD1 preparations arise from persistent contaminants that co-purify with SAMHD1 and not from the HD active site. An in vivo model is suggested where SAMHD1 alternates between the mutually exclusive functions of ssRNA binding and dNTP hydrolysis depending on dNTP pool levels and the presence of viral ssRNA.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
37
|
Bohn MF, Shandilya SMD, Silvas TV, Nalivaika EA, Kouno T, Kelch BA, Ryder SP, Kurt-Yilmaz N, Somasundaran M, Schiffer CA. The ssDNA Mutator APOBEC3A Is Regulated by Cooperative Dimerization. Structure 2015; 23:903-911. [PMID: 25914058 DOI: 10.1016/j.str.2015.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/11/2015] [Accepted: 03/19/2015] [Indexed: 01/27/2023]
Abstract
Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and specificity is elucidated. We find that specific binding of single-stranded DNA is regulated by the cooperative dimerization of APOBEC3A. The crystal structure elucidates this homodimer as a symmetric domain swap of the N-terminal residues. This dimer interface provides insights into how cooperative protein-protein interactions may affect function in the APOBEC3 enzymes and provides a potential scaffold for strategies aimed at reducing their mutation load.
Collapse
Affiliation(s)
- Markus-Frederik Bohn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA
| | - Shivender M D Shandilya
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA
| | - Tania V Silvas
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA
| | - Takahide Kouno
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA; Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA
| | - Mohan Somasundaran
- Department of Pediatrics and Program in Molecular Medicine, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, 364 Plantation Street, MA 01605, USA.
| |
Collapse
|
38
|
Mitra M, Singer D, Mano Y, Hritz J, Nam G, Gorelick RJ, Byeon IJL, Gronenborn AM, Iwatani Y, Levin JG. Sequence and structural determinants of human APOBEC3H deaminase and anti-HIV-1 activities. Retrovirology 2015; 12:3. [PMID: 25614027 PMCID: PMC4323217 DOI: 10.1186/s12977-014-0130-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Human APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays. RESULTS We have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5' T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (-) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type. CONCLUSIONS The molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.
Collapse
Affiliation(s)
- Mithun Mitra
- />Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
- />Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Dustin Singer
- />Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| | - Yu Mano
- />Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001 Japan
| | - Jozef Hritz
- />Department of Structural Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261 USA
- />Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh Medical School, Pittsburgh, PA 15261 USA
- />Department of Structural Biology, CEITEC, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Gabriel Nam
- />Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| | - Robert J Gorelick
- />AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201 USA
| | - In-Ja L Byeon
- />Department of Structural Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261 USA
- />Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh Medical School, Pittsburgh, PA 15261 USA
| | - Angela M Gronenborn
- />Department of Structural Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261 USA
- />Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh Medical School, Pittsburgh, PA 15261 USA
| | - Yasumasa Iwatani
- />Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001 Japan
| | - Judith G Levin
- />Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| |
Collapse
|
39
|
Apolonia L, Schulz R, Curk T, Rocha P, Swanson CM, Schaller T, Ule J, Malim MH. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1. PLoS Pathog 2015; 11:e1004609. [PMID: 25590131 PMCID: PMC4295846 DOI: 10.1371/journal.ppat.1004609] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022] Open
Abstract
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G) and APOBEC3F (A3F), act as potent human immunodeficiency virus type-1 (HIV-1) restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC) region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA) and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC) fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.
Collapse
Affiliation(s)
- Luis Apolonia
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Paula Rocha
- Department of Statistical Science, University College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Torsten Schaller
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Jernej Ule
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Michael H. Malim
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
40
|
Baig TT, Feng Y, Chelico L. Determinants of efficient degradation of APOBEC3 restriction factors by HIV-1 Vif. J Virol 2014; 88:14380-95. [PMID: 25275135 PMCID: PMC4249154 DOI: 10.1128/jvi.02484-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/29/2014] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The APOBEC3 deoxycytidine deaminases can restrict the replication of HIV-1 in cell culture to differing degrees. The effects of APOBEC3 enzymes are largely suppressed by HIV-1 Vif that interacts with host proteins to form a Cullin5-Ring E3 ubiquitin ligase that induces (48)K-linked polyubiquitination (poly-Ub) and proteasomal degradation of APOBEC3 enzymes. Vif variants have differing abilities to induce degradation of APOBEC3 enzymes and the underlying biochemical mechanisms for these differences is not fully understood. We hypothesized that by characterizing the interaction of multiple APOBEC3 enzymes and Vif variants we could identify common features that resulted in Vif-mediated degradation and further define the determinants required for efficient Vif-mediated degradation of APOBEC3 enzymes. We used Vifs from HIV-1 NL4-3 (IIIB) and HXB2 to characterize their induced degradation of and interaction with APOBEC3G, APOBEC3G D128K, APOBEC3H, and APOBEC3B in 293T cells. We quantified the APOBEC3G-Vif and APOBEC3H-Vif interaction strengths in vitro using rotational anisotropy. Our biochemical and cellular analyses of the interactions support a model in which the degradation efficiency of VifIIIB and VifHXB2 correlated with both the binding strength of the APOBEC3-Vif interaction and the APOBEC3-Vif interface, which differs for APOBEC3G and APOBEC3H. Notably, Vif bound to APOBEC3H and APOBEC3B in the natural absence of Vif-induced degradation and the interaction resulted in (63)K-linked poly-Ub of APOBEC3H and APOBEC3B, demonstrating additional functionality of the APOBEC3-Vif interaction apart from induction of proteasomal degradation. IMPORTANCE APOBEC3 enzymes can potently restrict the replication of HIV-1 in the absence of HIV-1 Vif. Vif suppresses APOBEC3 action by inducing their degradation through a direct interaction with APOBEC3 enzymes and other host proteins. Vif variants from different HIV-1 strains have different effects on APOBEC3 enzymes. We used differing Vif degradation capacities of two Vif variants and various APOBEC3 enzymes with differential sensitivities to Vif to delineate determinants of the APOBEC3-Vif interaction that are required for inducing efficient degradation. Using a combined biochemical and cellular approach we identified that the strength of the APOBEC3-Vif binding interaction and the APOBEC3-Vif interface are determinants for degradation efficiency. Our results highlight the importance of using Vif variants with different degradation potential when delineating mechanisms of Vif-induced APOBEC3 degradation and identify features important for consideration in the development of HIV-1 therapies that disrupt the APOBEC3-Vif interaction.
Collapse
Affiliation(s)
- Tayyba T Baig
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
41
|
Shandilya SMD, Bohn MF, Schiffer CA. A computational analysis of the structural determinants of APOBEC3's catalytic activity and vulnerability to HIV-1 Vif. Virology 2014; 471-473:105-16. [PMID: 25461536 PMCID: PMC4857191 DOI: 10.1016/j.virol.2014.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/23/2022]
Abstract
APOBEC3s (A3) are Zn(2+) dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively charged Vif. Additionally, catalytically active A3s share a positively charged groove near the Zn(2+) coordinating active site, which may accommodate the negatively charged polynucleotide substrate. Our findings suggest surface electrostatics, as well as the spatial extent of substrate accommodating region, are critical determinants of substrate and Vif binding across A3 proteins with implications for anti-retroviral and anti-cancer therapeutic design.
Collapse
Affiliation(s)
- Shivender M D Shandilya
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Markus-Frederik Bohn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Feng Y, Baig TT, Love RP, Chelico L. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front Microbiol 2014; 5:450. [PMID: 25206352 PMCID: PMC4144255 DOI: 10.3389/fmicb.2014.00450] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Tayyba T Baig
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
43
|
Shlyakhtenko LS, Lushnikov AJ, Li M, Harris RS, Lyubchenko YL. Interaction of APOBEC3A with DNA assessed by atomic force microscopy. PLoS One 2014; 9:e99354. [PMID: 24905100 PMCID: PMC4048275 DOI: 10.1371/journal.pone.0099354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022] Open
Abstract
The APOBEC3 family of DNA cytosine deaminases functions to block the spread of endogenous retroelements and retroviruses including HIV-1. Potency varies among family members depending on the type of parasitic substrate. APOBEC3A (A3A) is unique among the human enzymes in that it is expressed predominantly in myeloid lineage cell types, it is strongly induced by innate immune agonists such as type 1 interferon, and it has the capacity to accommodate both normal and 5-methyl cytosine nucleobases. Here we apply atomic force microscopy (AFM) to characterize the interaction between A3A and single- and double-stranded DNA using a hybrid DNA approach in which a single-stranded region is flanked by defined length duplexes. AFM image analyses reveal A3A binding to single-stranded DNA, and that this interaction becomes most evident (∼80% complex yield) at high protein-to-DNA ratios (at least 100∶1). A3A is predominantly monomeric when bound to single-stranded DNA, and it is also monomeric in solution at concentrations as high as 50 nM. These properties agree well with recent, biochemical, biophysical, and structural studies. However, these characteristics contrast with those of the related enzyme APOBEC3G, which in similar assays can exist as a monomer but tends to form oligomers in a concentration-dependent manner. These AFM data indicate that A3A has intrinsic biophysical differences that distinguish it from APOBEC3G. The potential relationships between these properties and biological functions in innate immunity are discussed.
Collapse
Affiliation(s)
- Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alexander J. Lushnikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
44
|
Nowarski R, Prabhu P, Kenig E, Smith Y, Britan-Rosich E, Kotler M. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element. J Mol Biol 2014; 426:2840-53. [PMID: 24859335 DOI: 10.1016/j.jmb.2014.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription.
Collapse
Affiliation(s)
- Roni Nowarski
- Department of Pathology and Lautenberg Center for General and Tumor Immunology, Jerusalem 91120, Israel
| | - Ponnandy Prabhu
- Department of Pathology and Lautenberg Center for General and Tumor Immunology, Jerusalem 91120, Israel
| | - Edan Kenig
- Department of Pathology and Lautenberg Center for General and Tumor Immunology, Jerusalem 91120, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Elena Britan-Rosich
- Department of Pathology and Lautenberg Center for General and Tumor Immunology, Jerusalem 91120, Israel
| | - Moshe Kotler
- Department of Pathology and Lautenberg Center for General and Tumor Immunology, Jerusalem 91120, Israel.
| |
Collapse
|
45
|
Aydin H, Taylor MW, Lee JE. Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 2014; 22:668-84. [PMID: 24657093 DOI: 10.1016/j.str.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Human APOBEC3 (A3) proteins are host-encoded intrinsic restriction factors that inhibit the replication of many retroviral pathogens. Restriction is believed to occur as a result of the DNA cytosine deaminase activity of the A3 proteins; this activity converts cytosines into uracils in single-stranded DNA retroviral replication intermediates. A3 proteins are also equipped with deamination-independent means to restrict retroviruses that work cooperatively with deamination-dependent restriction pathways. A3 proteins substantially bolster the intrinsic immune system by providing a powerful block to the transmission of retroviral pathogens; however, most retroviruses are able to subvert this replicative restriction in their natural host. HIV-1, for instance, evades A3 proteins through the activity of its accessory protein Vif. Here, we summarize data from recent A3 structural and functional studies to provide perspectives into the interactions between cellular A3 proteins and HIV-1 macromolecules throughout the viral replication cycle.
Collapse
Affiliation(s)
- Halil Aydin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew W Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
46
|
Prohaska KM, Bennett RP, Salter JD, Smith HC. The multifaceted roles of RNA binding in APOBEC cytidine deaminase functions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:493-508. [PMID: 24664896 DOI: 10.1002/wrna.1226] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 01/06/2023]
Abstract
Cytidine deaminases have important roles in the regulation of nucleoside/deoxynucleoside pools for DNA and RNA synthesis. The APOBEC family of cytidine deaminases (named after the first member of the family that was described, Apolipoprotein B mRNA Editing Catalytic Subunit 1, also known as APOBEC1 or A1) is a fascinating group of mutagenic proteins that use RNA and single-stranded DNA (ssDNA) as substrates for their cytidine or deoxycytidine deaminase activities. APOBEC proteins and base-modification nucleic acid editing have been the subject of numerous publications, reviews, and speculation. These proteins play diverse roles in host cell defense, protecting cells from invading genetic material, enabling the acquired immune response to antigens and changing protein expression at the level of the genetic code in mRNA or DNA. The amazing power these proteins have for interphase cell functions relies on structural and biochemical properties that are beginning to be understood. At the same time, the substrate selectivity of each member in the family and their regulation remains to be elucidated. This review of the APOBEC family will focus on an open question in regulation, namely what role the interactions of these proteins with RNA have in editing substrate recognition or allosteric regulation of DNA mutagenic and host-defense activities.
Collapse
|
47
|
Li J, Chen Y, Li M, Carpenter MA, McDougle RM, Luengas EM, Macdonald PJ, Harris RS, Mueller JD. APOBEC3 multimerization correlates with HIV-1 packaging and restriction activity in living cells. J Mol Biol 2014; 426:1296-307. [PMID: 24361275 PMCID: PMC3977201 DOI: 10.1016/j.jmb.2013.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022]
Abstract
APOBEC3G belongs to a family of DNA cytosine deaminases that are involved in the restriction of a broad number of retroviruses including human immunodeficiency virus type 1 (HIV-1). Prior studies have identified two distinct mechanistic steps in Vif-deficient HIV-1 restriction: packaging into virions and deaminating viral cDNA. APOBEC3A, for example, although highly active, is not packaged and is therefore not restrictive. APOBEC3G, on the other hand, although having weaker enzymatic activity, is packaged into virions and is strongly restrictive. Although a number of studies have described the propensity for APOBEC3 oligomerization, its relevance to HIV-1 restriction remains unclear. Here, we address this problem by examining APOBEC3 oligomerization in living cells using molecular brightness analysis. We find that APOBEC3G forms high-order multimers as a function of protein concentration. In contrast, APOBEC3A, APOBEC3C and APOBEC2 are monomers at all tested concentrations. Among other members of the APOBEC3 family, we show that the multimerization propensities of APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3H (haplotype II) bear more resemblance to APOBEC3G than to APOBEC3A/3C/2. Prior studies have shown that all of these multimerizing APOBEC3 proteins, but not the monomeric family members, have the capacity to package into HIV-1 particles and restrict viral infectivity. This correlation between oligomerization and restriction is further evidenced by two different APOBEC3G mutants, which are each compromised for multimerization, packaging and HIV-1 restriction. Overall, our results imply that multimerization of APOBEC3 proteins may be related to the packaging mechanism and ultimately to virus restriction.
Collapse
Affiliation(s)
- Jinhui Li
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Ming Li
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Rebecca M McDougle
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Elizabeth M Luengas
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Patrick J Macdonald
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA.
| |
Collapse
|
48
|
Ara A, Love RP, Chelico L. Different mutagenic potential of HIV-1 restriction factors APOBEC3G and APOBEC3F is determined by distinct single-stranded DNA scanning mechanisms. PLoS Pathog 2014; 10:e1004024. [PMID: 24651717 PMCID: PMC3961392 DOI: 10.1371/journal.ppat.1004024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/09/2014] [Indexed: 01/12/2023] Open
Abstract
The APOBEC3 deoxycytidine deaminase family functions as host restriction factors that can block replication of Vif (virus infectivity factor) deficient HIV-1 virions to differing degrees by deaminating cytosines to uracils in single-stranded (-)HIV-1 DNA. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils, thereby inducing C/G→T/A mutations that can functionally inactivate HIV-1. Although both APOBEC3F and APOBEC3G are expressed in cell types HIV-1 infects and are suppressed by Vif, there has been no prior biochemical analysis of APOBEC3F, in contrast to APOBEC3G. Using synthetic DNA substrates, we characterized APOBEC3F and found that similar to APOBEC3G; it is a processive enzyme and can deaminate at least two cytosines in a single enzyme-substrate encounter. However, APOBEC3F scanning movement is distinct from APOBEC3G, and relies on jumping rather than both jumping and sliding. APOBEC3F jumping movements were also different from APOBEC3G. The lack of sliding movement from APOBEC3F is due to an ¹⁹⁰NPM¹⁹² motif, since insertion of this motif into APOBEC3G decreases its sliding movements. The APOBEC3G NPM mutant induced significantly less mutations in comparison to wild-type APOBEC3G in an in vitro model HIV-1 replication assay and single-cycle infectivity assay, indicating that differences in DNA scanning were relevant to restriction of HIV-1. Conversely, mutation of the APOBEC3F ¹⁹¹Pro to ¹⁹¹Gly enables APOBEC3F sliding movements to occur. Although APOBEC3F ¹⁹⁰NGM¹⁹² could slide, the enzyme did not induce more mutagenesis than wild-type APOBEC3F, demonstrating that the unique jumping mechanism of APOBEC3F abrogates the influence of sliding on mutagenesis. Overall, we demonstrate key differences in the impact of APOBEC3F- and APOBEC3G-induced mutagenesis on HIV-1 that supports a model in which both the processive DNA scanning mechanism and preferred deamination motif (APOBEC3F, 5'TTC; APOBEC3G 5'CCC) influences the mutagenic and gene inactivation potential of an APOBEC3 enzyme.
Collapse
Affiliation(s)
- Anjuman Ara
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P. Love
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
49
|
Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, Qi D, Izumi T, Pathak VK. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol 2014; 426:1220-45. [PMID: 24189052 PMCID: PMC3943811 DOI: 10.1016/j.jmb.2013.10.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients.
Collapse
Affiliation(s)
- Belete A Desimmie
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Ryan C Burdick
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - DongFei Qi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
Buechner CN, Tessmer I. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions. J Mol Recognit 2013; 26:605-17. [DOI: 10.1002/jmr.2311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Claudia N. Buechner
- Rudolf Virchow Center for Experimental Biomedicine; University of Wuerzburg; Josef Schneider Str. 2 97080 Wuerzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine; University of Wuerzburg; Josef Schneider Str. 2 97080 Wuerzburg Germany
| |
Collapse
|