1
|
Koppel CJ, De Henau CMS, Vreeken D, DeRuiter MC, Jongbloed MRM, van Gils JM. The Role of the Axonal Guidance Cue Semaphorin 3A in Innervation of the Postnatal Heart in Health and Disease. Can J Cardiol 2025; 41:899-910. [PMID: 39746509 DOI: 10.1016/j.cjca.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
During cardiac development, the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in recent decades, it has become clear that cardiac nerves can regenerate after cardiac damage. Excessive reinnervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on the current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In view of cardiac innervation, most studies have focussed on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure, the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although the literature on their role in cardiac innervation is still relatively scarce, semaphorins, especially SEMA3A, seem worthwhile to consider when exploring options to modulate pathologic innervation patterns in cardiovascular disease.
Collapse
Affiliation(s)
- Claire J Koppel
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Charlotte M S De Henau
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dianne Vreeken
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marco C DeRuiter
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
2
|
Lu YP, Luo YL, Wu ZY, Han C, Jin YZ, Han JM, Chen SY, Teng F, Han F, Liu XX, Lu YM. Semaphorin 3s signaling in the central nervous system: Mechanisms and therapeutic implication for brain diseases. Pharmacol Ther 2025; 267:108800. [PMID: 39855276 DOI: 10.1016/j.pharmthera.2025.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Class 3 semaphorins (Sema3s), identified as secreted soluble proteins, present many therapeutic potentials. Recent evidence has suggested that Sema3s as molecular cue participate in neuroregulation, angiogenesis, and microenvironment homeostasis of the central nervous system. Moreover, Sema3s signaling pathways may be targeted for enhancing neural network connectivity, promoting neural regeneration and repair, and inhibiting pathological angiogenesis. Due to the complex co-expression patterns and crosstalk among Sema3s, new drugs targeting Sema3s-related signaling pathways are expected to be discovered to counter brain diseases. This review summarizes the specific roles of Sema3s in pathological processes of various brain diseases, and provides potential targeted strategies for the prevention and treatment.
Collapse
Affiliation(s)
- Ya-Ping Lu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China
| | - Yi-Ling Luo
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhou-Yue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chao Han
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yin-Zhi Jin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Ming Han
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shu-Yang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fei Teng
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China; The affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Xiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Ying-Mei Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Lin Y, Zheng Y. Structural Dynamics of Rho GTPases. J Mol Biol 2025; 437:168919. [PMID: 39708912 PMCID: PMC11757035 DOI: 10.1016/j.jmb.2024.168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rho family GTPases are a part of the Ras superfamily and are signaling hubs for many cellular processes. While the detailed understanding of Ras structure and function has led to tremendous progress in oncogenic Ras-targeted drug discovery, studies of the related Rho GTPases are still catching up as the recurrent cancer-related Rho GTPase mutations have only been discovered in the last decade. Like that of Ras, an in-depth understanding of the structural basis of how Rho GTPases and their mutants behave as key oncogenic drivers benefits the development of clinically effective therapies. Recent studies of structure dynamics in Rho GTPase structure-function relationship have added new twists to the conventional wisdom of Rho GTPase signaling mechanism.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
5
|
Plexin-A1 expression in the inhibitory neurons of infralimbic cortex regulates the specificity of fear memory in male mice. Neuropsychopharmacology 2022; 47:1220-1230. [PMID: 34508226 PMCID: PMC9018853 DOI: 10.1038/s41386-021-01177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
Maintaining appropriate levels of fear memory specificity is crucial for individual's survival and mental health, whereas overgeneralized fear commonly occurs in neuropsychiatric disorders, including posttraumatic stress disorder and generalized anxiety disorder. However, the molecular mechanisms regulating fear memory specificity remain poorly understood. The medial prefrontal cortex (mPFC) is considered as a key brain region in fear memory regulation. Previous transcriptomic studies have identified that plexin-A1, a transmembrane receptor critical for axon development, was downregulated in the mPFC after fear memory training. In this study, we identified that learning-induced downregulation of the mRNA and protein levels of plexin-A1 specifically occurred in the inhibitory but not excitatory neurons in the infralimbic cortex (IL) of mPFC. Further studies of plexin-A1 by virus-mediated over-expression of functional mutants selectively in the IL inhibitory neurons revealed the critical roles of plexin-A1 for regulating memory specificity and anxiety. Moreover, our findings revealed that plexin-A1 regulated the distribution of glutamic acid decarboxylase 67, a GABA synthetase, which in turn modulated the activity of IL and its downstream brain regions. Collectively, our findings elucidate the molecular modifier of IL inhibitory neurons in regulating memory specificity and anxiety, and provide candidates for developing therapeutic strategies for the prevention or treatment of a series of fear generalization-related neuropsychiatric disorders.
Collapse
|
6
|
Liu Y, Ke P, Kuo YC, Wang Y, Zhang X, Song C, Shan Y. A putative structural mechanism underlying the antithetic effect of homologous RND1 and RhoD GTPases in mammalian plexin regulation. eLife 2021; 10:64304. [PMID: 34114565 PMCID: PMC8219378 DOI: 10.7554/elife.64304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Plexins are semaphorin receptors that play essential roles in mammalian neuronal axon guidance and in many other important mammalian biological processes. Plexin signaling depends on a semaphorin-induced dimerization mechanism and is modulated by small GTPases of the Rho family, of which RND1 serves as a plexin activator yet its close homolog RhoD an inhibitor. Using molecular dynamics (MD) simulations, we showed that RND1 reinforces the plexin dimerization interface, whereas RhoD destabilizes it due to their differential interaction with the cell membrane. Upon binding plexin at the Rho-GTPase-binding domain (RBD), RND1 and RhoD interact differently with the inner leaflet of the cell membrane and exert opposite effects on the dimerization interface via an allosteric network involving the RBD, RBD linkers, and a buttress segment adjacent to the dimerization interface. The differential membrane interaction is attributed to the fact that, unlike RND1, RhoD features a short C-terminal tail and a positively charged membrane interface.
Collapse
Affiliation(s)
- Yanyan Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Pu Ke
- Beijing Computational Science Research Center, Beijing, China
| | - Yi-Chun Kuo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yibing Shan
- Antidote Health Foundation for Cure of Cancer, New York, United States
| |
Collapse
|
7
|
Mendelman N, Zerbetto M, Buck M, Meirovitch E. Conformational Entropy from Mobile Bond Vectors in Proteins: A Viewpoint that Unifies NMR Relaxation Theory and Molecular Dynamics Simulation Approaches. J Phys Chem B 2020; 124:9323-9334. [PMID: 32981310 DOI: 10.1021/acs.jpcb.0c05846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new method for determining conformational entropy in proteins is reported. Proteins prevail as conformational ensembles, p ∝ exp(-u). By selecting a bond vector (e.g., N-H) as a conformation representative, molecular dynamics simulations can provide (relative to a reference structure) p as approximate Boltzmann probability density and u as N-H potential of mean force (POMF). The latter is as accurate as implied by the force field but statistical in character; this limits the insights it can provide and its utilization. Conformational entropy is given exclusively by u. Deriving it from POMFs renders it accurate but statistical in character. Previously, we devised explicit (i.e., analytical but not exact) potentials made of Wigner functions, D0KL, with L ≤ 4, which closely resemble the corresponding POMFs in form; hence, they also approach the latter in accuracy. Such potentials can be beneficially characterized/compared in terms of composition, symmetry, and associated order parameters. In this study, we develop a method for deriving conformational entropy from them, which also features the benefits specified above. The method developed is applied to the dimerization of the Rho GTPase-binding domain of plexin-B1. Insights into local ordering, entropy compensation, and features of allostery are gained. In previous work, we developed the slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation from restricted bond vector motion in proteins. SRLS comprises explicit (restricting) potentials of the kind developed here. It also comprises diffusion tensors describing the local motion and related features of local geometry. The complete model fits experimental data. In future work, the explicit potentials developed here will be inserted unchanged in SRLS-based data fitting, thereby improving the picture of structural dynamics. Given that SRLS is unique in featuring potentials that can closely approach the corresponding POMFs in accuracy, the present study is an important step toward generally improving protein dynamics by NMR relaxation.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| |
Collapse
|
8
|
Fukushima Y, Nishiyama K, Kataoka H, Fruttiger M, Fukuhara S, Nishida K, Mochizuki N, Kurihara H, Nishikawa SI, Uemura A. RhoJ integrates attractive and repulsive cues in directional migration of endothelial cells. EMBO J 2020; 39:e102930. [PMID: 32347571 DOI: 10.15252/embj.2019102930] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
During angiogenesis, VEGF acts as an attractive cue for endothelial cells (ECs), while Sema3E mediates repulsive cues. Here, we show that the small GTPase RhoJ integrates these opposing signals in directional EC migration. In the GTP-bound state, RhoJ interacts with the cytoplasmic domain of PlexinD1. Upon Sema3E stimulation, RhoJ released from PlexinD1 induces cell contraction. PlexinD1-bound RhoJ further facilitates Sema3E-induced PlexinD1-VEGFR2 association, VEGFR2 transphosphorylation at Y1214, and p38 MAPK activation, leading to reverse EC migration. Upon VEGF stimulation, RhoJ is required for the formation of the holoreceptor complex comprising VEGFR2, PlexinD1, and neuropilin-1, thereby preventing degradation of internalized VEGFR2, prolonging downstream signal transductions via PLCγ, Erk, and Akt, and promoting forward EC migration. After conversion to the GDP-bound state, RhoJ shifts from PlexinD1 to VEGFR2, which then terminates the VEGFR2 signals. RhoJ deficiency in ECs efficiently suppressed aberrant angiogenesis in ischemic retina. These findings suggest that distinct Rho GTPases may act as context-dependent integrators of chemotactic cues in directional cell migration and may serve as candidate therapeutic targets to manipulate cell motility in disease or tissue regeneration.
Collapse
Affiliation(s)
- Yoko Fukushima
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kataoka
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Akiyoshi Uemura
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Jiang R, Wu XF, Wang B, Guan RX, Lv LM, Li AP, Lei L, Ma Y, Li N, Li QF, Ma QH, Zhao J, Li S. Reduction of NgR in perforant path decreases amyloid-β peptide production and ameliorates synaptic and cognitive deficits in APP/PS1 mice. Alzheimers Res Ther 2020; 12:47. [PMID: 32331528 PMCID: PMC7181577 DOI: 10.1186/s13195-020-00616-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Amyloid beta (Aβ) which is recognized as a main feature of Alzheimer's disease (AD) has been proposed to "spread" through anatomically and functionally connected brain regions. The entorhinal cortex and perforant path are the earliest affected brain regions in AD. The perforant path is the most vulnerable circuit in the cortex with respect to both aging and AD. Previous data show that the origins and terminations of the perforant path are susceptible to amyloid deposition at the younger age in AD. Nogo receptor (NgR) plays an essential role in limiting injury-induced axonal growth and experience-dependent plasticity in the adult brain. It has been suggested that NgR is involved in AD pathological features, but the results have been conflicting and the detailed mechanism needs further investigation. In this study, the effect of NgR in the perforant path on the pathological and functional phenotype of APP/PS1 transgenic mice was studied. METHODS To genetically manipulate NgR expression, adeno-associated virus (AAV) with short hairpin (shRNA) against NgR was injected into the perforant path of APP/PS1 transgenic mice, followed by an assessment of behavioral, synaptic plasticity and neuropathological phenotypes. NgR was overexpressed or knockdown in neuroblastoma N2a cells and APPswe/HEK293 cells to investigate the interaction between NgR and amyloid precursor protein (APP). RESULTS It is shown that reduction of NgR in the perforant path rescued cognitive and synaptic deficits in APP/PS1 transgenic mice. Concurrently, Aβ production in the perforant path and levels of soluble Aβ and amyloid plaques in the hippocampus were significantly decreased. There was a positive correlation between the total APP protein level and NgR expression both in transgenic mice and in cultured cells, where the α-secretase and β-secretase cleavage products both changed with APP level in parallel. Finally, NgR might inhibit APP degradation through lysosome by Rho/Rho-associated protein kinases (ROCK) signaling pathway. CONCLUSIONS Our findings demonstrate that perforant path NgR plays an important role in regulating APP/Aβ level and cognitive functions in AD transgenic mice, which might be related to the suppression of APP degradation by NgR. Our study suggests that NgR in the perforant path could be a potential target for modulating AD progression.
Collapse
Affiliation(s)
- Rong Jiang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Rong-Xiao Guan
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Lang-Man Lv
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ai-Ping Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lei Lei
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ye Ma
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qi-Fa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
10
|
Zhang H, Vreeken D, Junaid A, Wang G, Sol WMPJ, de Bruin RG, van Zonneveld AJ, van Gils JM. Endothelial Semaphorin 3F Maintains Endothelial Barrier Function and Inhibits Monocyte Migration. Int J Mol Sci 2020; 21:ijms21041471. [PMID: 32098168 PMCID: PMC7073048 DOI: 10.3390/ijms21041471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.
Collapse
|
11
|
Mendelman N, Zerbetto M, Buck M, Meirovitch E. Local Ordering at the N-H Sites of the Rho GTPase Binding Domain of Plexin-B1: Impact of Dimerization. J Phys Chem B 2019; 123:8019-8033. [PMID: 31469564 DOI: 10.1021/acs.jpcb.9b05905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a new molecular dynamics (MD) based method for describing analytically local potentials at mobile N-H sites in proteins. Here we apply it to the monomer and dimer of the Rho GTPase binding domain (RBD) of the transmembrane receptor plexin-B1 to gain insight into dimerization, which can compete with Rho GTPase binding. In our method, the local potential is given by linear combinations, u(DL,K), of the real combinations of the Wigner rotation matrix elements, DL,K, with L = 1-4 and appropriate symmetry. The combination that "fits best" the corresponding MD potential of mean force, u(MD), is the potential we are seeking, u(DL,K - BEST). For practical reasons the fitting process involves probability distributions, Peq ∝ exp(-u), instead of potentials, u. The symmetry of the potential, u(DL,K), may be related to the irreducible representations of the D2h point group. The monomer (dimer) potentials have mostly Ag and B2u (B1u and B2u) symmetry. For the monomer, the associated probability distributions are generally dispersed in space, shallow, and centered at the "reference N-H orientation" (defined in section 3.1. below); for the dimer many are more concentrated, deep and centered away from the "reference N-H orientation". The u(DL,K) functions provide a consistent description of the potential energy landscape at protein N-H sites. The L1-loop of the plexin-B1 RBD is not seen in the crystal structure, and many resonances of the L4 loop are missing in the NMR 15N-1H HSQC spectrum of the dimer; we suggest reasons for these features. An allosteric signal transmission pathway was reported previously for the monomer. We find that it has shallow N-H potentials at its ends, which become deeper as one proceeds toward the middle, complementing structurally the previously derived dynamic picture. Prospects of this study include correlating u(DL,K - BEST) with MD force-fields, and using them without further adjustment in NMR relaxation analysis schemes.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Mirco Zerbetto
- Department of Chemical Sciences , University of Padova , Padova 35131 , Italy
| | - Matthias Buck
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland Ohio 44106 , United States
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
12
|
Vivekanadhan S, Mukhopadhyay D. Divergent roles of Plexin D1 in cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:103-110. [PMID: 31152824 DOI: 10.1016/j.bbcan.2019.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
Abstract
Plexin D1 belongs to a family of transmembrane proteins called plexins. It was characterized as a receptor for semaphorins and is known to be essential for axonal guidance and vascular patterning. Mutations in Plexin D1 have been implicated in pathologic conditions such as truncus arteriosus and Möbius syndrome. Emerging data show that expression of Plexin D1 is deregulated in several cancers; it can support tumor development by aiding in tumor metastasis and EMT; and conversely, it can act as a dependence receptor and stimulate cell death in the absence of its canonical ligand, semaphorin 3E. The role of Plexin D1 in tumor development and progression is thereby garnering research interest for its potential as a biomarker and as a therapeutic target. In this review, we describe its discovery, structure, mutations, role(s) in cancer, and therapeutic potential.
Collapse
Affiliation(s)
- Sneha Vivekanadhan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | | |
Collapse
|
13
|
St Clair RM, Emerson SE, D'Elia KP, Weir ME, Schmoker AM, Ebert AM, Ballif BA. Fyn-dependent phosphorylation of PlexinA1 and PlexinA2 at conserved tyrosines is essential for zebrafish eye development. FEBS J 2017; 285:72-86. [PMID: 29091353 DOI: 10.1111/febs.14313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/09/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
Abstract
Plexins (Plxns) are semaphorin (Sema) receptors that play important signaling roles, particularly in the developing nervous system and vasculature. Sema-Plxn signaling regulates cellular processes such as cytoskeletal dynamics, proliferation, and differentiation. However, the receptor-proximal signaling mechanisms driving Sema-Plxn signal transduction are only partially understood. Plxn tyrosine phosphorylation is thought to play an important role in these signaling events as receptor and nonreceptor tyrosine kinases have been shown to interact with Plxn receptors. The Src family kinase Fyn can induce the tyrosine phosphorylation of PlxnA1 and PlxnA2. However, the Fyn-dependent phosphorylation sites on these receptors have not been identified. Here, using mass spectrometry-based approaches, we have identified highly conserved, Fyn-induced PlexinA (PlxnA) tyrosine phosphorylation sites. Mutation of these sites to phenylalanine results in significantly decreased Fyn-dependent PlxnA tyrosine phosphorylation. Furthermore, in contrast to wild-type human PLXNA2 mRNA, mRNA harboring these point mutations cannot rescue eye developmental defects when coinjected with a plxnA2 morpholino in zebrafish embryos. Together these data suggest that Fyn-dependent phosphorylation at two critical tyrosines is a key feature of vertebrate PlxnA1 and PlxnA2 signal transduction.
Collapse
Affiliation(s)
- Riley M St Clair
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Sarah E Emerson
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kristen P D'Elia
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Marion E Weir
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Anna M Schmoker
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
14
|
Wylie T, Garg R, Ridley AJ, Conte MR. Analysis of the interaction of Plexin-B1 and Plexin-B2 with Rnd family proteins. PLoS One 2017; 12:e0185899. [PMID: 29040270 PMCID: PMC5645086 DOI: 10.1371/journal.pone.0185899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
The Rnd family of proteins, Rnd1, Rnd2 and Rnd3, are atypical Rho family GTPases, which bind to but do not hydrolyse GTP. They interact with plexins, which are receptors for semaphorins, and are hypothesised to regulate plexin signalling. We recently showed that each Rnd protein has a distinct profile of interaction with three plexins, Plexin-B1, Plexin-B2 and Plexin-B3, in mammalian cells, although it is unclear which region(s) of these plexins contribute to this specificity. Here we characterise the binary interactions of the Rnd proteins with the Rho-binding domain (RBD) of Plexin-B1 and Plexin-B2 using biophysical approaches. Isothermal titration calorimetry (ITC) experiments for each of the Rnd proteins with Plexin-B1-RBD and Plexin-B2-RBD showed similar association constants for all six interactions, although Rnd1 displayed a small preference for Plexin-B1-RBD and Rnd3 for Plexin-B2-RBD. Furthermore, mutagenic analysis of Rnd3 suggested similarities in its interaction with both Plexin-B1-RBD and Plexin-B2-RBD. These results suggest that Rnd proteins do not have a clear-cut specificity for different Plexin-B-RBDs, possibly implying the contribution of additional regions of Plexin-B proteins in conferring functional substrate selection.
Collapse
Affiliation(s)
- Thomas Wylie
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| |
Collapse
|
15
|
Zhang L, Buck M. Molecular Dynamics Simulations Reveal Isoform Specific Contact Dynamics between the Plexin Rho GTPase Binding Domain (RBD) and Small Rho GTPases Rac1 and Rnd1. J Phys Chem B 2017; 121:1485-1498. [PMID: 28103666 DOI: 10.1021/acs.jpcb.6b11022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Plexin family of transmembrane receptors are unique in that their intracellular region interacts directly with small GTPases of the Rho family. The Rho GTPase binding domain of plexin (RBD)-which is responsible for these interactions-can bind with Rac1 as well as Rnd1 GTPases. GTPase complexes have been crystallized with the RBDs of plexinA1, -A2, and -B1. The protein association is thought to elicit different functional responses in a GTPase and plexin isoform specific manner, but the origin of this is unknown. In this project, we investigated complexes between several RBD and Rac1/Rnd1 GTPases using multimicrosecond length all atom molecular dynamics simulations, also with reference to the free forms of the RBDs and GTPases. In accord with the crystallographic data, the RBDs experience more structural changes than Rho-GTPases upon complex formation. Changes in protein dynamics and networks of correlated motions are revealed by analyzing dihedral angle fluctuations in the proteins. The extent of these changes differs between the different RBDs and also between the Rac1 and Rnd1 GTPases. While the RBDs in the free and bound states have similar-if not decreased-correlations, correlations within the GTPases are increased upon binding. Mapping highly correlated residues to the structures, it is found that the plexinA1, -B1, and -A2 RBDs all have similar communication pathways within the ubiquitin fold, but that different residues are involved. Dynamic network analyses indicate that plexinA1 and -B1 RBDs interact with small GTPases in a similar manner, whereas complexes with the plexinA2 RBD display different features. Importantly complexes with Rnd1 have a considerable number of dynamic correlations and network connections between the proteins, whereas such features are missing in the RBD-Rac1 complexes. Overall, the simulations suggest mechanisms that are consistent with the experimental data on plexinB1 and indicate RBD and GTPase isoform specific changes in protein dynamics upon complex formation.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering Department, Tennessee Technological University , 1 William L Jones Dr., Cookeville, Tennessee 38505, United States
| | - Matthias Buck
- Department of Physiology and Biophysics, Medical School of Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
16
|
Zhou H, Kann MG, Mallory EK, Yang YH, Bugshan A, Binmadi NO, Basile JR. Recruitment of Tiam1 to Semaphorin 4D Activates Rac and Enhances Proliferation, Invasion, and Metastasis in Oral Squamous Cell Carcinoma. Neoplasia 2016; 19:65-74. [PMID: 28038319 PMCID: PMC5198113 DOI: 10.1016/j.neo.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
The semaphorins and the plexins are a family of large, cysteine-rich proteins originally identified as regulators of axon growth and lymphocyte activation that are now known to provide motility and positional information for a number of cell and tissue types. For example, our group and others have shown that some malignancies over express Semaphorin 4D (S4D), which acts through its receptor Plexin-B1 (PB1) on endothelial cells to attract blood vessels from the surrounding stroma for the purpose of supporting tumor growth. While plexins are the known functional receptors for the semaphorins, there is evidence that transmembrane semaphorins may transmit a signal themselves through their short cytoplasmic tail, a phenomenon known as ‘reverse signaling.’ We used computational methods based upon correlated evolution of sequences of interacting proteins, mutational analysis and in vitro and in vivo measurements of tumor aggressiveness to show that when bound to PB1, transmembrane S4D associates with the Rac GTPase exchange factor T lymphoma invasion and metastasis (Tiam) 1, which activates Rac and promotes proliferation, invasion and metastasis in oral squamous cell carcinoma (OSCC) cells. These results suggest that not only can S4D production by tumor cells affect the microenvironment, but engagement of this semaphorin at the cell surface activates a reverse signaling mechanism that influences tumor aggressiveness in OSCC.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD 21201, USA
| | - Maricel G Kann
- Dept of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Emily K Mallory
- Biomedical Informatics Training Program, Stanford University, 1265 Welch Road, Stanford, CA 94305, USA
| | - Ying-Hua Yang
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD 21201, USA
| | - Amr Bugshan
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD 21201, USA
| | - Nada O Binmadi
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD 21201, USA; Department of Oral Basic & Clinical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - John R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD 21201, USA; Greenebaum Cancer Center, 22 S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection. J Virol 2016; 91:JVI.01613-16. [PMID: 27795423 DOI: 10.1128/jvi.01613-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. IMPORTANCE The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic neuralgia (PHN) is a common complication of shingles that manifests as prolonged excruciating pain, which has proven difficult to treat. The formation of fused multinucleated cells in ganglia might be associated with this condition. An effective vaccine against VZV is available but not recommended for immunocompromised individuals, highlighting the need for new therapies. This study investigated the viral and cellular responses to hyperfusion, a condition where the usual constraints of cell membranes are overcome and cells form multinucleated cells. This process hinders VZV and is regulated by a viral glycoprotein, gB. A combination of live-cell imaging and next-generation genomics revealed an alteration in viral and cellular responses during hyperfusion that was caused by the loss of gB regulation. These studies reveal mechanisms central to VZV pathogenesis, potentially leading to improved therapies.
Collapse
|
18
|
McColl B, Garg R, Riou P, Riento K, Ridley AJ. Rnd3-induced cell rounding requires interaction with Plexin-B2. J Cell Sci 2016; 129:4046-4056. [PMID: 27656111 PMCID: PMC5117210 DOI: 10.1242/jcs.192211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022] Open
Abstract
Rnd proteins are atypical members of the Rho GTPase family that induce actin cytoskeletal reorganization and cell rounding. Rnd proteins have been reported to bind to the intracellular domain of several plexin receptors, but whether plexins contribute to the Rnd-induced rounding response is not known. Here we show that Rnd3 interacts preferentially with plexin-B2 of the three plexin-B proteins, whereas Rnd2 interacts with all three B-type plexins, and Rnd1 shows only very weak interaction with plexin-B proteins in immunoprecipitations. Plexin-B1 has been reported to act as a GAP for R-Ras and/or Rap1 proteins. We show that all three plexin-B proteins interact with R-Ras and Rap1, but Rnd proteins do not alter this interaction or R-Ras or Rap1 activity. We demonstrate that plexin-B2 promotes Rnd3-induced cell rounding and loss of stress fibres, and enhances the inhibition of HeLa cell invasion by Rnd3. We identify the amino acids in Rnd3 that are required for plexin-B2 interaction, and show that mutation of these amino acids prevents Rnd3-induced morphological changes. These results indicate that plexin-B2 is a downstream target for Rnd3, which contributes to its cellular function.
Collapse
Affiliation(s)
- Brad McColl
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Philippe Riou
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Kirsi Riento
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
19
|
Characterizing Plexin GTPase Interactions Using Gel Filtration, Surface Plasmon Resonance Spectrometry, and Isothermal Titration Calorimetry. Methods Mol Biol 2016; 1493:89-105. [PMID: 27787844 DOI: 10.1007/978-1-4939-6448-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Plexins are unique, as they are the first example of a transmembrane receptor that interacts directly with small GTPases, a family of proteins that are essential for cell motility and proliferation/survival. We and other laboratories have determined the structure of the Rho GTPase-binding domain (RBD) of several plexins and also of the entire intracellular region of plexin-B1. Structures of plexin complexes with Rho GTPases, Rac1 and Rnd1, and a structure with a Ras GTPase, Rap1b, have also been solved. The relationship between plexin-Rho and plexin-Ras interactions is still unclear and in vitro biophysical experiments that characterize the protein interactions of purified components play an important role in advancing our understanding of the molecular mechanisms that underlie the function of plexin. This chapter describes the use of gel filtration (also known as size-exclusion chromatography or SEC), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) in studies of plexin-small GTPase interactions with plexin-B1:Rac1 as an example. Together with other assays and manipulations (e.g., by mutagenesis or protein domain truncation/deletion), these in vitro measurements provide an important reference for the role and extent of the interactions.
Collapse
|
20
|
Marita M, Wang Y, Kaliszewski MJ, Skinner KC, Comar WD, Shi X, Dasari P, Zhang X, Smith AW. Class A Plexins Are Organized as Preformed Inactive Dimers on the Cell Surface. Biophys J 2016; 109:1937-45. [PMID: 26536270 DOI: 10.1016/j.bpj.2015.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/10/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023] Open
Abstract
Plexins are single-pass transmembrane receptors that bind the axon guidance molecules semaphorins. Single-pass transmembrane proteins are an important class of receptors that display a wide variety of activation mechanisms, often involving ligand-dependent dimerization or conformational changes. Resolving the activation mechanism and dimerization state of these receptors is extremely challenging, especially in a live-cell environment. Here, we report on the dimerization state of PlexinA4 and its response to activation by semaphorin binding. Semaphorins are dimeric molecules that activate plexin by binding two copies of plexin simultaneously and inducing formation of a specific active dimer of plexin. An open question is whether there are preexisting plexin dimers that could act as autoinhibitory complexes. We address these questions with pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a two-color fluorescence microscopy method that is directly sensitive to protein dimerization in a live-cell environment. With PIE-FCCS, we show that inactive PlexinA4 is dimerized in the live-cell plasma membrane. By comparing the cross correlation of full-length PlexinA4 to control proteins and plexin mutants, we show that dimerization of inactive PlexinA4 requires the Sema domain, but not the cytoplasmic domain. Ligand stimulation with Sema6A does not change the degree of cross correlation, indicating that plexin activation does not lead to higher-order oligomerization. Together, the results suggest that semaphorin activates plexin by disrupting an inhibitory plexin dimer and inducing the active dimer.
Collapse
Affiliation(s)
- Morgan Marita
- Department of Chemistry, University of Akron, Akron, Ohio
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | | | | | - Xiaojun Shi
- Department of Chemistry, University of Akron, Akron, Ohio
| | - Pranathi Dasari
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio.
| |
Collapse
|
21
|
Kato R, Takahashi K. Gene Expression of Semaphorin 7A During Osteogenic Differentiation in Human Dental Follicle Cells. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ryoichi Kato
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo
| | - Kosuke Takahashi
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science
| |
Collapse
|
22
|
Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS One 2015; 10:e0121513. [PMID: 25837709 PMCID: PMC4383379 DOI: 10.1371/journal.pone.0121513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and -B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, -A3, -A4, -C1 and -D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 - trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures suggest experimental tests and will be useful for the interpretation of future studies.
Collapse
|
23
|
Mott HR, Owen D. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Crit Rev Biochem Mol Biol 2015; 50:85-133. [PMID: 25830673 DOI: 10.3109/10409238.2014.999191] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras superfamily small G proteins are master regulators of a diverse range of cellular processes and act via downstream effector molecules. The first structure of a small G protein-effector complex, that of Rap1A with c-Raf1, was published 20 years ago. Since then, the structures of more than 60 small G proteins in complex with their effectors have been published. These effectors utilize a diverse array of structural motifs to interact with the G protein fold, which we have divided into four structural classes: intermolecular β-sheets, helical pairs, other interactions, and pleckstrin homology (PH) domains. These classes and their representative structures are discussed and a contact analysis of the interactions is presented, which highlights the common effector-binding regions between and within the small G protein families.
Collapse
Affiliation(s)
- Helen R Mott
- Department of Biochemistry, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
24
|
Pascoe HG, Wang Y, Zhang X. Structural mechanisms of plexin signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:161-8. [PMID: 25824683 DOI: 10.1016/j.pbiomolbio.2015.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/03/2023]
Abstract
Signaling through plexin, the major cell surface receptor for semaphorin, plays critical roles in regulating processes such as neuronal axon guidance, angiogenesis and immune response. Plexin is normally kept inactive in the absence of semaphorin. Upon binding of semaphorin to the extracellular region, plexin is activated and transduces signal to the inside of the cell through its cytoplasmic region. The GTPase Activating Protein (GAP) domain in the plexin cytoplasmic region mediates the major intracellular signaling pathway. The substrate specificity and regulation mechanisms of the GAP domain have only been revealed recently. Many intracellular proteins serve as either upstream regulators or downstream transducers by directly interacting with plexin. The mechanisms of action for some of these proteins also start to emerge from recent studies. We review here these advances in the mechanistic understanding of plexin intracellular signaling from a structural perspective.
Collapse
Affiliation(s)
- Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Cao S, Buck M. Optimization and stabilization of Rho small GTPase proteins for solution NMR studies: The case of Rnd1. Small GTPases 2014; 2:295-304. [PMID: 22545226 PMCID: PMC3337157 DOI: 10.4161/sgtp.19257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rho GTPases of the Ras superfamily have important roles in regulating the organization of the actin filament system, morphogenesis and migration of cells. Structural details for these proteins are still emerging, and information on their dynamics in solution is much needed to understand the mechanisms underlying their signaling functions. This report reviews conditions for solution NMR studies of Rho GTPases and describes our optimization and stabilization of Rnd1 for such experiments. Rnd1 belongs to the Rnd protein subfamily branch of Rho small GTPases and functions in neurite outgrowth, dendrite development and in axon guidance. However, as we report here, solution NMR studies of this protein are challenging. Multiple methods have been employed to enhance the stability of Rnd1, including by cleavage of an N-terminal His expression tag and by addition of non-hydrolysable GMPPNP (β: γ-imidoguanosine 5'-triphosphate) nucleotide. Further stabilization of Rnd1 against aggregation was achieved through a structure informed point mutation while maintaining its conformation and binding affinity for a partner protein. The NMR spectrum of the optimized protein reveals significant improvement in NMR signal dispersion and intensity. This work paves the way for structural and protein-protein/protein-ligand interaction studies of Rnd1 by solution NMR and also provides a guide for optimization and stabilization of other Rho GTPases.
Collapse
|
26
|
Zhang L, Centa T, Buck M. Structure and dynamics analysis on plexin-B1 Rho GTPase binding domain as a monomer and dimer. J Phys Chem B 2014; 118:7302-11. [PMID: 24901636 PMCID: PMC4096216 DOI: 10.1021/jp503668k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/03/2014] [Indexed: 12/16/2022]
Abstract
Plexin-B1 is a single-pass transmembrane receptor. Its Rho GTPase binding domain (RBD) can associate with small Rho GTPases and can also self-bind to form a dimer. In total, more than 400 ns of NAMD molecular dynamics simulations were performed on RBD monomer and dimer. Different analysis methods, such as root mean squared fluctuation (RMSF), order parameters (S(2)), dihedral angle correlation, transfer entropy, principal component analysis, and dynamical network analysis, were carried out to characterize the motions seen in the trajectories. RMSF results show that after binding, the L4 loop becomes more rigid, but the L2 loop and a number of residues in other regions become slightly more flexible. Calculating order parameters (S(2)) for CH, NH, and CO bonds on both backbone and side chain shows that the L4 loop becomes essentially rigid after binding, but part of the L1 loop becomes slightly more flexible. Backbone dihedral angle cross-correlation results show that loop regions such as the L1 loop including residues Q25 and G26, the L2 loop including residue R61, and the L4 loop including residues L89-R91, are highly correlated compared to other regions in the monomer form. Analysis of the correlated motions at these residues, such as Q25 and R61, indicate two signal pathways. Transfer entropy calculations on the RBD monomer and dimer forms suggest that the binding process should be driven by the L4 loop and C-terminal. However, after binding, the L4 loop functions as the motion responder. The signal pathways in RBD were predicted based on a dynamical network analysis method using the pathways predicted from the dihedral angle cross-correlation calculations as input. It is found that the shortest pathways predicted from both inputs can overlap, but signal pathway 2 (from F90 to R61) is more dominant and overlaps all of the routes of pathway 1 (from F90 to P111). This project confirms the allosteric mechanism in signal transmission inside the RBD network, which was in part proposed in the previous experimental study.
Collapse
Affiliation(s)
- Liqun Zhang
- Department
of Physiology and Biophysics, Medical School
of Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Thomas Centa
- University
of Cincinnati, 2600 Clifton
Avenue, Cincinnati, Ohio 45221, United States
| | - Matthias Buck
- Department
of Physiology and Biophysics, Medical School
of Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
27
|
Cagnoni G, Tamagnone L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene 2013; 33:4795-802. [DOI: 10.1038/onc.2013.474] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022]
|
28
|
Cao S, Mao X, Liu D, Buck M. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:121-128. [PMID: 22618864 DOI: 10.1007/s12104-012-9391-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein-protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295-304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many (1)H(N), (13)C, and (15)N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N-H correlations in the (1)H-(15)N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77-83 and residues 127-131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1 switch II region remained un-assigned, the switch I region could be more fully assigned compared to Cdc42 and Rac1. The NMR assignment and structure analysis reported here provides a robust basis for future study of the binding between Rnd1 and other proteins, as well as for further studies of the molecular function of this unusual GTPase.
Collapse
Affiliation(s)
- Shufen Cao
- College of Life Science, Central China Normal University, 152 Luoyu Road, Wuhan 430079, Hubei, China.
| | | | | | | |
Collapse
|
29
|
Interaction characteristics of Plexin-B1 with Rho family proteins. Biochem Biophys Res Commun 2013; 434:785-90. [PMID: 23603360 DOI: 10.1016/j.bbrc.2013.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 11/22/2022]
Abstract
Plexin-B1 regulates various cellular processes interacting directly with several Rho proteins. Molecular details of these interactions are, however, not well understood. In this study, we examined in vitro and in silico the interaction of the Rho binding domain (B1RBD) of human Plexin-B1 with 11 different Rho proteins. We show that B1RBD binds in a GTP-dependent manner to Rac1, Rac2, Rac3, Rnd1, Rnd2, Rnd3, and RhoD, but not to RhoA, Cdc42, RhoG, or Rif. Interestingly, Rnd1 competitively displaces the Rac1 from B1RBD but not vice versa. Structure-function analysis revealed a negatively charged loop region, called B1L(31), which may facilitate a selective B1RBD interaction with Rho proteins.
Collapse
|
30
|
Siebold C, Jones EY. Structural insights into semaphorins and their receptors. Semin Cell Dev Biol 2013; 24:139-45. [PMID: 23253452 DOI: 10.1016/j.semcdb.2012.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Ten years ago nothing was known of the three-dimensional structure of members of the semaphorin family of cell guidance cues, nor of their major receptors, the plexins. The structural biology of this cell surface ligand-receptor system has now come of age. Detailed atomic level information is available on the architecture of semaphorin and plexin ectodomains and their recognition complexes. Similarly the structure of the plexin cytoplasmic region, and its interactions with members of the Rho family of small GTPases have been unveiled. These structural analyses, in combination with biochemical, biophysical and cellular studies, have progressed our understanding of this signalling system into the realm of molecular mechanism.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | |
Collapse
|
31
|
Semaphorin7A and its receptors: pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Semin Cell Dev Biol 2013; 24:129-38. [PMID: 23333497 DOI: 10.1016/j.semcdb.2013.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
Abstract
Semaphorins form a large, evolutionary conserved family of cellular guidance signals. The semaphorin family contains several secreted and transmembrane proteins, but only one GPI-anchored member, Semaphorin7A (Sema7A). Although originally identified in immune cells, as CDw108, Sema7A displays widespread expression outside the immune system. It is therefore not surprising that accumulating evidence supports roles for this protein in a wide variety of biological processes in different organ systems and in disease. Well-characterized biological effects of Sema7A include those during bone and immune cell regulation, neuron migration and neurite growth. These effects are mediated by two receptors, plexinC1 and integrins. However, most of what is known today about Sema7A signaling concerns Sema7A-integrin interactions. Here, we review our current knowledge of Sema7A function and signaling in different organ systems, highlighting commonalities between the cellular effects and signaling pathways activated by Sema7A in different cell types. Furthermore, we discuss a potential role for Sema7A in disease and provide directions for further research.
Collapse
|
32
|
Zerbetto M, Anderson R, Bouguet-Bonnet S, Rech M, Zhang L, Meirovitch E, Polimeno A, Buck M. Analysis of 15N-1H NMR relaxation in proteins by a combined experimental and molecular dynamics simulation approach: picosecond-nanosecond dynamics of the Rho GTPase binding domain of plexin-B1 in the dimeric state indicates allosteric pathways. J Phys Chem B 2013; 117:174-84. [PMID: 23214953 PMCID: PMC3556999 DOI: 10.1021/jp310142f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We investigate picosecond–nanosecond dynamics of the Rho-GTPase Binding Domain (RBD) of plexin-B1, which plays a key role in plexin-mediated cell signaling. Backbone 15N relaxation data of the dimeric RBD are analyzed with the model-free (MF) method, and with the slowly relaxing local structure/molecular dynamics (SRLS-MD) approach. Independent analysis of the MD trajectories, based on the MF paradigm, is also carried out. MF is a widely popular and simple method, SRLS is a general approach, and SRLS-MD is an integrated approach we developed recently. Corresponding parameters from the RBD dimer, a previously studied RBD monomer mutant, and the previously studied complex of the latter with the GTPase Rac1, are compared. The L2, L3, and L4 loops of the plexin-B1 RBD are involved in interactions with other plexin domains, GTPase binding, and RBD dimerization, respectively. Peptide groups in the loops of both the monomeric and dimeric RBD are found to experience weak and moderately asymmetric local ordering centered approximately at the C(i–1)(α)–C(i)(α) axes, and nanosecond backbone motion. Peptide groups in the α-helices and the β-strands of the dimer (the β-strands of the monomer) experience strong and highly asymmetric local ordering centered approximately at the C(i–1)(α)–C(i)(α) axes (N–H bonds). N–H fluctuations occur on the picosecond time scale. An allosteric pathway for GTPase binding, providing new insights into plexin function, is delineated.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Università degli Studi di Padova, Dipartimento di Scienze Chimiche, Padova 35131, Italy
| | - Ross Anderson
- Case Western Reserve University. Department of Physiology and Biophysics, Cleveland OH 44106-7169, USA
| | - Sabine Bouguet-Bonnet
- Methodologie RMN, Faculté des Sciences et Techniques, Nancy-Université, Nancy 54500, France
| | - Mariano Rech
- Università degli Studi di Padova, Dipartimento di Scienze Chimiche, Padova 35131, Italy
| | - Liqun Zhang
- Case Western Reserve University. Department of Physiology and Biophysics, Cleveland OH 44106-7169, USA
| | - Eva Meirovitch
- Bar-Ilan University, The Mina & Everard Goodman Faculty of Life Sciences, Ramat-Gan 52900, Israel
| | - Antonino Polimeno
- Università degli Studi di Padova, Dipartimento di Scienze Chimiche, Padova 35131, Italy
| | - Matthias Buck
- Case Western Reserve University. Department of Physiology and Biophysics, Cleveland OH 44106-7169, USA
| |
Collapse
|
33
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
34
|
Effect of cancer-associated mutations in the PlexinB1 gene. Mol Cancer 2012; 11:11. [PMID: 22404908 PMCID: PMC3317836 DOI: 10.1186/1476-4598-11-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/09/2012] [Indexed: 11/12/2022] Open
Abstract
Background Semaphorins act as chemotactic cues for cell movement via their transmembrane receptors, plexins. Somatic missense mutations in the plexinB1 gene coupled with overexpression of the protein frequently occur in prostate tumours, indicating a role for plexinB1 in the pathogenesis of prostate cancer. Results Two specific mutations found in prostate cancer enhance RhoD binding and one other mutation results in loss of inhibition of Rac-dependent Pak1 phosphorylation and lamellipodia formation and in impairment of trafficking of plexinB1 to the membrane. None of the three characterised mutations affect PDZRhoGEF binding, RhoA activity, the interaction of plexinB1with the oncogenes ErbB2 or c-Met or ErbB2 phosphorylation. The mutations have the net effect of increasing cell motility by blocking plexinB1-mediated inhibition of Rac while enhancing the interaction with RhoD, an anti-migratory factor. Conclusions PlexinB1 mutations block plexinB1-mediated signalling pathways that inhibit cell motility.
Collapse
|
35
|
Combining NMR and molecular dynamics studies for insights into the allostery of small GTPase-protein interactions. Methods Mol Biol 2012; 796:235-59. [PMID: 22052494 DOI: 10.1007/978-1-61779-334-9_13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combinations of experimentally derived data from nuclear magnetic resonance spectroscopy and analyses of molecular dynamics trajectories increasingly allow us to obtain a detailed description of the molecular mechanisms by which proteins function in signal transduction. This chapter provides an introduction into these two methodologies, illustrated by example of a small GTPase-effector interaction. It is increasingly becoming clear that new insights are provided by the combination of experimental and computational methods. Understanding the structural and protein dynamical contributions to allostery will be useful for the engineering of new binding interfaces and protein functions, as well as for the design/in silico screening of chemical agents that can manipulate the function of small GTPase-protein interactions in diseases such as cancer.
Collapse
|