1
|
Stubbe FX, Ponsard P, Steiner FA, Hermand D. SSUP-72/PINN-1 coordinates RNA-polymerase II 3' pausing and developmental gene expression in C. elegans. Nat Commun 2025; 16:2624. [PMID: 40097442 PMCID: PMC11914089 DOI: 10.1038/s41467-025-57847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
During exit from Caenorhabditis elegans (C. elegans) L1 developmental arrest, a network of growth- and developmental genes is activated, many of which are organized into operons where transcriptional termination is uncoupled from mRNA 3'-end processing. CDK-12-mediated Pol II CTD S2 phosphorylation enhances SL2 trans-splicing at downstream operonic genes, preventing premature termination and ensuring proper gene expression for developmental progression. Using a genetic screen, we identified the SSUP-72/PINN-1 module as a suppressor of defects induced by CDK-12 inhibition. Loss of SSUP-72/PINN-1 bypasses the requirement for CDK-12 in post-embryonic development. Genome-wide analyses reveal that SSUP-72, a CTD S5P phosphatase, affects Pol II 3' pausing and regulates intra-operon termination. Our findings establish SSUP-72/PINN-1 as a key regulator of Pol II dynamics, coordinating operonic gene expression and growth during C. elegans post-embryonic development.
Collapse
Affiliation(s)
| | | | - Florian A Steiner
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Damien Hermand
- URPHYM-GEMO, The University of Namur, Namur, Belgium.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Theisen F, Prestel A, Jacobsen NL, Nyhegn-Eriksen OK, Olsen JG, Kragelund BB. Proline cis/ trans Conformational Selection Controls 14-3-3 Binding. J Am Chem Soc 2025; 147:5714-5724. [PMID: 39909402 PMCID: PMC11848828 DOI: 10.1021/jacs.4c13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Intrinsically disordered protein regions (IDRs) are structurally dynamic yet functional, often interacting with other proteins through short linear motifs (SLiMs). Proline residues in IDRs introduce conformational heterogeneity on a uniquely slow time scale arising from cis/trans isomerization of the Xaa-Pro peptide bond. Here, we explore the role of proline isomerization in the interaction between the prolactin receptor (PRLR) and 14-3-3. Using NMR spectroscopy, thermodynamic profiling, and molecular dynamics (MD) simulations, we uncover a unique proline isomer-dependent binding, with a cis conformation affinity 3 orders of magnitude higher than the trans. MD simulations identify structural constraints in the narrow 14-3-3 binding groove that provide an explanation for the observed isomer selectivity. The cis preference of WT PRLR introduces a slow kinetic component relevant to signal propagation and a steric component that impacts chain direction. Proline isomerization constitutes a previously unrecognized selective component relevant to the ubiquitous 14-3-3 interactome. Given the prevalence of prolines in IDRs and SLiMs, our study highlights the importance of considering the distinct properties of proline isomers in experimental design and data interpretation to fully comprehend IDR functionality.
Collapse
Affiliation(s)
- Frederik
F. Theisen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
- Institut
de Biologie Structurale, 71 avenue des Martyrs, Grenoble 38000, France
| | - Andreas Prestel
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Nina L. Jacobsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Oline K. Nyhegn-Eriksen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Johan G. Olsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Birthe B. Kragelund
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| |
Collapse
|
3
|
Linhartova K, Falginella FL, Matl M, Sebesta M, Vácha R, Stefl R. Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7. Nat Commun 2024; 15:9163. [PMID: 39448580 PMCID: PMC11502803 DOI: 10.1038/s41467-024-53305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.
Collapse
Affiliation(s)
- Katerina Linhartova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Martin Matl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Sebesta
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Richard Stefl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia.
| |
Collapse
|
4
|
Oven HC, Yap GPA, Zondlo NJ. Helical twists and β-turns in structures at serine-proline sequences: Stabilization of cis-proline and type VI β-turns via C-H/O interactions. Proteins 2024; 92:1190-1205. [PMID: 38747689 DOI: 10.1002/prot.26701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 10/26/2024]
Abstract
Structures at serine-proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)-(4-iodophenyl)hydroxyproline [hyp(4-I-Ph)]. The crystal structure of Boc-Ser-hyp(4-I-Ph)-OMe had two molecules in the unit cell. One molecule exhibited cis-proline and a type VIa2 β-turn (BcisD). The cis-proline conformation was stabilized by a C-H/O interaction between Pro C-Hα and the Ser side-chain oxygen. NMR data were consistent with stabilization of cis-proline by a C-H/O interaction in solution. The other crystallographically observed molecule had trans-Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac-Ser-hyp(4-I-Ph)-OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation and trans-Pro. Structures at Ser-Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser-Pro versus Ala-Pro sequences were compared to identify bases for Ser stabilization of local structures. C-H/O interactions between the Ser side-chain Oγ and Pro C-Hα were observed in 45% of structures with Ser-cis-Pro in the PDB, with nearly all Ser-cis-Pro structures adopting a type VI β-turn. 53% of Ser-trans-Pro sequences exhibited main-chain COi•••HNi+3 or COi•••HNi+4 hydrogen bonds, with Ser as the i residue and Pro as the i + 1 residue. These structures were overwhelmingly either type I β-turns or N-terminal capping motifs on α-helices or 310-helices. These results indicate that Ser-Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγ capable of engaging in a hydrogen bond with the amide N-H of the i + 2 (type I β-turn or 310-helix; Ser χ1 t) or i + 3 (α-helix; Ser χ1 g+) residue. Non-proline cis amide bonds can also be stabilized by C-H/O interactions.
Collapse
Affiliation(s)
- Harrison C Oven
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Tang J, Li J, Lian J, Huang Y, Zhang Y, Lu Y, Zhong G, Wang Y, Zhang Z, Bai X, Fang M, Wu L, Shen H, Wu J, Wang Y, Zhang L, Zhang H. CDK2-activated TRIM32 phosphorylation and nuclear translocation promotes radioresistance in triple-negative breast cancer. J Adv Res 2024; 61:239-251. [PMID: 37734566 PMCID: PMC11258662 DOI: 10.1016/j.jare.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Despite radiotherapy being one of the major treatments for triple-negative breast cancer (TNBC), new molecular targets for its treatment are still required due to radioresistance. CDK2 plays a critical role in TNBC. However, the mechanism by which CDK2 promotes TNBC radioresistance remains to be clearly elucidated. OBJECTIVES We aimed to elucidate the relationship between CDK2 and TRIM32 and the regulation mechanism in TNBC. METHODS We performed immunohistochemical staining to detect nuclear TRIM32, CDK2 and STAT3 on TNBC tissues. Western blot assays and PCR were used to detect the protein and mRNA level changes. CRISPR/Cas9 used to knock out CDK2. shRNA-knockdown and transfection assays also used to knock out target genes. GST pull-down analysis, immunoprecipitation (IP) assay and in vitro isomerization analysis also used. Tumorigenesis studies also used to verify the results in vitro. RESULTS Herein, tripartite motif-containing protein 32 (TRIM32) is revealed as a substrate of CDK2. Radiotherapy promotes the binding of CDK2 and TRIM32, thus leading to increased CDK2-dependent phosphorylation of TRIM32 at serines 328 and 339. This causes the recruitment of PIN1, involved in cis-trans isomerization of TRIM32, resulting in importin α3 binding to TRIM32 and contributing to its nuclear translocation. Nuclear TRIM32 inhibits TC45-dephosphorylated STAT3, Leading to increased transcription of STAT3 and radioresistance in TNBC. These results were validated by clinical prognosis confirmed by the correlative expressions of the critical components of the CDK2/TRIM32/STAT3 signaling pathway. CONCLUSIONS Our findings demonstrate that regulating the CDK2/TRIM32/STAT3 pathway is a promising strategy for reducing radioresistance in TNBC.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Jing Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jiayan Lian
- Department of Pathology, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen 510275, Guandong, PR China
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, PR China
| | - Yaqing Zhang
- Department of Obstetrics and Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu 730050, PR China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Yaqi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhitao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xin Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Min Fang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Luming Wu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Haofei Shen
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jingyuan Wu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yiqing Wang
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
6
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
7
|
Zhu Q, Liang P, Meng H, Li F, Miao W, Chu C, Wang W, Li D, Chen C, Shi Y, Yu X, Ping Y, Niu C, Wu HB, Zhang A, Bian XW, Zhou W. Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells. Nat Commun 2024; 15:40. [PMID: 38167292 PMCID: PMC10762127 DOI: 10.1038/s41467-023-44349-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Meng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangzhen Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Miao
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongxue Li
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong Chen
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifang Ping
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chaoshi Niu
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hai-Bo Wu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Wu Bian
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Wenchao Zhou
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Carminati M, Rodríguez-Molina JB, Manav MC, Bellini D, Passmore LA. A direct interaction between CPF and RNA Pol II links RNA 3' end processing to transcription. Mol Cell 2023; 83:4461-4478.e13. [PMID: 38029752 PMCID: PMC10783616 DOI: 10.1016/j.molcel.2023.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.
Collapse
Affiliation(s)
| | | | - M Cemre Manav
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
9
|
Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X, Slade D. SPOC domain proteins in health and disease. Genes Dev 2023; 37:140-170. [PMID: 36927757 PMCID: PMC10111866 DOI: 10.1101/gad.350314.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Since it was first described >20 yr ago, the SPOC domain (Spen paralog and ortholog C-terminal domain) has been identified in many proteins all across eukaryotic species. SPOC-containing proteins regulate gene expression on various levels ranging from transcription to RNA processing, modification, export, and stability, as well as X-chromosome inactivation. Their manifold roles in controlling transcriptional output implicate them in a plethora of developmental processes, and their misregulation is often associated with cancer. Here, we provide an overview of the biophysical properties of the SPOC domain and its interaction with phosphorylated binding partners, the phylogenetic origin of SPOC domain proteins, the diverse functions of mammalian SPOC proteins and their homologs, the mechanisms by which they regulate differentiation and development, and their roles in cancer.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sebastian Platzer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
10
|
Sec61 channel subunit Sbh1/Sec61β promotes ER translocation of proteins with suboptimal targeting sequences and is fine-tuned by phosphorylation. J Biol Chem 2023; 299:102895. [PMID: 36639027 PMCID: PMC9947333 DOI: 10.1016/j.jbc.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
The highly conserved endoplasmic reticulum (ER) protein translocation channel contains one nonessential subunit, Sec61β/Sbh1, whose function is poorly understood so far. Its intrinsically unstructured cytosolic domain makes transient contact with ER-targeting sequences in the cytosolic channel vestibule and contains multiple phosphorylation sites suggesting a potential for regulating ER protein import. In a microscopic screen, we show that 12% of a GFP-tagged secretory protein library depends on Sbh1 for translocation into the ER. Sbh1-dependent proteins had targeting sequences with less pronounced hydrophobicity and often no charge bias or an inverse charge bias which reduces their insertion efficiency into the Sec61 channel. We determined that mutating two N-terminal, proline-flanked phosphorylation sites in the Sbh1 cytosolic domain to alanine phenocopied the temperature-sensitivity of a yeast strain lacking SBH1 and its ortholog SBH2. The phosphorylation site mutations reduced translocation into the ER of a subset of Sbh1-dependent proteins, including enzymes whose concentration in the ER lumen is critical for ER proteostasis. In addition, we found that ER import of these proteins depended on the activity of the phospho-S/T-specific proline isomerase Ess1 (PIN1 in mammals). We conclude that Sbh1 promotes ER translocation of substrates with suboptimal targeting sequences and that its activity can be regulated by a conformational change induced by N-terminal phosphorylation.
Collapse
|
11
|
Chen XR, Igumenova TI. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Adv Biol Regul 2023; 87:100938. [PMID: 36496344 PMCID: PMC9992314 DOI: 10.1016/j.jbior.2022.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Fukudome A, Ishiga Y, Nagashima Y, Davidson KH, Chou HA, Mysore KS, Koiwa H. Functional diversity of Medicago truncatula RNA polymerase II CTD phosphatase isoforms produced in the Arabidopsis thaliana superexpression platform. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111309. [PMID: 35696909 DOI: 10.1016/j.plantsci.2022.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Medicago truncatula is a model system for legume plants, which has substantially expanded the genome relative to the prototypical model dicot plant, Arabidopsis thaliana. An essential transcriptional regulator, FCP1 (transcription factor IIF-interacting RNA polymerase II carboxyl-terminal phosphatase 1) ortholog, is encoded by a single essential gene CPL4 (CTD-phosphatase-like 4), whereas M. truncatula genome contains four genes homologous to FCP1/AtCPL4, and splicing variants of MtCPL4 are observed. Functional diversification of MtCPL4 family proteins was analyzed using recombinant proteins (MtCPL4a1, MtCPL4a2, and MtCPL4b) produced in Arabidopsis cell culture system developed for plant protein overexpression. In vitro CTD phosphatase assay using highly purified MtCPL4 preparations revealed a potent CTD phosphatase activity in MtCPL4b, but not two splicing variants of MtCPL4a. On the other hand, in planta binding assay to RNA polymerase II (pol II) revealed a greater pol II-binding activity of both MtCPL4a variants. Our results indicate functional diversification of MtCPL4 isoforms and suggest the presence of a large number of functionally specialized CTD-phosphatase-like proteins in plants.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yasuhiro Ishiga
- Noble Research Institute, LLC., Ardmore, OK 73401, USA; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukihiro Nagashima
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Katherine H Davidson
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hsiu-An Chou
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., Ardmore, OK 73401, USA; Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74044, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA; Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Kim HS, Jeon Y, Jang YO, Lee H, Shin Y, Lee CW. Mammalian Ssu72 phosphatase preferentially considers tissue-specific actively transcribed gene expression by regulating RNA Pol II transcription. Theranostics 2022; 12:186-206. [PMID: 34987641 PMCID: PMC8690912 DOI: 10.7150/thno.62274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
Reversible phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (Pol II) is essential for gene expression control. How altering the phosphorylation of the CTD contributes to gene expression in mammalian systems remains poorly understood. Methods: Primary mouse embryonic fibroblasts, hepatocytes, and embryonic stem cells were isolated from conditional Ssu72f/f mice. To knockout the mouse Ssu72 gene, we infected the cells with adenoviruses of incorporated luciferase and Cre recombinase, respectively. RNA sequencing, ChIP sequencing, ChIP assay, immunoblot analyses, qRT-PCR assay, and immunostaining were performed to gain insights into the functional mechanisms of Ssu72 loss in Pol II dynamics. Results: Using primary cells isolated from Ssu72 conditional knockout and transgenic mice, we found that mammalian Ssu72-mediated transcriptional elongation rather than polyadenylation or RNA processing contributed to the transcriptional regulation of various genes. Depletion of Ssu72 resulted in aberrant Pol II pausing and elongation defects. Reduced transcriptional elongation efficiency tended to preferentially affect expression levels of actively transcribed genes in a tissue-specific manner. Furthermore, Ssu72 CTD phosphatase seemed to regulate the phosphorylation levels of CTD Ser2 and Thr4 through accurate modulation of P-TEFb activity and recruitment. Conclusions: Our findings demonstrate that mammalian Ssu72 contributes to the transcription of tissue-specific actively transcribed gene expression by regulating reciprocal phosphorylation of Pol II CTD.
Collapse
|
14
|
Venkat Ramani MK, Yang W, Irani S, Zhang Y. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. J Mol Biol 2021; 433:166912. [PMID: 33676925 PMCID: PMC8184622 DOI: 10.1016/j.jmb.2021.166912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
The highly conserved C-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises a consensus heptad (Y1S2P3T4S5P6S7) repeated multiple times. Despite the simplicity of its sequence, the essential CTD domain orchestrates eukaryotic transcription and co-transcriptional processes, including transcription initiation, elongation, and termination, and mRNA processing. These distinct facets of the transcription cycle rely on specific post-translational modifications (PTM) of the CTD, in which five out of the seven residues in the heptad repeat are subject to phosphorylation. A hypothesis termed the "CTD code" has been proposed in which these PTMs and their combinations generate a sophisticated landscape for spatiotemporal recruitment of transcription regulators to Pol II. In this review, we summarize the recent experimental evidence understanding the biological role of the CTD, implicating a context-dependent theme that significantly enhances the ability of accurate transcription by RNA polymerase II. Furthermore, feedback communication between the CTD and histone modifications coordinates chromatin states with RNA polymerase II-mediated transcription, ensuring the effective and accurate conversion of information into cellular responses.
Collapse
Affiliation(s)
| | - Wanjie Yang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
15
|
Namitz KEW, Zheng T, Canning AJ, Alicea-Velazquez NL, Castañeda CA, Cosgrove MS, Hanes SD. Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism. Commun Biol 2021; 4:398. [PMID: 33767358 PMCID: PMC7994582 DOI: 10.1038/s42003-021-01906-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
Accurate gene transcription in eukaryotes depends on isomerization of serine-proline bonds within the carboxy-terminal domain (CTD) of RNA polymerase II. Isomerization is part of the "CTD code" that regulates recruitment of proteins required for transcription and co-transcriptional RNA processing. Saccharomyces cerevisiae Ess1 and its human ortholog, Pin1, are prolyl isomerases that engage the long heptad repeat (YSPTSPS)26 of the CTD by an unknown mechanism. Here, we used an integrative structural approach to decipher Ess1 interactions with the CTD. Ess1 has a rigid linker between its WW and catalytic domains that enforces a distance constraint for bivalent interaction with the ends of long CTD substrates (≥4-5 heptad repeats). Our binding results suggest that the Ess1 WW domain anchors the proximal end of the CTD substrate during isomerization, and that linker divergence may underlie evolution of substrate specificity.
Collapse
Affiliation(s)
- Kevin E. W. Namitz
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA ,grid.29857.310000 0001 2097 4281Present Address: Department of Chemistry, Pennsylvania State University, University Park, PA USA
| | - Tongyin Zheng
- grid.264484.80000 0001 2189 1568Departments of Biology and Chemistry, Syracuse University, Syracuse, NY USA
| | - Ashley J. Canning
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA
| | - Nilda L. Alicea-Velazquez
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA ,grid.247980.00000 0001 2184 3689Present Address: Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT USA
| | - Carlos A. Castañeda
- grid.264484.80000 0001 2189 1568Departments of Biology and Chemistry, Syracuse University, Syracuse, NY USA
| | - Michael S. Cosgrove
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA
| | - Steven D. Hanes
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA
| |
Collapse
|
16
|
Wang YT, Hsiao WY, Wang SW. The fission yeast Pin1 peptidyl-prolyl isomerase promotes dissociation of Sty1 MAPK from RNA polymerase II and recruits Ssu72 phosphatase to facilitate oxidative stress induced transcription. Nucleic Acids Res 2021; 49:805-817. [PMID: 33410907 PMCID: PMC7826279 DOI: 10.1093/nar/gkaa1243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Pin1 is a peptidyl-prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II (Pol II) through interaction with the C-terminal domain (CTD) of Rpb1, the largest subunit of Pol II. We demonstrated that this function is important for cellular response to oxidative stress in the fission yeast Schizosaccharomyces pombe. In response to oxidative stress, the Atf1 transcription factor targets Sty1, the mitogen-activated protein kinase (MAPK), to specific stress-responsive promoters. Anchored Sty1 recruits Pol II through direct association with Rpb1-CTD and phosphorylates the reiterated heptad sequence at Serine 5. Pin1 binds phosphorylated CTD to promote dissociation of Sty1 from it, and directly recruits Ssu72 phosphatase to facilitate dephosphorylation of CTD for transcription elongation. In the absence of Pin1, the association of Sty1-Atf1 with Rpb1 persists on stress-responsive promoters failed to generate transcripts of the corresponding genes effectively. The identified characteristic features of the fission yeast Pin1 are conserved in humans. We demonstrated that elevated Pin1 level in cancer cells might help to sustain survival under oxidative stress generated from their altered metabolic pathways. Together, these results suggest a conserved function of Pin1 in cellular response to oxidative stress among eukaryotic cells that might have clinical implication.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Wan-Yi Hsiao
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Shao-Win Wang
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
17
|
Liu C, Zhang W, Xing W. Diverse and conserved roles of the protein Ssu72 in eukaryotes: from yeast to higher organisms. Curr Genet 2020; 67:195-206. [PMID: 33244642 DOI: 10.1007/s00294-020-01132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
Gene transcription is a complex biological process that involves a set of factors, enzymes and nucleotides. Ssu72 plays a crucial role in every step of gene transcription. RNA polymerase II (RNAPII) occupies an important position in the synthesis of mRNAs. The largest subunit of RNAPII, Rpb1, harbors its C-terminal domain (CTD), which participates in the initiation, elongation and termination of transcription. The CTD consists of heptad repeats of the consensus motif Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 and is highly conserved among different species. The CTD is flexible in structure and undergoes conformational changes in response to serine phosphorylation and proline isomerization, which are regulated by specific kinases/phosphatases and isomerases, respectively. Ssu72 is a CTD phosphatase with catalytic activity against phosphorylated Ser5 and Ser7. The isomerization of Pro6 affects the binding of Ssu72 to its substrate. Ssu72 can also indirectly change the phosphorylation status of Ser2. In addition, Ssu72 is a member of the 3'-end cleavage and polyadenylation factor (CPF) complex. Together with other CPF components, Ssu72 regulates the 3'-end processing of premature mRNA. Recent studies have revealed other roles of Ssu72, including its roles in balancing phosphate homeostasis and controlling chromosome behaviors, which should be further explored. In conclusion, the protein Ssu72 is an enzyme worthy of attention, not confined to its role in gene transcription.
Collapse
Affiliation(s)
- Changfu Liu
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weihao Zhang
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wenge Xing
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
18
|
Sanchez AM, Garg A, Shuman S, Schwer B. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3' processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Nucleic Acids Res 2020; 48:4811-4826. [PMID: 32282918 PMCID: PMC7229847 DOI: 10.1093/nar/gkaa212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
The phosphorylation pattern of Pol2 CTD Y1S2P3T4S5P6S7 repeats comprises an informational code coordinating transcription and RNA processing. cis-trans isomerization of CTD prolines expands the scope of the code in ways that are not well understood. Here we address this issue via analysis of fission yeast peptidyl-prolyl isomerase Pin1. A pin1Δ allele that does not affect growth per se is lethal in the absence of cleavage-polyadenylation factor (CPF) subunits Ppn1 and Swd22 and elicits growth defects absent CPF subunits Ctf1 and Dis2 and termination factor Rhn1. Whereas CTD S2A, T4A, and S7A mutants thrive in combination with pin1Δ, a Y1F mutant does not, nor do CTD mutants in which half the Pro3 or Pro6 residues are replaced by alanine. Phosphate-acquisition genes pho1, pho84 and tgp1 are repressed by upstream lncRNAs and are sensitive to changes in lncRNA 3' processing/termination. pin1Δ hyper-represses PHO gene expression and erases the de-repressive effect of CTD-S7A. Transcriptional profiling delineated sets of 56 and 22 protein-coding genes that are down-regulated and up-regulated in pin1Δ cells, respectively, 77% and 100% of which are downregulated/upregulated when the cis-proline-dependent Ssu72 CTD phosphatase is inactivated. Our results implicate Pin1 as a positive effector of 3' processing/termination that acts via Ssu72.
Collapse
Affiliation(s)
- Ana M Sanchez
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| |
Collapse
|
19
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3'-end processing. Transcription 2020; 11:83-96. [PMID: 32522085 DOI: 10.1080/21541264.2020.1777047] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The majority of eukaryotic messenger RNA precursors (pre-mRNAs) undergo cleavage and polyadenylation at their 3' end. This canonical 3'-end processing depends on sequence elements in the pre-mRNA as well as a mega-dalton protein machinery. The cleavage site in mammalian pre-mRNAs is located between an upstream poly(A) signal, most frequently an AAUAAA hexamer, and a GU-rich downstream sequence element. This review will summarize recent advances from the studies on this canonical 3'-end processing machinery. They have revealed the molecular mechanism for the recognition of the poly(A) signal and provided the first glimpse into the overall architecture of the machinery. The studies also show that the machinery is highly dynamic conformationally, and extensive re-arrangements are necessary for its activation. Inhibitors targeting the active site of the CPSF73 nuclease of this machinery have anti-cancer, anti-inflammatory and anti-protozoal effects, indicating that CPSF73 and pre-mRNA 3'-end processing in general are attractive targets for drug discovery. ABBREVIATIONS APA: alternative polyadenylation; β-CASP: metallo-β-lactamase-associated CPSF Artemis SNM1/PSO2; CTD: C-terminal domain; CF: cleavage factor; CPF: cleavage and polyadenylation factor; CPSF: cleavage and polyadenylation specificity factor; CstF: cleavage stimulation factor; DSE: downstream element; HAT: half a TPR; HCC: histone pre-mRNA cleavage complex; mCF: mammalian cleavage factor; mPSF: mammalian polyadenylation specificity factor; mRNA: messenger RNA; nt: nucleotide; NTD: N-terminal domain; PAP: polyadenylate polymerase; PAS: polyadenylation signal; PIM: mPSF interaction motif; Poly(A): polyadenylation, polyadenylate; Pol II: RNA polymerase II; pre-mRNA: messenger RNA precursor; RRM: RNA recognition module, RNA recognition motif; snRNP: small nuclear ribonucleoprotein; TPR: tetratricopeptide repeat; UTR: untranslated region; ZF: zinc finger.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University , New York, NY, USA
| |
Collapse
|
21
|
Rallabandi HR, Lee D, Sung J, Kim YJ. Peripheral Inhibition of Small C‐Terminal Domain Phosphatase 1 With Napthoquinone Analogs. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Harikrishna Reddy Rallabandi
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Dongsun Lee
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Jinmo Sung
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Young Jun Kim
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| |
Collapse
|
22
|
Lyons DE, McMahon S, Ott M. A combinatorial view of old and new RNA polymerase II modifications. Transcription 2020; 11:66-82. [PMID: 32401151 DOI: 10.1080/21541264.2020.1762468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The production of mRNA is a dynamic process that is highly regulated by reversible post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II. The CTD is a highly repetitive domain consisting mostly of the consensus heptad sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Phosphorylation of serine residues within this repeat sequence is well studied, but modifications of all residues have been described. Here, we focus on integrating newly identified and lesser-studied CTD post-translational modifications into the existing framework. We also review the growing body of work demonstrating crosstalk between different CTD modifications and the functional consequences of such crosstalk on the dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Danielle E Lyons
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Sarah McMahon
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
23
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
24
|
Irani S, Sipe SN, Yang W, Burkholder NT, Lin B, Sim K, Matthews WL, Brodbelt JS, Zhang Y. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription. J Biol Chem 2019; 294:8592-8605. [PMID: 30971428 DOI: 10.1074/jbc.ra119.007697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II contains a repetitive heptad sequence (YSPTSPS) whose phosphorylation states coordinate eukaryotic transcription by recruiting protein regulators. The precise placement and removal of phosphate groups on specific residues of the CTD are critical for the fidelity and effectiveness of RNA polymerase II-mediated transcription. During transcriptional elongation, phosphoryl-Ser5 (pSer5) is gradually dephosphorylated by CTD phosphatases, whereas Ser2 phosphorylation accumulates. Using MS, X-ray crystallography, protein engineering, and immunoblotting analyses, here we investigated the structure and function of SSU72 homolog, RNA polymerase II CTD phosphatase (Ssu72, from Drosophila melanogaster), an essential CTD phosphatase that dephosphorylates pSer5 at the transition from elongation to termination, to determine the mechanism by which Ssu72 distinguishes the highly similar pSer2 and pSer5 CTDs. We found that Ssu72 dephosphorylates pSer5 effectively but only has low activities toward pSer7 and pSer2 The structural analysis revealed that Ssu72 requires that the proline residue in the substrate's SP motif is in the cis configuration, forming a tight β-turn for recognition by Ssu72. We also noted that residues flanking the SP motif, such as the bulky Tyr1 next to Ser2, prevent the formation of such configuration and enable Ssu72 to distinguish among the different SP motifs. The phosphorylation of Tyr1 further prohibited Ssu72 binding to pSer2 and thereby prevented untimely Ser2 dephosphorylation. Our results reveal critical roles for Tyr1 in differentiating the phosphorylation states of Ser2/Ser5 of CTD in RNA polymerase II that occur at different stages of transcription.
Collapse
Affiliation(s)
- Seema Irani
- Department of Chemical Engineering, The University of Texas, Austin, Texas 78712; Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas, Austin, Texas 78712
| | - Wanjie Yang
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | | | - Brian Lin
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | - Kelly Sim
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | - Wendy L Matthews
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | | | - Yan Zhang
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712; Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712.
| |
Collapse
|
25
|
Burriss KH, Mosley AL. Methods review: Mass spectrometry analysis of RNAPII complexes. Methods 2019; 159-160:105-114. [PMID: 30902665 DOI: 10.1016/j.ymeth.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
RNA Polymerase II (RNAPII) is responsible for transcribing multiple RNA species throughout eukaryotes. A variety of protein-protein interactions occur throughout the transcription cycle for coordinated regulation of transcription initiation, elongation, and/or termination. Taking a proteomics approach to study RNAPII transcription thereby offers a comprehensive view of both RNAPII biology and the variety of proteins that regulate the process itself. This review will focus on how mass spectrometry (MS) methods have expanded understanding of RNAPII and its transcription-regulatory interaction partners. The application of affinity purification mass spectrometry has led to the discovery of a number of novel groups of proteins that regulate an array of RNAPII biology ranging from nuclear import to regulation of phosphorylation state. Additionally, a number of methods have been developed using mass spectrometry to measure protein subunit stoichiometry within and across protein complexes and to perform various types of architectural analysis using structural proteomics approaches. The key methods that we will focus on related to RNAPII mass spectrometry analyses include: affinity purification mass spectrometry, protein post-translational modification analysis, crosslinking mass spectrometry, and native mass spectrometry.
Collapse
Affiliation(s)
- Katlyn Hughes Burriss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46402, United States
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46402, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46402, United States.
| |
Collapse
|
26
|
Burkholder NT, Medellin B, Irani S, Matthews W, Showalter SA, Zhang YJ. Chemical Tools for Studying the Impact of cis/trans Prolyl Isomerization on Signaling: A Case Study on RNA Polymerase II Phosphatase Activity and Specificity. Methods Enzymol 2018; 607:269-297. [PMID: 30149861 PMCID: PMC6701646 DOI: 10.1016/bs.mie.2018.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Proline isomerization is ubiquitous in proteins and is important for regulating important processes such as folding, recognition, and enzymatic activity. In humans, peptidyl-prolyl isomerase cis-trans isomerase NIMA interacting 1 (Pin1) is responsible for mediating fast conversion between cis- and trans-conformations of serine/threonine-proline (S/T-P) motifs in a large number of cellular pathways, many of which are involved in normal development as well as progression of several cancers and diseases. One of the major processes that Pin1 regulates is phosphatase activity against the RNA polymerase II C-terminal domain (RNAPII CTD). However, molecular tools capable of distinguishing the effects of proline conformation on phosphatase function have been lacking. A key tool that allows us to understand isomeric specificity of proteins toward their substrates is the usage of proline mimicking isosteres that are locked to prevent cis/trans-proline conversion. These locked isosteres can be incorporated into standard peptide synthesis and then used in replacement of native substrates in various experimental techniques such as kinetic and thermodynamic assays as well as X-ray crystallography. We will describe the application of these chemical tools in detail using CTD phosphatases as an example. We will also discuss alternative methods for analyzing the effect of proline conformation such as 13C NMR and the biological implications of proline isomeric specificity of proteins. The chemical and analytical tools presented in this chapter are widely applicable and should help elucidate many questions on the role of proline isomerization in biology.
Collapse
Affiliation(s)
| | - Brenda Medellin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Seema Irani
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Wendy Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Scott A Showalter
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
27
|
Miller MC, Zheng Y, Yan J, Zhou Y, Tai G, Mayo KH. Novel polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization. Glycobiology 2018; 27:1038-1051. [PMID: 28973299 DOI: 10.1093/glycob/cwx071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Interactions between galectins and polysaccharides are crucial to many biological processes, and yet these are some of the least understood, usually being limited to studies with small saccharides and short oligosaccharides. The present study is focused on human galectin-3 (Gal-3) interactions with a 60 kDa rhamnogalacturonan RG-I-4 that we use as a model to garner information as to how galectins interact with large polysaccharides, as well as to develop this agent as a therapeutic against human disease. Gal-3 is unique among galectins, because as the only chimera-type, it has a long N-terminal tail (NT) that has long puzzled investigators due to its dynamic, disordered nature and presence of numerous prolines. Here, we use 15N-1H heteronuclear single quantum coherence NMR spectroscopy to demonstrate that multiple sites on RG-I-4 provide epitopes for binding to three sites on 15N-labeled Gal-3, two within its carbohydrate recognition domain (CRD) and one at a novel site within the NT encompassing the first 40 residues that are highly conserved among all species of Gal-3. Moreover, strong binding of RG-I-4 to the Gal-3 NT occurs on a very slow time scale, suggesting that it may be mediated by cis-trans proline isomerization, a well-recognized modulator of many biological activities. The NT binding epitope within RG-I-4 appears to reside primarily in the side chains of the polysaccharide, some of which are galactans. Our results provide new insight into the role of the NT in Gal-3 function.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Y Zheng
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Jingmin Yan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Babokhov M, Mosaheb MM, Baker RW, Fuchs SM. Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast. G3 (BETHESDA, MD.) 2018; 8:1593-1601. [PMID: 29523636 PMCID: PMC5940151 DOI: 10.1534/g3.118.200086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII) is required to regulate transcription and to integrate it with other essential cellular processes. In the budding yeast Saccharomyces cerevisiae, the CTD of Rpb1p consists of 26 conserved heptad repeats that are post-translationally modified to orchestrate protein factor binding at different stages of the transcription cycle. A long-standing question in the study of the CTD is if there are any functional differences between the 26 repeats. In this study, we present evidence that repeats of identical sequence have different functions based on their position within the CTD. We assembled plasmids expressing Rpb1p with serine to alanine substitutions in three defined regions of the CTD and measured a range of phenotypes for yeast expressing these constructs. Mutations in the beginning and middle regions of the CTD had drastic, and region-specific effects, while mutating the distal region had no observable phenotype. Further mutational analysis determined that Ser5 within the first region of repeats was solely responsible for the observed growth differences and sequencing fast-growing suppressors allowed us to further define the functional regions of the CTD. This mutational analysis is consistent with current structural models for how the RNAPII holoenzyme and the CTD specifically would reside in complex with Mediator and establishes a foundation for studying regioselective binding along the repetitive RNAPII CTD.
Collapse
Affiliation(s)
| | | | - Richard W Baker
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | | |
Collapse
|
29
|
Matena A, Rehic E, Hönig D, Kamba B, Bayer P. Structure and function of the human parvulins Pin1 and Par14/17. Biol Chem 2018; 399:101-125. [PMID: 29040060 DOI: 10.1515/hsz-2017-0137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Parvulins belong to the family of peptidyl-prolyl cis/trans isomerases (PPIases) assisting in protein folding and in regulating the function of a broad variety of proteins in all branches of life. The human representatives Pin1 and Par14/17 are directly involved in processes influencing cellular maintenance and cell fate decisions such as cell-cycle progression, metabolic pathways and ribosome biogenesis. This review on human parvulins summarizes the current knowledge of these enzymes and intends to oppose the well-studied Pin1 to its less well-examined homolog human Par14/17 with respect to structure, catalytic and cellular function.
Collapse
Affiliation(s)
- Anja Matena
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Edisa Rehic
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Dana Hönig
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Bianca Kamba
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| |
Collapse
|
30
|
Alderson TR, Lee JH, Charlier C, Ying J, Bax A. Propensity for cis-Proline Formation in Unfolded Proteins. Chembiochem 2017; 19:37-42. [PMID: 29064600 DOI: 10.1002/cbic.201700548] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/19/2022]
Abstract
In unfolded proteins, peptide bonds involving Pro residues exist in equilibrium between the minor cis and major trans conformations. Folded proteins predominantly contain trans-Pro bonds, and slow cis-trans Pro isomerization in the unfolded state is often found to be a rate-limiting step in protein folding. Moreover, kinases and phosphatases that act upon Ser/Thr-Pro motifs exhibit preferential recognition of either the cis- or trans-Pro conformer. Here, NMR spectra obtained at both atmospheric and high pressures indicate that the population of cis-Pro falls well below previous estimates, an effect attributed to the use of short peptides with charged termini in most prior model studies. For the intrinsically disordered protein α-synuclein, cis-Pro populations at all of its five X-Pro bonds are less than 5 %, with only modest ionic strength dependence and no detectable effect of the previously demonstrated interaction between the N- and C-terminal halves of the protein. Comparison to small peptides with the same amino-acid sequence indicates that peptides, particularly those with unblocked, oppositely charged amino and carboxyl end groups, strongly overestimate the amount of cis-Pro.
Collapse
Affiliation(s)
- T Reid Alderson
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Jung Ho Lee
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Cyril Charlier
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
31
|
Gibbs EB, Lu F, Portz B, Fisher MJ, Medellin BP, Laremore TN, Zhang YJ, Gilmour DS, Showalter SA. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat Commun 2017; 8:15233. [PMID: 28497798 PMCID: PMC5437310 DOI: 10.1038/ncomms15233] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit cycles through phosphorylation states that correlate with progression through the transcription cycle and regulate nascent mRNA processing. Structural analyses of yeast and mammalian CTD are hampered by their repetitive sequences. Here we identify a region of the Drosophila melanogaster CTD that is essential for Pol II function in vivo and capitalize on natural sequence variations within it to facilitate structural analysis. Mass spectrometry and NMR spectroscopy reveal that hyper-Ser5 phosphorylation transforms the local structure of this region via proline isomerization. The sequence context of this switch tunes the activity of the phosphatase Ssu72, leading to the preferential de-phosphorylation of specific heptads. Together, context-dependent conformational switches and biased dephosphorylation suggest a mechanism for the selective recruitment of cis-proline-specific regulatory factors and region-specific modulation of the CTD code that may augment gene regulation in developmentally complex organisms.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Feiyue Lu
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Fisher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brenda P Medellin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tatiana N Laremore
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
32
|
Jasnovidova O, Krejcikova M, Kubicek K, Stefl R. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p. EMBO Rep 2017; 18:906-913. [PMID: 28468956 PMCID: PMC5452035 DOI: 10.15252/embr.201643723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphorylation patterns of the C‐terminal domain (CTD) of largest subunit of RNA polymerase II (called the CTD code) orchestrate the recruitment of RNA processing and transcription factors. Recent studies showed that not only serines and tyrosines but also threonines of the CTD can be phosphorylated with a number of functional consequences, including the interaction with yeast transcription termination factor, Rtt103p. Here, we report the solution structure of the Rtt103p CTD‐interacting domain (CID) bound to Thr4 phosphorylated CTD, a poorly understood letter of the CTD code. The structure reveals a direct recognition of the phospho‐Thr4 mark by Rtt103p CID and extensive interactions involving residues from three repeats of the CTD heptad. Intriguingly, Rtt103p's CID binds equally well Thr4 and Ser2 phosphorylated CTD. A doubly phosphorylated CTD at Ser2 and Thr4 diminishes its binding affinity due to electrostatic repulsion. Our structural data suggest that the recruitment of a CID‐containing CTD‐binding factor may be coded by more than one letter of the CTD code.
Collapse
Affiliation(s)
- Olga Jasnovidova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Magdalena Krejcikova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Kubicek
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Richard Stefl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Proc Natl Acad Sci U S A 2017; 114:E3944-E3953. [PMID: 28465432 DOI: 10.1073/pnas.1700128114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4- or phospho-Ser2-bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2-modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.
Collapse
|
34
|
Fischl H, Howe FS, Furger A, Mellor J. Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate. Mol Cell 2017; 65:685-698.e8. [PMID: 28190769 PMCID: PMC5316414 DOI: 10.1016/j.molcel.2017.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.
Collapse
Affiliation(s)
- Harry Fischl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Françoise S Howe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andre Furger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
35
|
Mayfield JE, Robinson MR, Cotham VC, Irani S, Matthews WL, Ram A, Gilmour DS, Cannon JR, Zhang YJ, Brodbelt JS. Mapping the Phosphorylation Pattern of Drosophila melanogaster RNA Polymerase II Carboxyl-Terminal Domain Using Ultraviolet Photodissociation Mass Spectrometry. ACS Chem Biol 2017; 12:153-162. [PMID: 28103682 DOI: 10.1021/acschembio.6b00729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphorylation of the C-terminal domain of RNA polymerase II (CTD) plays an essential role in eukaryotic transcription by recruiting transcriptional regulatory factors to the active polymerase. However, the scarcity of basic residues and repetitive nature of the CTD sequence impose a huge challenge for site-specific characterization of phosphorylation, hindering our understanding of this crucial biological process. Herein, we apply LC-UVPD-MS methods to analyze post-translational modification along native sequence CTDs. Application of our method to the Drosophila melanogaster CTD reveals the phosphorylation pattern of this model organism for the first time. The divergent nature of fly CTD allows us to derive rules defining how flanking residues affect phosphorylation choice by CTD kinases. Our data support the use of LC-UVPD-MS to decipher the CTD code and determine rules that program its function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David S. Gilmour
- Department
of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | | | | | | |
Collapse
|
36
|
Chen F, Chisholm AD, Jin Y. Tissue-specific regulation of alternative polyadenylation represses expression of a neuronal ankyrin isoform in C. elegans epidermal development. Development 2017; 144:698-707. [PMID: 28087624 DOI: 10.1242/dev.146001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
Differential mRNA polyadenylation plays an important role in shaping the neuronal transcriptome. In C. elegans, several ankyrin isoforms are produced from the unc-44 locus through alternative polyadenylation. Here, we identify a key role for an intronic polyadenylation site (PAS) in temporal- and tissue-specific regulation of UNC-44/ankyrin isoforms. Removing an intronic PAS results in ectopic expression of the neuronal ankyrin isoform in non-neural tissues. This mis-expression underlies epidermal developmental defects in mutants of the conserved tumor suppressor death-associated protein kinase dapk-1 We have previously reported that the use of this intronic PAS depends on the nuclear polyadenylation factor SYDN-1, which inhibits the RNA polymerase II CTD phosphatase SSUP-72. Consistent with this, loss of sydn-1 blocks ectopic expression of neuronal ankyrin and suppresses epidermal morphology defects of dapk-1 These effects of sydn-1 are mediated by ssup-72 autonomously in the epidermis. We also show that a peptidyl-prolyl isomerase PINN-1 antagonizes SYDN-1 in the spatiotemporal control of neuronal ankyrin isoform. Moreover, the nuclear localization of PINN-1 is altered in dapk-1 mutants. Our data reveal that tissue and stage-specific expression of ankyrin isoforms relies on differential activity of positive and negative regulators of alternative polyadenylation.
Collapse
Affiliation(s)
- Fei Chen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA .,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
The pol II CTD: new twists in the tail. Nat Struct Mol Biol 2016; 23:771-7. [DOI: 10.1038/nsmb.3285] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
|
38
|
Kim HS, Fernandes G, Lee CW. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses. Mol Cells 2016; 39:654-62. [PMID: 27669825 PMCID: PMC5050529 DOI: 10.14348/molcells.2016.0214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Gary Fernandes
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351,
Korea
| |
Collapse
|
39
|
Phosphatase Rtr1 Regulates Global Levels of Serine 5 RNA Polymerase II C-Terminal Domain Phosphorylation and Cotranscriptional Histone Methylation. Mol Cell Biol 2016; 36:2236-45. [PMID: 27247267 DOI: 10.1128/mcb.00870-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 05/25/2016] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, the C-terminal domain (CTD) of Rpb1 contains a heptapeptide repeat sequence of (Y1S2P3T4S5P6S7)n that undergoes reversible phosphorylation through the opposing action of kinases and phosphatases. Rtr1 is a conserved protein that colocalizes with RNA polymerase II (RNAPII) and has been shown to be important for the transition from elongation to termination during transcription by removing RNAPII CTD serine 5 phosphorylation (Ser5-P) at a selection of target genes. In this study, we show that Rtr1 is a global regulator of the CTD code with deletion of RTR1 causing genome-wide changes in Ser5-P CTD phosphorylation and cotranscriptional histone H3 lysine 36 trimethylation (H3K36me3). Using chromatin immunoprecipitation and high-resolution microarrays, we show that RTR1 deletion results in global changes in RNAPII Ser5-P levels on genes with different lengths and transcription rates consistent with its role as a CTD phosphatase. Although Ser5-P levels increase, the overall occupancy of RNAPII either decreases or stays the same in the absence of RTR1 Additionally, the loss of Rtr1 in vivo leads to increases in H3K36me3 levels genome-wide, while total histone H3 levels remain relatively constant within coding regions. Overall, these findings suggest that Rtr1 regulates H3K36me3 levels through changes in the number of binding sites for the histone methyltransferase Set2, thereby influencing both the CTD and histone codes.
Collapse
|
40
|
Ahn JH, Rechsteiner A, Strome S, Kelly WG. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006227. [PMID: 27541139 PMCID: PMC4991786 DOI: 10.1371/journal.pgen.1006227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/08/2016] [Indexed: 01/22/2023] Open
Abstract
The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation.
Collapse
Affiliation(s)
- Jeong H. Ahn
- Biology Department, Emory University, Atlanta, Georgia, United States of America
- Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Andreas Rechsteiner
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - William G. Kelly
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
41
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
42
|
Sosa LJ, Malter JS, Hu J, Bustos Plonka F, Oksdath M, Nieto Guil AF, Quiroga S, Pfenninger KH. Protein interacting with NIMA (never in mitosis A)-1 regulates axonal growth cone adhesion and spreading through myristoylated alanine-rich C kinase substrate isomerization. J Neurochem 2016; 137:744-55. [DOI: 10.1111/jnc.13612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/20/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Lucas J. Sosa
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center; University of Colorado School of Medicine; Aurora Colorado USA
| | - James S. Malter
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Jie Hu
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Florentyna Bustos Plonka
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Mariana Oksdath
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Alvaro F. Nieto Guil
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Karl H. Pfenninger
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center; University of Colorado School of Medicine; Aurora Colorado USA
| |
Collapse
|
43
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
44
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
45
|
Ahuja P, Cantrelle FX, Huvent I, Hanoulle X, Lopez J, Smet C, Wieruszeski JM, Landrieu I, Lippens G. Proline Conformation in a Functional Tau Fragment. J Mol Biol 2015; 428:79-91. [PMID: 26655856 DOI: 10.1016/j.jmb.2015.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
The conformational state of distinct prolines can determine the folding of a protein but equally other biological processes when coupled to a conformation-sensitive secondary reaction. For the neuronal tau protein, the importance of proline conformation is underscored by its interaction with different prolyl cis/trans isomerases. The proline conformation would gain even further importance after phosphorylation of the preceding residue by various proline-directed kinases. A number of molecular diseases including Alzheimer's disease and traumatic brain injury were thereby recently qualified as "cistauosis", as they would imply a cis conformation for the pThr231-Pro232 prolyl bond. We here investigate by NMR spectroscopy the conformation of all prolines in a functional Tau fragment, Tau[208-324]. Although we can detect and identify some minor conformers in the cis form, we show that all prolines are for over 90% in the trans conformation. Phosphorylation by CDK2/CycA3, which notably leads to complete modification of the Thr231 residue, does not change this conclusion. Our data hence disagree with the notion that specific prolyl bonds in tau would adopt preferentially the cis conformation.
Collapse
Affiliation(s)
- Puneet Ahuja
- UMR8576 CNRS Lille University, 59658 Villeneuve d'Ascq, France
| | | | - Isabelle Huvent
- UMR8576 CNRS Lille University, 59658 Villeneuve d'Ascq, France
| | - Xavier Hanoulle
- UMR8576 CNRS Lille University, 59658 Villeneuve d'Ascq, France
| | - Juan Lopez
- UMR8576 CNRS Lille University, 59658 Villeneuve d'Ascq, France
| | - Caroline Smet
- UMR8576 CNRS Lille University, 59658 Villeneuve d'Ascq, France
| | | | | | - G Lippens
- UMR8576 CNRS Lille University, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
46
|
Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Structure 2015; 23:2267-2279. [PMID: 26655473 DOI: 10.1016/j.str.2015.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Hierarchic phosphorylation and concomitant Pin1-mediated proline isomerization of the oncoprotein c-Myc controls its cellular stability and activity. However, the molecular basis for Pin1 recognition and catalysis of c-Myc and other multisite, disordered substrates in cell regulation and disease is unclear. By nuclear magnetic resonance, surface plasmon resonance, and molecular modeling, we show that Pin1 subdomains jointly pre-anchor unphosphorylated c-Myc1-88 in the Pin1 interdomain cleft in a disordered, or "fuzzy", complex at the herein named Myc Box 0 (MB0) conserved region N-terminal to the highly conserved Myc Box I (MBI). Ser62 phosphorylation in MBI intensifies previously transient MBI-Pin1 interactions in c-Myc1-88 binding, and increasingly engages Pin1PPIase and its catalytic region with maintained MB0 interactions. In cellular assays, MB0 mutated c-Myc shows decreased Pin1 interaction, increased protein half-life, but lowered rates of Myc-driven transcription and cell proliferation. We propose that dynamic Pin1 recognition of MB0 contributes to the regulation of c-Myc activity in cells.
Collapse
|
47
|
Mayfield JE, Fan S, Wei S, Zhang M, Li B, Ellington AD, Etzkorn FA, Zhang YJ. Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II. ACS Chem Biol 2015; 10:2405-14. [PMID: 26332362 DOI: 10.1021/acschembio.5b00296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proline isomerization greatly impacts biological signaling but is subtle and difficult to detect in proteins. We characterize this poorly understood regulatory mechanism for RNA polymerase II carboxyl terminal domain (CTD) phosphorylation state using novel, direct, and quantitative chemical tools. We determine the proline isomeric preference of three CTD phosphatases: Ssu72 as cis-proline specific, Scp1 and Fcp1 as strongly trans-preferred. Due to this inherent characteristic, these phosphatases respond differently to enzymes that catalyze the isomerization of proline, like Ess1/Pin1. We demonstrate that this selective regulation of RNA polymerase II phosphorylation state exists within human cells, consistent with in vitro assays. These results support a model in which, instead of a global enhancement of downstream enzymatic activities, proline isomerases selectively boost the activity of a subset of CTD regulatory factors specific for cis-proline. This leads to diversified phosphorylation states of CTD in vitro and in cells. We provide the chemical tools to investigate proline isomerization and its ability to selectively enhance signaling in transcription and other biological contexts.
Collapse
Affiliation(s)
- Joshua E. Mayfield
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shuang Fan
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shuo Wei
- 1 Cancer
Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mengmeng Zhang
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Bing Li
- Department
of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines
Boulevard, Dallas, Texas 75390, United States
| | - Andrew D. Ellington
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Felicia A. Etzkorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yan Jessie Zhang
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
48
|
Melino S, Bellomaria A, Nepravishta R, Paci M, Melino G. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch. Cell Cycle 2015; 13:3207-17. [PMID: 25485500 DOI: 10.4161/15384101.2014.951285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition.
Collapse
Key Words
- CXCR4, chemokine receptor
- E3 ubiquitin ligases
- HECT, Homologous E6-AP Carboxyl Terminus
- IPTG, isopropyl-β-D-thiogalactoside
- Itch
- Pin1
- Ppep63, phosphorylated pep63
- RHS, Rapp-Hodgkin syndrome
- RP-HPLC, reverse phase high performance chromatography
- TFE, 2, 2, 2-trifluoroethanol
- TNF, tumor necrosis factor
- TRAF6, TNF receptor-associated factor 6
- cPpep63, cyclic phosphorylated pep63
- p53 family
- p63
- pep63, p63(534–551) peptide
- proline isomerization
- ubiquitynation
Collapse
Affiliation(s)
- Sonia Melino
- a Dipartimento di Scienze e Tecnologie Chimiche ; University of Rome "Tor Vergata" ; Rome , Italy
| | | | | | | | | |
Collapse
|
49
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
50
|
Roles of Prolyl Isomerases in RNA-Mediated Gene Expression. Biomolecules 2015; 5:974-99. [PMID: 25992900 PMCID: PMC4496705 DOI: 10.3390/biom5020974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
The peptidyl-prolyl cis-trans isomerases (PPIases) that include immunophilins (cyclophilins and FKBPs) and parvulins (Pin1, Par14, Par17) participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.
Collapse
|