1
|
Kongsamut S, Eishingdrelo H. Modulating GPCR and 14-3-3 protein interactions: Prospects for CNS drug discovery. Drug Discov Today 2023; 28:103641. [PMID: 37236523 PMCID: PMC10524340 DOI: 10.1016/j.drudis.2023.103641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The activation of G-protein-coupled receptors (GPCRs) triggers a series of protein-protein interaction events that subsequently induce a chain of reactions, including alteration of receptor structures, phosphorylation, recruitment of associated proteins, protein trafficking and gene expression. Multiple GPCR signaling transduction pathways are evident - two well-studied pathways are the GPCR-mediated G-protein and β-arrestin pathways. Recently, ligand-induced interactions between GPCRs and 14-3-3 proteins have been demonstrated. This linking of GPCRs to 14-3-3 protein signal hubs opens up a whole new realm of signal transduction possibilities. 14-3-3 proteins play a key part in GPCR trafficking and signal transduction. GPCR-mediated 14-3-3 protein signaling can be harnessed for the study of GPCR function and therapeutics.
Collapse
Affiliation(s)
- Sathapana Kongsamut
- Research Institute for Scientists Emeriti, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
| | | |
Collapse
|
2
|
Okamoto Y, Shikano S. Emerging roles of a chemoattractant receptor GPR15 and ligands in pathophysiology. Front Immunol 2023; 14:1179456. [PMID: 37457732 PMCID: PMC10348422 DOI: 10.3389/fimmu.2023.1179456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Chemokine receptors play a central role in the maintenance of immune homeostasis and development of inflammation by directing leukocyte migration to tissues. GPR15 is a G protein-coupled receptor (GPCR) that was initially known as a co-receptor for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), with structural similarity to other members of the chemoattractant receptor family. Since the discovery of its novel function as a colon-homing receptor of T cells in mice a decade ago, GPR15 has been rapidly gaining attention for its involvement in a variety of inflammatory and immune disorders. The recent identification of its natural ligand C10orf99, a chemokine-like polypeptide strongly expressed in gastrointestinal tissues, has established that GPR15-C10orf99 is a novel signaling axis that controls intestinal homeostasis and inflammation through the migration of immune cells. In addition, it has been demonstrated that C10orf99-independent functions of GPR15 and GPR15-independent activities of C10orf99 also play significant roles in the pathophysiology. Therefore, GPR15 and its ligands are potential therapeutic targets. To provide a basis for the future development of GPR15- or GPR15 ligand-targeted therapeutics, we have summarized the latest advances in the role of GPR15 and its ligands in human diseases as well as the molecular mechanisms that regulate GPR15 expression and functions.
Collapse
Affiliation(s)
| | - Sojin Shikano
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Bauer M. The Role of GPR15 Function in Blood and Vasculature. Int J Mol Sci 2021; 22:ijms221910824. [PMID: 34639163 PMCID: PMC8509764 DOI: 10.3390/ijms221910824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/28/2023] Open
Abstract
Since the first prominent description of the orphan G protein-coupled receptor 15 (GPR15) on lymphocytes as a co-receptor for the human immunodeficiency virus (HIV) type 1 and 2 and the first report about the GPR15-triggered cytoprotective effect on vascular endothelial cells by recombinant human thrombomodulin, several decades passed before the GPR15 has been recently deorphanized. Because of new findings on GPR15, this review will summarize the consequences of GPR15 signaling considering the variety of GPR15-expressing cell types and of GPR15 ligands, with a focus on blood and vasculature.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
5
|
Kotthoff M, Bauer J, Haag F, Krautwurst D. Conserved C-terminal motifs in odorant receptors instruct their cell surface expression and cAMP signaling. FASEB J 2021; 35:e21274. [PMID: 33464692 DOI: 10.1096/fj.202000182rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
The highly individual plasma membrane expression and cAMP signaling of odorant receptors have hampered their ligand assignment and functional characterization in test cell systems. Chaperones have been identified to support the cell surface expression of only a portion of odorant receptors, with mechanisms remaining unclear. The presence of amino acid motifs that might be responsible for odorant receptors' individual intracellular retention or cell surface expression, and thus, for cAMP signaling, is under debate: so far, no such protein motifs have been suggested. Here, we demonstrate the existence of highly conserved C-terminal amino acid motifs, which discriminate at least between class-I and class-II odorant receptors, with their numbers of motifs increasing during evolution, by comparing C-terminal protein sequences from 4808 receptors across eight species. Truncation experiments and mutation analysis of C-terminal motifs, largely overlapping with helix 8, revealed single amino acids and their combinations to have differential impact on the cell surface expression and on stimulus-dependent cAMP signaling of odorant receptors in NxG 108CC15 cells. Our results demonstrate class-specific and individual C-terminal motif equipment of odorant receptors, which instruct their functional expression in a test cell system, and in situ may regulate their individual cell surface expression and intracellular cAMP signaling.
Collapse
Affiliation(s)
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Okamoto Y, Shikano S. Tyrosine sulfation and O-glycosylation of chemoattractant receptor GPR15 differentially regulate interaction with GPR15L. J Cell Sci 2021; 134:237784. [PMID: 33758080 DOI: 10.1242/jcs.247833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
GPR15 is a G-protein-coupled receptor (GPCR) that directs lymphocyte homing to the colon and skin. Recent studies have identified a chemokine-like protein GPR15L (also known as C10orf99) as a functional ligand of GPR15. In this study, we examined the structural elements that regulate the GPR15-GPR15L interaction with primary focus on post-translational modifications (PTMs) of receptor N-terminus and on the C-terminus of the ligand. Our findings reveal that the GPR15 receptor is sulfated on the N-terminal tyrosine residue(s) and disruption of tyrosine sulfation inhibits binding of GPR15L. In contrast, the disruption of O-glycosylation on the N-terminal threonine or serine residues, or the removal of α2,3-linked sialic acids from O-glycans, enhances the GPR15L binding. Thus, GPR15 represents a unique chemoattractant receptor in which different N-terminal PTMs regulate its ligand binding in a contrasting manner. We further demonstrate that, unlike canonical chemokines, GPR15L activity critically requires its extreme C-terminal residue and that its hydrophobicity may be a key attribute that facilitates an optimal interaction with the receptor. Our results reveal novel insights into chemoattractant receptor-ligand interaction and provide a valid footing for potential intervention targeting the GPR15-GPR15L axis.
Collapse
Affiliation(s)
- Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607-7170, USA
| | - Sojin Shikano
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607-7170, USA
| |
Collapse
|
7
|
Goth CK, Petäjä-Repo UE, Rosenkilde MM. G Protein-Coupled Receptors in the Sweet Spot: Glycosylation and other Post-translational Modifications. ACS Pharmacol Transl Sci 2020; 3:237-245. [PMID: 32296765 DOI: 10.1021/acsptsci.0c00016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) are a fundamental phenomenon across all classes of life and several hundred different types have been identified. PTMs contribute widely to the biological functions of proteins and greatly increase their diversity. One important class of proteins regulated by PTMs, is the cell surface expressed G protein-coupled receptors (GPCRs). While most PTMs have been shown to exert distinct biological functions, we are only beginning to approach the complexity that the potential interplay between different PTMs may have on biological functions and their regulation. Importantly, PTMs and their potential interplay represent an appealing mechanism for cell and tissue specific regulation of GPCR function and may partially contribute to functional selectivity of some GPCRs. In this review we highlight examples of PTMs located in GPCR extracellular domains, with special focus on glycosylation and the potential interplay with other close-by PTMs such as tyrosine sulfation, proteolytic cleavage, and phosphorylation.
Collapse
Affiliation(s)
- Christoffer K Goth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK 2200, Denmark
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, FI-90014, Finland
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK 2200, Denmark
| |
Collapse
|
8
|
Sengupta A, Liriano J, Miller BG, Frederich JH. Analysis of Interactions Stabilized by Fusicoccin A Reveals an Expanded Suite of Potential 14-3-3 Binding Partners. ACS Chem Biol 2020; 15:305-310. [PMID: 31971771 DOI: 10.1021/acschembio.9b00795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fusicoccin A (FC) is a diterpene glycoside that stabilizes protein-protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. Recently, FC has gained attention for its pro-apoptotic and neuroprotective properties in cell culture. Although the exact molecular mechanism(s) is (are) unresolved, 14-3-3 PPIs are central to this activity. With the goal of refining the pharmacology of this chemotype, we conducted a systematic analysis of the structural features that govern FC-induced stabilization of 14-3-3 PPIs utilizing a C-terminal phosphorylation recognition motif. This study confirmed that a C-terminal amino acid with a small alkyl group is required for the interaction of FC at canonical C-terminal 14-3-3 PPI interfaces. Using bioinformatics, this structural insight was leveraged to assemble a database of 119 candidate 14-3-3 PPIs that can serve as targets for FC. This group includes a subset of proteins with experimentally determined C-terminal phosphosites that have not been explored as potential targets of FC.
Collapse
Affiliation(s)
- Ananya Sengupta
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Josue Liriano
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Brian G. Miller
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - James H. Frederich
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
9
|
14-3-3 signal adaptor and scaffold proteins mediate GPCR trafficking. Sci Rep 2019; 9:11156. [PMID: 31371790 PMCID: PMC6673703 DOI: 10.1038/s41598-019-47478-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Receptor trafficking is pivotal for the temporal and spatial control of GPCR signaling and is regulated by multiple cellular proteins. We provide evidence that GPCRs interact with 14-3-3 signal adaptor/scaffold proteins and that this interaction regulates receptor trafficking in two ways. We found GPCR/14-3-3 interaction signals can be agonist-induced or agonist-inhibited. Some GPCRs associate with 14-3-3 proteins at the cell membrane and agonist treatments result in disrupted GPCR/14-3-3 interaction signals. The diminished GPCR/14-3-3 interaction signals are temporally correlated with increased GPCR/β-arrestin interaction signals in response to agonist treatment. Other GPCRs showed agonist-induced GPCR/14-3-3 interaction signal increases that occur later than agonist-induced GPCR/β-arrestin interaction signals, indicating that GPCR/14-3-3 interaction occurred after receptor endocytosis. These two types of GPCR/14-3-3 interaction patterns correlate with different receptor trafficking patterns. In addition, the bioinformatic analysis predicts that approximately 90% of GPCRs contain at least one putative 14-3-3 binding motif, suggesting GPCR/14-3-3 association could be a general phenomenon. Based on these results and collective evidence, we propose a working model whereby 14-3-3 serves as a sorting factor to regulate receptor trafficking.
Collapse
|
10
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
11
|
Cruceanu C, Schmouth JF, Torres-Platas SG, Lopez JP, Ambalavanan A, Darcq E, Gross F, Breton B, Spiegelman D, Rochefort D, Hince P, Petite JM, Gauthier J, Lafrenière RG, Dion PA, Greenwood CM, Kieffer BL, Alda M, Turecki G, Rouleau GA. Rare susceptibility variants for bipolar disorder suggest a role for G protein-coupled receptors. Mol Psychiatry 2018; 23:2050-2056. [PMID: 29158579 DOI: 10.1038/mp.2017.223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 11/09/2022]
Abstract
Bipolar disorder (BD) is a prevalent mood disorder that tends to cluster in families. Despite high heritability estimates, few genetic susceptibility factors have been identified over decades of genetic research. One possible interpretation for the shortcomings of previous studies to detect causative genes is that BD is caused by highly penetrant rare variants in many genes. We explored this hypothesis by sequencing the exomes of affected individuals from 40 well-characterized multiplex families. We identified rare variants segregating with affected status in many interesting genes, and found an enrichment of deleterious variants in G protein-coupled receptor (GPCR) family genes, which are important drug targets. Furthermore, we showed targeted downstream GPCR dysregulation for some of the variants that may contribute to disease pathology. Particularly interesting was the finding of a rare and functionally relevant nonsense mutation in the corticotropin-releasing hormone receptor 2 (CRHR2) gene that tracked with affected status in one family. By focusing on rare variants in informative families, we identified key biochemical pathways likely implicated in this complex disorder.
Collapse
Affiliation(s)
- C Cruceanu
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J-F Schmouth
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - S G Torres-Platas
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - J P Lopez
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - A Ambalavanan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - E Darcq
- Department of Psychiatry, Faculty of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - F Gross
- Department of Psychiatry, Faculty of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - B Breton
- Domain Therapeutics NA, Montreal, QC, Canada
| | - D Spiegelman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - D Rochefort
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - P Hince
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J M Petite
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - J Gauthier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - R G Lafrenière
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - P A Dion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - C M Greenwood
- Lady Davis Research Institute, Jewish General Hospital,, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Department of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| | - B L Kieffer
- Department of Psychiatry, Faculty of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - G Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - G A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Mackie TD, Brodsky JL. Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics 2018; 209:637-650. [PMID: 29967058 PMCID: PMC6028241 DOI: 10.1534/genetics.118.301026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Like all species, the model eukaryote Saccharomyces cerevisiae, or Bakers' yeast, concentrates potassium in the cytosol as an electrogenic osmolyte and enzyme cofactor. Yeast are capable of robust growth on a wide variety of potassium concentrations, ranging from 10 µM to 2.5 M, due to the presence of a high-affinity potassium uptake system and a battery of cation exchange transporters. Genetic perturbation of either of these systems retards yeast growth on low or high potassium, respectively. However, these potassium-sensitized yeast are a powerful genetic tool, which has been leveraged for diverse studies. Notably, the potassium-sensitive cells can be transformed with plasmids encoding potassium channels from bacteria, plants, or mammals, and subsequent changes in growth rate have been found to correlate with the activity of the introduced potassium channel. Discoveries arising from the use of this assay over the past three decades have increased our understanding of the structure-function relationships of various potassium channels, the mechanisms underlying the regulation of potassium channel function and trafficking, and the chemical basis of potassium channel modulation. In this article, we provide an overview of the major genetic tools used to study potassium channels in S. cerevisiae, a survey of seminal studies utilizing these tools, and a prospective for the future use of this elegant genetic approach.
Collapse
Affiliation(s)
- Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
13
|
Lackman JJ, Goth CK, Halim A, Vakhrushev SY, Clausen H, Petäjä-Repo UE. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane. Cell Signal 2018; 42:184-193. [PMID: 29097258 DOI: 10.1016/j.cellsig.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors at the cell surface.
Collapse
MESH Headings
- Acetylgalactosamine/chemistry
- Acetylgalactosamine/metabolism
- Amino Acid Sequence
- Animals
- CHO Cells
- Cell Line, Tumor
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Chromatography, Affinity/methods
- Cricetulus
- Cyclic AMP/metabolism
- Glycosylation
- HEK293 Cells
- Hep G2 Cells
- Humans
- Mutagenesis, Site-Directed
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neurons/cytology
- Neurons/metabolism
- Peptides/chemical synthesis
- Peptides/metabolism
- Plant Lectins/chemistry
- Polymorphism, Single Nucleotide
- Protein Processing, Post-Translational
- Protein Stability
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Serine/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Jarkko J Lackman
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
14
|
Okamoto Y, Shikano S. Differential phosphorylation signals control endocytosis of GPR15. Mol Biol Cell 2017; 28:2267-2281. [PMID: 28615320 PMCID: PMC5555655 DOI: 10.1091/mbc.e16-09-0627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/30/2022] Open
Abstract
GPR15 undergoes a ligand-independent endocytosis, which requires phosphorylation of a distal C-terminal Ser-357 mediated by multiple basophilic kinases. The functional role of Ser-357 in endocytosis is distinct from that of a conserved Ser/Thr cluster, which is more responsible for the use of GRKs and β-arrestin. GPR15 is an orphan G protein–coupled receptor (GPCR) that serves for an HIV coreceptor and was also recently found as a novel homing receptor for T-cells implicated in colitis. We show that GPR15 undergoes a constitutive endocytosis in the absence of ligand. The endocytosis was clathrin dependent and partially dependent on β-arrestin in HEK293 cells, and nearly half of the internalized GPR15 receptors were recycled to the plasma membrane. An Ala mutation of the distal C-terminal Arg-354 or Ser-357, which forms a consensus phosphorylation site for basophilic kinases, markedly reduced the endocytosis, whereas phosphomimetic mutation of Ser-357 to Asp did not. Ser-357 was phosphorylated in vitro by multiple kinases, including PKA and PKC, and pharmacological activation of these kinases enhanced both phosphorylation of Ser-357 and endocytosis of GPR15. These results suggested that Ser-357 phosphorylation critically controls the ligand-independent endocytosis of GPR15. The functional role of Ser-357 in endocytosis was distinct from that of a conserved Ser/Thr cluster in the more proximal C-terminus, which was responsible for the β-arrestin– and GPCR kinase–dependent endocytosis of GPR15. Thus phosphorylation signals may differentially control cell surface density of GPR15 through endocytosis.
Collapse
Affiliation(s)
- Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607-7170
| | - Sojin Shikano
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607-7170
| |
Collapse
|
15
|
Kõks S, Kõks G. Activation of GPR15 and its involvement in the biological effects of smoking. Exp Biol Med (Maywood) 2017; 242:1207-1212. [PMID: 28423922 DOI: 10.1177/1535370217703977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Smoking is one of the most significant modifiable environmental risk factors for many diseases. Smoking causes excessive mortality worldwide. Despite decades of long research, there has not been a clear understanding regarding the molecular mechanism that makes smoking harmful to health. Some recent studies have found that smoking influences most significantly the expression and methylation of GPR15. GPR15 is an orphan receptor that is involved in the regulation of the innate immunity and the T-cell trafficking in the intestinal epithelium. Further studies have confirmed that GPR15 is very strongly involved in smoking and smoking-induced molecular changes. Therefore, the altered expression and epigenetic regulation of GPR15 could have a significant role in the health impact of smoking. Impact statement The review describes an orphan receptor GPR15 that has recently been found to be influenced by smoking. This makes GPR15 very sensitive and adequate biomarker for smoking and smoking studies. Also, activation of GPR15 by smoking could help to explain its effects on health.
Collapse
Affiliation(s)
- Sulev Kõks
- 1 Department of Pathophysiology, University of Tartu, Tartu 50411, Estonia.,2 Department of Reproductive Biology, Estonian University of Life Sciences, Tartu 50411, Estonia
| | - Gea Kõks
- 1 Department of Pathophysiology, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
16
|
G-protein-coupled receptors mediate 14-3-3 signal transduction. Signal Transduct Target Ther 2016; 1:16018. [PMID: 29263900 PMCID: PMC5661649 DOI: 10.1038/sigtrans.2016.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/12/2016] [Accepted: 09/04/2016] [Indexed: 01/14/2023] Open
Abstract
G-protein-coupled receptor (GPCR)-interacting proteins likely participate in regulating GPCR signaling by eliciting specific signal transduction cascades, inducing cross-talk with other pathways, and fine tuning the signal. However, except for G-proteins and β-arrestins, other GPCR-interacting proteins are poorly characterized. 14-3-3 proteins are signal adaptors, and their participation in GPCR signaling is not well understood or recognized. Here we demonstrate that GPCR-mediated 14-3-3 signaling is ligand-regulated and is likely to be a more general phenomenon than suggested by the previous reports of 14-3-3 involvement with a few GPCRs. For the first time, we can pharmacologically characterize GPCR/14-3-3 signaling. We have shown that GPCR-mediated 14-3-3 signaling is phosphorylation-dependent, and that the GPCR/14-3-3 interaction likely occurs later than receptor desensitization and internalization. GPCR-mediated 14-3-3 signaling can be β-arrestin-independent, and individual agonists can have different potencies on 14-3-3 and β-arrestin signaling. GPCRs can also mediate the interaction between 14-3-3 and Raf-1. Our work opens up a new broad realm of previously unappreciated GPCR signal transduction. Linking GPCRs to 14-3-3 signal transduction creates the potential for the development of new research directions and provides a new signaling pathway for drug discovery.
Collapse
|
17
|
The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D₂ Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal. Int J Mol Sci 2016; 17:ijms17071152. [PMID: 27447620 PMCID: PMC4964525 DOI: 10.3390/ijms17071152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET2) β-arrestin 2 (βarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.
Collapse
|
18
|
Lahiri SK, Lu H, Mukherjee D, Yu L, Zhao J. ERK2 phosphorylates Krüppel-like factor 8 protein at serine 48 to maintain its stability. Am J Cancer Res 2016; 6:910-923. [PMID: 27293988 PMCID: PMC4889709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 06/06/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) plays important roles in cancer and is strictly regulated by various post-translational modifications such as sumoylation, acetylation, ubiquitylation and PARylation. Here we report a novel phosphorylation of KLF8 by ERK2 responsible and critical for the stability of KLF8 protein. The full-length KLF8 protein displays a doublet in SDS-PAGE gel. The upper band of the doublet, however, disappeared when the N-terminal 50 amino acids were deleted. In its full-length the upper band disappeared upon phosphatase treatment or mutation of the serine 48 (S48) to alanine whereas the lower band was lost when the S48 was mutated to aspartic acid that mimics phosphorylated S48. These results suggest that S48 phosphorylation is responsible for the motility up-shift of KLF8 protein. Pharmacological and genetic manipulations of various potential kinases identified ERK2 as the likely one that phosphorylates KLF8 at S48. Functional studies indicated that this phosphorylation is crucial for protecting KLF8 protein from degradation in the nucleus and promoting cell migration. Taken together, this study identifies a novel mechanism of phosphorylation critical for KLF8 protein stabilization and function.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Heng Lu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Debarati Mukherjee
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Lin Yu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Jihe Zhao
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| |
Collapse
|
19
|
Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2015; 112:E3199-206. [PMID: 26056309 DOI: 10.1073/pnas.1509119112] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most secretory cargo proteins in eukaryotes are synthesized in the endoplasmic reticulum and actively exported in membrane-bound vesicles that are formed by the cytosolic coat protein complex II (COPII). COPII proteins are assisted by a variety of cargo-specific adaptor proteins required for the concentration and export of secretory proteins from the endoplasmic reticulum (ER). Adaptor proteins are key regulators of cargo export, and defects in their function may result in disease phenotypes in mammals. Here we report the role of 14-3-3 proteins as a cytosolic adaptor in mediating SAC1 transport in COPII-coated vesicles. Sac1 is a phosphatidyl inositol-4 phosphate (PI4P) lipid phosphatase that undergoes serum dependent translocation between the endoplasmic reticulum and Golgi complex and controls cellular PI4P lipid levels. We developed a cell-free COPII vesicle budding reaction to examine SAC1 exit from the ER that requires COPII and at least one additional cytosolic factor, the 14-3-3 protein. Recombinant 14-3-3 protein stimulates the packaging of SAC1 into COPII vesicles and the sorting subunit of COPII, Sec24, interacts with 14-3-3. We identified a minimal sorting motif of SAC1 that is important for 14-3-3 binding and which controls SAC1 export from the ER. This LS motif is part of a 7-aa stretch, RLSNTSP, which is similar to the consensus 14-3-3 binding sequence. Homology models, based on the SAC1 structure from yeast, predict this region to be in the exposed exterior of the protein. Our data suggest a model in which the 14-3-3 protein mediates SAC1 traffic from the ER through direct interaction with a sorting signal and COPII.
Collapse
|
20
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
21
|
Filipeanu CM, Pullikuth AK, Guidry JJ. Molecular determinants of the human α2C-adrenergic receptor temperature-sensitive intracellular traffic. Mol Pharmacol 2015; 87:792-802. [PMID: 25680754 PMCID: PMC4407737 DOI: 10.1124/mol.114.096198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/12/2015] [Indexed: 01/22/2023] Open
Abstract
The human α2C-adrenergic receptor (α2C-AR) is localized intracellularly at physiologic temperature. Decreasing the environmental temperature strongly stimulates the receptor transport to the cell surface. In contrast, rat and mouse α2C-AR plasma membrane levels are less sensitive to decrease in temperature, whereas the opossum α2C-AR cell surface levels are not changed in these conditions. Structural analysis demonstrated that human α2C-AR has a high number of arginine residues in the third intracellular loop and in the C-terminus, organized as putative RXR motifs. Although these motifs do not affect the receptor subcellular localization at 37°C, deletion of the arginine clusters significantly enhanced receptor plasma membrane levels at reduced temperature. We found that this exaggerated transport of the human receptor is mediated by two functional arginine clusters, one in the third intracellular loop and one in the C-terminus. This effect is mediated by interactions with COPI vesicles, but not by 14-3-3 proteins. In rat α2C-AR, the arginine cluster from the third intracellular loop is shifted to the left due to three missing residues. Reinsertion of these residues in the rat α2C-AR restored the same temperature sensitivity as in the human receptor. Proteomic and coimmunoprecipitation experiments identified pontin as a molecule having stronger interactions with human α2C-AR compared with rat α2C-AR. Inhibition of pontin activity enhanced human receptor plasma membrane levels and signaling at 37°C. Our results demonstrate that human α2C-AR has a unique temperature-sensitive traffic pattern within the G protein-coupled receptor class due to interactions with different molecular chaperones, mediated in part by strict spatial localization of specific arginine residues.
Collapse
Affiliation(s)
- Catalin M Filipeanu
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC (C.M.F.); Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (A.K.P., J.J.G.); Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina (A.K.P.); and Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, Louisiana (J.J.G.)
| | - Ashok K Pullikuth
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC (C.M.F.); Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (A.K.P., J.J.G.); Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina (A.K.P.); and Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, Louisiana (J.J.G.)
| | - Jessie J Guidry
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC (C.M.F.); Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (A.K.P., J.J.G.); Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina (A.K.P.); and Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, Louisiana (J.J.G.)
| |
Collapse
|
22
|
Filipeanu CM. Temperature-Sensitive Intracellular Traffic of α2C-Adrenergic Receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:245-65. [DOI: 10.1016/bs.pmbts.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Paiardini A, Aducci P, Cervoni L, Cutruzzolà F, Di Lucente C, Janson G, Pascarella S, Rinaldo S, Visconti S, Camoni L. The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets. IUBMB Life 2014; 66:52-62. [DOI: 10.1002/iub.1239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023]
Affiliation(s)
| | - Patrizia Aducci
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| | - Laura Cervoni
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti; Rome Italy
| | | | - Giacomo Janson
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti; Rome Italy
| | - Sabina Visconti
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| | - Lorenzo Camoni
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| |
Collapse
|
24
|
Batra N, Riquelme MA, Burra S, Jiang JX. 14-3-3θ facilitates plasma membrane delivery and function of mechanosensitive connexin 43 hemichannels. J Cell Sci 2013; 127:137-46. [PMID: 24163432 DOI: 10.1242/jcs.133553] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular signaling in osteocytes activated by mechanical loading is important for bone formation and remodeling. These signaling events are mediated by small modulators released from Cx43 hemichannels (HC). We have recently shown that integrin α5 senses the mechanical stimulation and induces the opening of Cx43 HC; however, the underlying mechanism is unknown. Here, we show that both Cx43 and integrin α5 interact with 14-3-3θ, and this interaction is required for the opening of Cx43 HC upon mechanical stress. The absence of 14-3-3θ prevented the interaction between Cx43 and integrin α5, and blocked HC opening. Furthermore, it decreased the transport of Cx43 and integrin α5 from the Golgi apparatus to the plasma membrane. Mechanical loading promoted the movement of Cx43 to the surface which was associated not only with an increase in 14-3-3θ levels but also its interaction with Cx43 and integrin α5. This stimulatory effect on forward transport by mechanical loading was attenuated in the absence of 14-3-3θ and the majority of the Cx43 accumulated in the Golgi. Disruption of the Golgi by brefeldin A reduced the association of Cx43 and integrin α5 with 14-3-3θ, further suggesting that the interaction is likely to occur in the Golgi. Together, these results define a previously unidentified, scaffolding role of 14-3-3θ in assisting the delivery of Cx43 and integrin α5 to the plasma membrane for the formation of mechanosensitive HC in osteocytes.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
25
|
Sun YV, Smith AK, Conneely KN, Chang Q, Li W, Lazarus A, Smith JA, Almli LM, Binder EB, Klengel T, Cross D, Turner ST, Ressler KJ, Kardia SLR. Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum Genet 2013; 132:1027-37. [PMID: 23657504 PMCID: PMC3744600 DOI: 10.1007/s00439-013-1311-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/01/2013] [Indexed: 12/31/2022]
Abstract
Cigarette smoking is an environmental risk factor for many chronic diseases, and disease risk can often be managed by smoking control. Smoking can induce cellular and molecular changes, including epigenetic modification, but the short- and long-term epigenetic modifications caused by cigarette smoking at the gene level have not been well understood. Recent studies have identified smoking-related DNA methylation (DNAm) sites in Caucasians. To determine whether the same DNAm sites associate with smoking in African Americans, and to identify novel smoking-related DNAm sites, we conducted a methylome-wide association study of cigarette smoking using a discovery sample of 972 African Americans, and a replication sample of 239 African Americans with two array-based methods. Among 15 DNAm sites significantly associated with smoking after correction for multiple testing in our discovery sample, 5 DNAm sites are replicated in an independent cohort, and 14 sites in the replication sample have effects in the same direction as in the discovery sample. The top two smoking-related DNAm sites in F2RL3 (factor II receptor-like 3) and GPR15 (G-protein-coupled receptor 15) observed in African Americans are consistent with previous findings in Caucasians. The associations between the replicated DNAm sites and smoking remain significant after adjusting for genetic background. Despite the distinct genetic background between African Americans and Caucasians, the DNAm from the two ethnic groups shares common associations with cigarette smoking, which suggests a common molecular mechanism of epigenetic modification influenced by environmental exposure.
Collapse
Affiliation(s)
- Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Potential use of potassium efflux-deficient yeast for studying trafficking signals and potassium channel functions. FEBS Open Bio 2013; 3:196-203. [PMID: 23772394 PMCID: PMC3668539 DOI: 10.1016/j.fob.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 11/22/2022] Open
Abstract
The activity of potassium (K(+)) channels critically depends on their density on the cell surface membrane, which is regulated by dynamic protein-protein interactions that often involve distinct trafficking signals on the cargo proteins. In this paper we explored the possibility of utilizing the Saccharomyces cerevisiae strain B31 for identification of the signal motifs that regulate surface expression of membrane proteins and for studying structure-function relationships of K(+) channels. B31 cells lack the K(+) efflux system and were reported to show overloaded K(+)-mediated growth inhibition in high K(+) media upon heterologous expression of a mammalian inwardly rectifying K(+) channel (Kir2.1). We show that while the expression of wild-type Kir2.1 channel inhibits the growth of B31 cells in high K(+) media, the human disease-causing mutations of Kir2.1 that abolish K(+) conduction (V302M) or surface trafficking (Δ314/315) fully restores the growth. The expression of two-pore-domain K(+) channel KCNK3 or KCNK9 also inhibited the growth of B31 in high K(+) media while C-terminal mutations that reduce their 14-3-3 protein-dependent cell surface trafficking restored the growth of B31. Finally, the expression of Kir2.1 channels that were C-terminally fused with known sequence motifs including ER retention/retrieval signals and an endocytosis signal allowed the growth of B31 in high K(+) media. These results demonstrate the potential of B31 yeast strain as a unique biological tool to screen the random peptide libraries for novel sequence signals that down-regulate surface expression of membrane proteins, as well as to systematically identify the structural determinants for cell surface trafficking and/or ion conductance of K(+) channels.
Collapse
|
27
|
Camoni L, Visconti S, Aducci P. The phytotoxin fusicoccin, a selective stabilizer of 14-3-3 interactions? IUBMB Life 2013; 65:513-7. [DOI: 10.1002/iub.1167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/28/2013] [Indexed: 11/10/2022]
|
28
|
Okamoto Y, Bernstein JD, Shikano S. Role of C-terminal membrane-proximal basic residues in cell surface trafficking of HIV coreceptor GPR15 protein. J Biol Chem 2013; 288:9189-99. [PMID: 23430259 DOI: 10.1074/jbc.m112.445817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface density of G protein-coupled receptors (GPCRs) is controlled by dynamic molecular interactions that often involve recognition of the distinct sequence signals on the cargo receptors. We reported previously that the RXR-type dibasic motif in the distal C-terminal tail of an HIV coreceptor GPR15 negatively regulates the cell surface expression by mediating the coatomer protein I complex-dependent retrograde transport to the endoplasmic reticulum (ER). Here we demonstrate that another pair of basic residues (Arg(310)-Arg(311)) in the membrane-proximal region of the C-terminal tail plays a pivotal role in mediating the anterograde trafficking of GPR15. The Ala mutation of the C-terminal membrane-proximal basic residues (MPBRs) (R310/311A) abolished the O-glycosylation and cell surface expression of GPR15. The subcellular fractionation and immunocytochemistry assays indicated that the R310/311A mutant was more localized in the ER but much less in the trans-Golgi when compared with the wild-type GPR15, suggesting the positive role of Arg(310)-Arg(311) in the ER-to-Golgi transport of GPR15. Sequence analysis on human GPCRs showed that the basic residues are frequent in the membrane-proximal region of the C-terminal tail. Similar to GPR15, mutation of the C-terminal MPBRs resulted in a marked reduction of the cell surface expression in multiple different GPCRs. Our results suggest that the C-terminal MPBRs are critically involved in mediating the anterograde trafficking of a broad range of membrane proteins, including GPCRs.
Collapse
Affiliation(s)
- Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
29
|
Bustad HJ, Skjaerven L, Ying M, Halskau Ø, Baumann A, Rodriguez-Larrea D, Costas M, Underhaug J, Sanchez-Ruiz JM, Martinez A. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues. PLoS One 2012. [PMID: 23189152 PMCID: PMC3506662 DOI: 10.1371/journal.pone.0049671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.
Collapse
Affiliation(s)
| | - Lars Skjaerven
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ming Ying
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Øyvind Halskau
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - David Rodriguez-Larrea
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Granada, Spain
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Miguel Costas
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Granada, Spain
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF, México
| | - Jarl Underhaug
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jose M. Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Granada, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
30
|
Li JG, Chen C, Huang P, Wang Y, Liu-Chen LY. 14-3-3ζ Protein regulates anterograde transport of the human κ-opioid receptor (hKOPR). J Biol Chem 2012; 287:37778-92. [PMID: 22989890 DOI: 10.1074/jbc.m112.359679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
By proteomic analysis, we found that 14-3-3ζ was one of the proteins co-immunoprecipitated with human κ-opioid receptor (hKOPR) from extracts of solubilized Neuro2A cells stably expressing FLAG-hKOPR (N2A-FLAG-hKOPR cells). 14-3-3 proteins are a family of conserved regulatory molecules in eukaryotic cells, where they participate in signal transduction, metabolism, and membrane protein transport. 14-3-3ζ co-localized with the hKOPR in N2A cells. The hKOPR C-tail interacted with 14-3-3ζ in rat brain extracts and bound directly to purified 14-3-3ζ as demonstrated by pulldown techniques. 14-3-3ζ siRNA decreased expression of the hKOPR in N2A-FLAG-hKOPR cells and cultured primary cortical neurons of E19 rats by ~25% as determined by immunoblotting, ligand binding, and flow cytometry. The effect of 14-3-3ζ siRNA was reversed by overexpression of 14-3-3ζ. Expression of the 14-3-3 scavenger protein pGpLI-R18 also decreased hKOPR expression. 14-3-3ζ siRNA did not change expressions of the hDOPR and rMOPR in N2A cells. Pulse-chase study showed that 14-3-3ζ siRNA decreased the amount of mature hKOPR but did not change the rate of maturation or stability of hKOPR protein. Mutations of R354A/S358A in the putative 14-3-3 interaction motif (354)RQSTS(358) in the hKOPR C-tail reduced interaction of the hKOPR with 14-3-3ζ and abolished the effect of 14-3-3ζ knockdown on hKOPR expression. Mutation of the endoplasmic reticulum retention motif (359)RVR adjacent to the 14-3-3 interaction motif in the hKOPR C-tail decreased interaction of coatomer protein I (COPI) with the hKOPR and abolished 14-3-3ζ-mediated regulation of hKOPR expression. 14-3-3ζ knockdown increased association of COPI with the hKOPR. These results suggest that 14-3-3ζ promotes expression of the hKOPR by inhibiting COPI and RVR motif-mediated endoplasmic reticulum localization machinery.
Collapse
Affiliation(s)
- Jian-Guo Li
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
31
|
Morales D, Skoulakis ECM, Acevedo SF. 14-3-3s are potential biomarkers for HIV-related neurodegeneration. J Neurovirol 2012; 18:341-53. [PMID: 22811265 DOI: 10.1007/s13365-012-0121-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/06/2012] [Accepted: 06/27/2012] [Indexed: 02/07/2023]
Abstract
Over the last decade, it has become evident that 14-3-3 proteins are essential for primary cell functions. These proteins are abundant throughout the body, including the central nervous system and interact with other proteins in both cell cycle and apoptotic pathways. Examination of cerebral spinal fluid in humans suggests that 14-3-3s including 14-3-3ε (YWHAE) are up-regulated in several neurological diseases, and loss or duplication of the YWHAE gene leads to Miller-Dieker syndrome. The goal of this review is to examine the utility of 14-3-3s as a marker of human immune deficiency virus (HIV)-dependent neurodegeneration and also as a tool to track disease progression. To that end, we describe mechanisms implicating 14-3-3s in neurological diseases and summarize evidence of its interactions with HIV accessory and co-receptor proteins.
Collapse
Affiliation(s)
- Diana Morales
- Department of Physiology, Pharmacology, and Toxicology, Ponce School of Medicine and Health Sciences, Ponce 00732, Puerto Rico
| | | | | |
Collapse
|
32
|
Cunningham MR, McIntosh KA, Pediani JD, Robben J, Cooke AE, Nilsson M, Gould GW, Mundell S, Milligan G, Plevin R. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4). J Biol Chem 2012; 287:16656-69. [PMID: 22411985 PMCID: PMC3351358 DOI: 10.1074/jbc.m111.315911] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteinase-activated receptors 4 (PAR4) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR4 remain unknown. Here, we report novel features of the intracellular trafficking of PAR4 to the plasma membrane. PAR4 was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR4 protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R183AR → A183AA), mutation of which allowed efficient membrane delivery of PAR4. Interestingly, co-expression with PAR2 facilitated plasma membrane delivery of PAR4, an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR2 and PAR4. PAR2 also enhanced glycosylation of PAR4 and activation of PAR4 signaling. Our results identify a novel regulatory role for PAR2 in the anterograde traffic of PAR4. PAR2 was shown to both facilitate and abrogate protein interactions with PAR4, impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR4 in normal physiology and disease.
Collapse
Affiliation(s)
- Margaret R Cunningham
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, Univesity of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|