1
|
Ashley CN, Broni E, Pena-Martinez M, Wood CM, Kwofie SK, Miller WA. Computer-Aided Discovery of Natural Compounds Targeting the ADAR2 dsRBD2-RNA Interface and Computational Modeling of Full-Length ADAR2 Protein Structure. Int J Mol Sci 2025; 26:4075. [PMID: 40362314 PMCID: PMC12072074 DOI: 10.3390/ijms26094075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Mesothelioma is a rare and aggressive cancer linked to asbestos exposure and characterized by rapid metastasis and poor prognosis. Inhibition of adenosine deaminase acting on dsRNA 2 (ADAR2) RNA binding but not ADAR2 editing has shown antitumor effects in mesothelioma. Natural compounds from the Traditional Chinese Medicine (TCM) database were docked to the RNA-binding interface of ADAR2's second dsRNA binding domain (dsRBD2), and their drug-likeness and predicted safety were assessed. Eight ligands (ZINC000085597263, ZINC000085633079, ZINC000014649947, ZINC000034512861, ZINC000070454124, ZINC000085594944, ZINC000085633008, and ZINC000095909822) showed high binding affinity to dsRBD2 from molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations. Protein-ligand interactions were analyzed to identify key residues contributing to these binding affinities. Molecular dynamics (MD) simulations of dsRBD-ligand-RNA complexes revealed that four compounds (ZINC000085597263, ZINC000085633079, ZINC000014649947, and ZINC000034512861) had negative binding affinities to dsRBD2 in the presence of the RNA substrate GluR-2. Key residues, including Val164, Met165, Lys209, and Lys212, were crucial for ligand binding, even with RNA present, suggesting these compounds could inhibit dsRBD2's RNA-binding function. The predicted biological activities of these compounds indicate potential anticancer properties, particularly for the treatment of mesothelioma. These compounds are structurally similar to known anti-mesothelioma agents or anticancer drugs, highlighting their therapeutic potential. Current mesothelioma treatments are limited. Optimization of these compounds, alone or in combination with current therapeutics, has potential for mesothelioma treatment. Additionally, five high-quality full-length ADAR2 models were developed. These models provide insights into ADAR2 function, mutation impacts, and potential areas for protein engineering to enhance stability, RNA-binding specificity, or protein interactions, particularly concerning dimerization or complex formation with other proteins and RNAs.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Michelle Pena-Martinez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Chanyah M. Wood
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
2
|
Li JB, Walkley CR. Leveraging genetics to understand ADAR1-mediated RNA editing in health and disease. Nat Rev Genet 2025:10.1038/s41576-025-00830-5. [PMID: 40229561 DOI: 10.1038/s41576-025-00830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Endogenous, long double-stranded RNA (dsRNA) can resemble viral dsRNA and be recognized by cytosolic dsRNA sensors, triggering autoimmunity. Genetic studies of rare, inherited human diseases and experiments using mouse models have established the importance of adenosine-to-inosine RNA editing by the enzyme adenosine deaminase acting on RNA 1 (ADAR1) as a critical safeguard against autoinflammatory responses to cellular dsRNA. More recently, human genetic studies have revealed that dsRNA editing and sensing mechanisms are involved in common inflammatory diseases, emphasizing the broader role of dsRNA in modulating immune responses and disease pathogenesis. These findings have highlighted the therapeutic potential of targeting dsRNA editing and sensing, as exemplified by the emergence of ADAR1 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Carl R Walkley
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
3
|
Tamizkar KH, Jantsch MF. RNA editing in disease: mechanisms and therapeutic potential. RNA (NEW YORK, N.Y.) 2025; 31:359-368. [PMID: 39746751 PMCID: PMC11874977 DOI: 10.1261/rna.080331.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Adenosine to inosine conversion by adenosine deaminases acting on RNA (ADARs) was first identified in the late 1980s of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available. Still, how to interpret the consequences and alterations of RNA-editing events in whole transciptome editomes is a matter of debate. In particular, the cause or consequence of altered editomes on disease development is poorly understood. Similarly, absolute frequencies of editing events in single molecules, their longitudinal distribution, and naturally occurring changes during development, in different tissues, or in response to physiological changes need to be explored. Lastly, while the use of site-directed RNA editing as a treatment of certain genetic diseases is rapidly evolving, the applicability of this technology still faces several technical obstacles. In this review, we describe the current state of knowledge on adenosine deamination-type RNA editing, its involvement in disease development, and its potential as a therapeutic. Lastly, we highlight open challenges and questions that need to be addressed.
Collapse
Affiliation(s)
- Kasra Honarmand Tamizkar
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Zhang Q, Walkley CR. Mouse models for understanding physiological functions of ADARs. Methods Enzymol 2025; 710:153-185. [PMID: 39870443 DOI: 10.1016/bs.mie.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS). Mouse models have played an important role in our current understanding of the physiology of ADAR proteins. With the advancement of genetic engineering technologies, a number of new mouse models have been recently generated, each providing additional insight into ADAR function. This review highlights both past and current mouse models, exploring the methodologies used in their generation, their respective discoveries, and the significance of these findings in relation to human ADAR physiology.
Collapse
Affiliation(s)
- Qinyi Zhang
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Carl R Walkley
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Liang Z, Walkley CR, Heraud-Farlow JE. A-to-I RNA editing and hematopoiesis. Exp Hematol 2024; 139:104621. [PMID: 39187172 DOI: 10.1016/j.exphem.2024.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing plays essential roles in modulating normal development and homeostasis. This process is catalyzed by adenosine deaminase acting on RNA (ADAR) family proteins. The most well-understood biological processes modulated by A-to-I editing are innate immunity and neurological development, attributed to ADAR1 and ADAR2, respectively. A-to-I editing by ADAR1 is also critical in regulating hematopoiesis. This review will focus on the role of A-to-I RNA editing and ADAR enzymes, particularly ADAR1, during normal hematopoiesis in humans and mice. Furthermore, we will discuss Adar1 mouse models that have been developed to understand the contribution of ADAR1 to hematopoiesis and its role in innate immune pathways.
Collapse
Affiliation(s)
- Zhen Liang
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia.
| | - Jacki E Heraud-Farlow
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
6
|
Chen HW, Ma CP, Chin E, Chen YT, Wang TC, Kuo YP, Su CH, Huang PJ, Tan BCM. Imbalance in Unc80 RNA Editing Disrupts Dynamic Neuronal Activity and Olfactory Perception. Int J Mol Sci 2024; 25:5985. [PMID: 38892173 PMCID: PMC11172567 DOI: 10.3390/ijms25115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.
Collapse
Affiliation(s)
- Hui-Wen Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
| | - En Chin
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Teh-Cheng Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yu-Ping Kuo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Genomic Medicine Core Laboratory, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Lebedeva M, Kubištová A, Spišská V, Filipovská E, Pačesová D, Svobodová I, Kuchtiak V, Balík A, Bendová Z. The disruption of circadian rhythmicity of gene expression in the hippocampus and associated structures in Gria2 R/R mice; a comparison with C57BL/6J and Adar2 -/- mice strains. Brain Res 2024; 1826:148739. [PMID: 38157956 DOI: 10.1016/j.brainres.2023.148739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Adar2-/- mice are a widely used model for studying the physiological consequences of reduced RNA editing. These mice are viable only when the Q/R editing site of the Gria2 subunit of the AMPA receptor is constitutively mutated to the codon for arginine, and Gria2R/R mice often serve as the sole control for Adar2-/- mice. Our study aimed to investigate whether ADAR2 inactivity and the Gria2R/R phenotype affect the rhythmicity of the circadian clock gene pattern and the expression of Gria1 and Gria2 subunits in the suprachiasmatic nucleus (SCN), hippocampus, parietal cortex and liver. Our data show that Gria2R/R mice completely lost circadian rhythmicity in the hippocampus compared to Adar2-/- mice. Compared to C57BL/6J mice, the expression profiles in the hippocampus and parietal cortex of Gria2R/R mice differ to the same extent as in Adar2-/-. No alterations were detected in the circadian profiles in the livers. These data suggest that the natural gradual postnatal increase in the editing of the Q/R site of the Gria2 subunit may be important for the development of circadian clockwork in some brain structures, and the use of Gria2R/R mice as the only control to Adar2-/- mice in the experiments dependent on the hippocampus and parietal cortex should therefore be considered.
Collapse
Affiliation(s)
- Maria Lebedeva
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic
| | - Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Filipovská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dominika Pačesová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Irena Svobodová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Viktor Kuchtiak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Balík
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
8
|
Milham LT, Morris GP, Konen LM, Rentsch P, Avgan N, Vissel B. Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer's disease by capillary western blotting. Front Mol Neurosci 2024; 16:1338065. [PMID: 38299128 PMCID: PMC10828003 DOI: 10.3389/fnmol.2023.1338065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Accurate modelling of molecular changes in Alzheimer's disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting. Methods Here, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice. Results We observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD. Discussion Our findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD.
Collapse
Affiliation(s)
- Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary P. Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Xu H, Sun Y, Francis M, Cheng CF, Modulla NT, Brenna JT, Chiang CWK, Ye K. Shared genetic basis informs the roles of polyunsaturated fatty acids in brain disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.03.23296500. [PMID: 37873425 PMCID: PMC10593041 DOI: 10.1101/2023.10.03.23296500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The neural tissue is rich in polyunsaturated fatty acids (PUFAs), components that are indispensable for the proper functioning of neurons, such as neurotransmission. PUFA nutritional deficiency and imbalance have been linked to a variety of chronic brain disorders, including major depressive disorder (MDD), anxiety, and anorexia. However, the effects of PUFAs on brain disorders remain inconclusive, and the extent of their shared genetic determinants is largely unknown. Here, we used genome-wide association summary statistics to systematically examine the shared genetic basis between six phenotypes of circulating PUFAs (N = 114,999) and 20 brain disorders (N = 9,725-762,917), infer their potential causal relationships, identify colocalized regions, and pinpoint shared genetic variants. Genetic correlation and polygenic overlap analyses revealed a widespread shared genetic basis for 77 trait pairs between six PUFA phenotypes and 16 brain disorders. Two-sample Mendelian randomization analysis indicated potential causal relationships for 16 pairs of PUFAs and brain disorders, including alcohol consumption, bipolar disorder (BIP), and MDD. Colocalization analysis identified 40 shared loci (13 unique) among six PUFAs and ten brain disorders. Twenty-two unique variants were statistically inferred as candidate shared causal variants, including rs1260326 (GCKR), rs174564 (FADS2) and rs4818766 (ADARB1). These findings reveal a widespread shared genetic basis between PUFAs and brain disorders, pinpoint specific shared variants, and provide support for the potential effects of PUFAs on certain brain disorders, especially MDD, BIP, and alcohol consumption.
Collapse
Affiliation(s)
- Huifang Xu
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Michael Francis
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Claire F. Cheng
- Department of Genetics, University of Georgia, Athens, Georgia
| | | | - J. Thomas Brenna
- Dell Pediatric Research Institute and Department of Pediatrics, The University of Texas at Austin, Texas
- Dell Pediatric Research Institute and Department of Chemistry, The University of Texas at Austin, Texas
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Texas
| | - Charleston W. K. Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, Georgia
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| |
Collapse
|
10
|
Wright AL, Konen LM, Mockett BG, Morris GP, Singh A, Burbano LE, Milham L, Hoang M, Zinn R, Chesworth R, Tan RP, Royle GA, Clark I, Petrou S, Abraham WC, Vissel B. The Q/R editing site of AMPA receptor GluA2 subunit acts as an epigenetic switch regulating dendritic spines, neurodegeneration and cognitive deficits in Alzheimer's disease. Mol Neurodegener 2023; 18:65. [PMID: 37759260 PMCID: PMC10537207 DOI: 10.1186/s13024-023-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND RNA editing at the Q/R site of GluA2 occurs with ~99% efficiency in the healthy brain, so that the majority of AMPARs contain GluA2(R) instead of the exonically encoded GluA2(Q). Reduced Q/R site editing infcreases AMPA receptor calcium permeability and leads to dendritic spine loss, neurodegeneration, seizures and learning impairments. Furthermore, GluA2 Q/R site editing is impaired in Alzheimer's disease (AD), raising the possibility that unedited GluA2(Q)-containing AMPARs contribute to synapse loss and neurodegeneration in AD. If true, then inhibiting expression of unedited GluA2(Q), while maintaining expression of GluA2(R), may be a novel strategy of preventing synapse loss and neurodegeneration in AD. METHODS We engineered mice with the 'edited' arginine codon (CGG) in place of the unedited glutamine codon (CAG) at position 607 of the Gria2 gene. We crossbred this line with the J20 mouse model of AD and conducted anatomical, electrophysiological and behavioural assays to determine the impact of eliminating unedited GluA2(Q) expression on AD-related phenotypes. RESULTS Eliminating unedited GluA2(Q) expression in AD mice prevented dendritic spine loss and hippocampal CA1 neurodegeneration as well as improved working and reference memory in the radial arm maze. These phenotypes were improved independently of Aβ pathology and ongoing seizure susceptibility. Surprisingly, our data also revealed increased spine density in non-AD mice with exonically encoded GluA2(R) as compared to their wild-type littermates, suggesting an unexpected and previously unknown role for unedited GluA2(Q) in regulating dendritic spines. CONCLUSION The Q/R editing site of the AMPA receptor subunit GluA2 may act as an epigenetic switch that regulates dendritic spines, neurodegeneration and memory deficits in AD.
Collapse
Affiliation(s)
- Amanda L Wright
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- School of Rural Medicine, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Anurag Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Lisseth Estefania Burbano
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Luke Milham
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Kitchener, ON, N2G 1C5, Canada
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Richard P Tan
- Chronic Diseases, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2050, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Ian Clark
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Bryce Vissel
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
11
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
12
|
Xing Y, Nakahama T, Wu Y, Inoue M, Kim JI, Todo H, Shibuya T, Kato Y, Kawahara Y. RNA editing of AZIN1 coding sites is catalyzed by ADAR1 p150 after splicing. J Biol Chem 2023; 299:104840. [PMID: 37209819 PMCID: PMC10404624 DOI: 10.1016/j.jbc.2023.104840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Adenosine-to-inosine RNA editing is catalyzed by nuclear adenosine deaminase acting on RNA 1 (ADAR1) p110 and ADAR2, and cytoplasmic ADAR1 p150 in mammals, all of which recognize dsRNAs as targets. RNA editing occurs in some coding regions, which alters protein functions by exchanging amino acid sequences, and is therefore physiologically significant. In general, such coding sites are edited by ADAR1 p110 and ADAR2 before splicing, given that the corresponding exon forms a dsRNA structure with an adjacent intron. We previously found that RNA editing at two coding sites of antizyme inhibitor 1 (AZIN1) is sustained in Adar1 p110/Aadr2 double KO mice. However, the molecular mechanisms underlying RNA editing of AZIN1 remain unknown. Here, we showed that Azin1 editing levels were increased upon type I interferon treatment, which activated Adar1 p150 transcription, in mouse Raw 264.7 cells. Azin1 RNA editing was observed in mature mRNA but not precursor mRNA. Furthermore, we revealed that the two coding sites were editable only by ADAR1 p150 in both mouse Raw 264.7 and human embryonic kidney 293T cells. This unique editing was achieved by forming a dsRNA structure with a downstream exon after splicing, and the intervening intron suppressed RNA editing. Therefore, deletion of a nuclear export signal from ADAR1 p150, shifting its localization to the nucleus, decreased Azin1 editing levels. Finally, we demonstrated that Azin1 RNA editing was completely absent in Adar1 p150 KO mice. Thus, these findings indicate that RNA editing of AZIN1 coding sites is exceptionally catalyzed by ADAR1 p150 after splicing.
Collapse
Affiliation(s)
- Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| | - Yuke Wu
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan; Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
13
|
Bellingrath JS, McClements ME, Fischer MD, MacLaren RE. Programmable RNA editing with endogenous ADAR enzymes - a feasible option for the treatment of inherited retinal disease? Front Mol Neurosci 2023; 16:1092913. [PMID: 37293541 PMCID: PMC10244592 DOI: 10.3389/fnmol.2023.1092913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
RNA editing holds great promise for the therapeutic correction of pathogenic, single nucleotide variants (SNV) in the human transcriptome since it does not risk creating permanent off-targets edits in the genome and has the potential for innovative delivery options. Adenine deaminases acting on RNA (ADAR) enzymes catalyse the most widespread form of posttranscriptional RNA editing in humans and their ability to hydrolytically deaminate adenosine to inosine in double stranded RNA (dsRNA) has been harnessed to change pathogenic single nucleotide variants (SNVs) in the human genome on a transcriptional level. Until now, the most promising target editing rates have been achieved by exogenous delivery of the catalytically active ADAR deaminase domain (ADARDD) fused to an RNA binding protein. While it has been shown that endogenous ADARs can be recruited to a defined target site with the sole help of an ADAR-recruiting guide RNA, thus freeing up packaging space, decreasing the chance of an immune response against a foreign protein, and decreasing transcriptome-wide off-target effects, this approach has been limited by a low editing efficiency. Through the recent development of novel circular ADAR-recruiting guide RNAs as well as the optimisation of ADAR-recruiting antisense oligonucleotides, RNA editing with endogenous ADAR is now showing promising target editing efficiency in vitro and in vivo. A target editing efficiency comparable to RNA editing with exogenous ADAR was shown both in wild-type and disease mouse models as well as in wild-type non-human primates (NHP) immediately following and up to 6 weeks after application. With these encouraging results, RNA editing with endogenous ADAR has the potential to present an attractive option for the treatment of inherited retinal diseases (IRDs), a field where gene replacement therapy has been established as safe and efficacious, but where an unmet need still exists for genes that exceed the packaging capacity of an adeno associated virus (AAV) or are expressed in more than one retinal isoform. This review aims to give an overview of the recent developments in the field of RNA editing with endogenous ADAR and assess its applicability for the field of treatment of IRD.
Collapse
Affiliation(s)
- Julia-Sophia Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - M. Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| |
Collapse
|
14
|
Karki R, Kanneganti TD. ADAR1 and ZBP1 in innate immunity, cell death, and disease. Trends Immunol 2023; 44:201-216. [PMID: 36710220 PMCID: PMC9974732 DOI: 10.1016/j.it.2023.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
ADAR1 and ZBP1 are the only two mammalian proteins that contain Zα domains, which are thought to bind to nucleic acids in the Z-conformation. These two molecules are crucial in regulating diverse biological processes. While ADAR1-mediated RNA editing supports host survival and development, ZBP1-mediated immune responses provide host defense against infection and disease. Recent studies have expanded our understanding of the functions of ADAR1 and ZBP1 beyond their classical roles and established their fundamental regulation of innate immune responses, including NLRP3 inflammasome activation, inflammation, and cell death. Their roles in these processes have physiological impacts across development, infectious and inflammatory diseases, and cancer. In this review, we discuss the functions of ADAR1 and ZBP1 in regulating innate immune responses in development and disease.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
15
|
Muza PM, Bush D, Pérez-González M, Zouhair I, Cleverley K, Sopena ML, Aoidi R, West SJ, Good M, Tybulewicz VL, Walker MC, Fisher EM, Chang P. Cognitive impairments in a Down syndrome model with abnormal hippocampal and prefrontal dynamics and cytoarchitecture. iScience 2023; 26:106073. [PMID: 36818290 PMCID: PMC9929862 DOI: 10.1016/j.isci.2023.106073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
The Dp(10)2Yey mouse carries a ∼2.3-Mb intra-chromosomal duplication of mouse chromosome 10 (Mmu10) that has homology to human chromosome 21, making it an essential model for aspects of Down syndrome (DS, trisomy 21). In this study, we investigated neuronal dysfunction in the Dp(10)2Yey mouse and report spatial memory impairment and anxiety-like behavior alongside altered neural activity in the medial prefrontal cortex (mPFC) and hippocampus (HPC). Specifically, Dp(10)2Yey mice showed impaired spatial alternation associated with increased sharp-wave ripple activity in mPFC during a period of memory consolidation, and reduced mobility in a novel environment accompanied by reduced theta-gamma phase-amplitude coupling in HPC. Finally, we found alterations in the number of interneuron subtypes in mPFC and HPC that may contribute to the observed phenotypes and highlight potential approaches to ameliorate the effects of human trisomy 21.
Collapse
Affiliation(s)
- Phillip M. Muza
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Bush
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Institute of Cognitive Neuroscience and UCL Queen Square Institute of Neurology, University College London, London WC1N 3AZ, UK
| | - Marta Pérez-González
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Miriam L. Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven J. West
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Victor L.J. Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elizabeth M.C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
16
|
Zhou R, Wang G, Li Q, Meng F, Liu C, Gan R, Ju D, Liao M, Xu J, Sang D, Gao X, Zhou S, Wu K, Sun Q, Guo Y, Wu C, Chen Z, Chen L, Shi B, Wang H, Wang X, Li H, Cai T, Li B, Wang F, Funato H, Yanagisawa M, Zhang EE, Liu Q. A signalling pathway for transcriptional regulation of sleep amount in mice. Nature 2022; 612:519-527. [PMID: 36477534 DOI: 10.1038/s41586-022-05510-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.
Collapse
Affiliation(s)
- Rui Zhou
- College of Biological Sciences, China Agriculture University, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Guodong Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Fanxi Meng
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Can Liu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Gan
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Meimei Liao
- College of Biological Sciences, China Agriculture University, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Junjie Xu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Di Sang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Gao
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Shuang Zhou
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kejia Wu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Quanzhi Sun
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Ying Guo
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Chongyang Wu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Zhiyu Chen
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Lin Chen
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Bihan Shi
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Haiyan Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Xia Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Huaiye Li
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Bin Li
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China.
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
17
|
Hajji K, Sedmík J, Cherian A, Amoruso D, Keegan LP, O'Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA (NEW YORK, N.Y.) 2022; 28:1281-1297. [PMID: 35863867 PMCID: PMC9479739 DOI: 10.1261/rna.079266.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
Collapse
Affiliation(s)
- Khadija Hajji
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Jiří Sedmík
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Anna Cherian
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | | - Liam P Keegan
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
18
|
Sikorski V, Vento A, Kankuri E, IHD-EPITRAN Consortium. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
19
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
20
|
Kokot KE, Kneuer JM, John D, Rebs S, Möbius-Winkler MN, Erbe S, Müller M, Andritschke M, Gaul S, Sheikh BN, Haas J, Thiele H, Müller OJ, Hille S, Leuschner F, Dimmeler S, Streckfuss-Bömeke K, Meder B, Laufs U, Boeckel JN. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol 2022; 117:32. [PMID: 35737129 PMCID: PMC9226085 DOI: 10.1007/s00395-022-00940-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.
Collapse
Affiliation(s)
- Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Theodor Stern Kai 7, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Sabine Rebs
- Institute of Pharmacology and Toxicology, Versbacher-Str. 9, Würzburg, Germany
- Heartcenter - Clinic for Cardiology and Pneumology, University Medicine Goettingen, Robert-Koch-Str. 40, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | | | - Stephan Erbe
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Marion Müller
- Department of General and Interventional Cardiology/Angiology, Ruhr University of Bochum, Heart-and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Michael Andritschke
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Institute, Leipzig, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Theodor Stern Kai 7, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, Versbacher-Str. 9, Würzburg, Germany
- Heartcenter - Clinic for Cardiology and Pneumology, University Medicine Goettingen, Robert-Koch-Str. 40, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany.
| |
Collapse
|
21
|
Tassinari V, Cerboni C, Soriani A. Self or Non-Self? It Is also a Matter of RNA Recognition and Editing by ADAR1. BIOLOGY 2022; 11:biology11040568. [PMID: 35453767 PMCID: PMC9024829 DOI: 10.3390/biology11040568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023]
Abstract
Simple Summary A fundamental feature of innate immune cells is to detect the presence of non-self, such as potentially harmful nucleic acids, by germline-encoded specialized receptors called pattern recognition receptors (PRRs). ADAR1 is one key enzyme avoiding aberrant type I interferon (IFN-I) production and immune cell activation by the conversion of adenosine to inosine (A-to-I) in double-stranded RNA (dsRNA) structures that arise in self mRNA containing specific repetitive elements. This review intends to give an up-to-date and detailed overview of the ADAR1-mediated ability to modulate the immune response in autoimmune diseases and cancer progression. Abstract A-to-I editing is a post-transcriptional mechanism affecting coding and non-coding dsRNAs, catalyzed by the adenosine deaminases acting on the RNA (ADAR) family of enzymes. A-to-I modifications of endogenous dsRNA (mainly derived from Alu repetitive elements) prevent their recognition by cellular dsRNA sensors, thus avoiding the induction of antiviral signaling and uncontrolled IFN-I production. This process, mediated by ADAR1 activity, ensures the activation of an innate immune response against foreign (non-self) but not self nucleic acids. As a consequence, ADAR1 mutations or its de-regulated activity promote the development of autoimmune diseases and strongly impact cell growth, also leading to cancer. Moreover, the excessive inflammation promoted by Adar1 ablation also impacts T and B cell maturation, as well as the development of dendritic cell subsets, revealing a new role of ADAR1 in the homeostasis of the immune system.
Collapse
|
22
|
Zhang Y, Liu X, Zhang L, Wang L, He J, Ma H, Wang L. Preliminary identification and analysis of differential RNA editing between higher and lower backfat thickness pigs using DNA-seq and RNA-seq data. Anim Genet 2022; 53:327-339. [PMID: 35342974 DOI: 10.1111/age.13193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
RNA editing is an essential post-transcriptional regulatory mechanism. However, few studies have investigated the functional RNA edits in the economic traits of livestock on a genome-wide scale. Pigs are one of the most important livestock species and their fat is the principal organ involved in the regulation of adipose deposition. Here, we used three full-sibling pairs, with each pair comprising a pig with higher backfat (BF) thickness and lower backfat thickness, to identify RNA editing events based on whole-genome and transcriptome sequencing data. A total of 60,903 non-redundant RNA editing sites with 59,472 (97.7%) A-to-G edits were detected using a revised bioinformatics pipeline. A specific sequence context with G preference was found one base downstream of the edited site, and the editing level was associated with the distribution of nucleotides across nearly sites. Moreover, the A-to-G editing sites mostly occurred in the pig-special short interspersed nuclear elements, Pre0_SS. Comparing the difference between pigs with higher BF and lower BF, we found 211 differentially edited sites (DESites). Functional enrichment analyses revealed a significant enrichment of genes containing DESites in terms of adipose deposition. The DESites located in the six adipose-related genes (SKP1, GSK3B, COL5A3, MDM4, NT5C2, and DENND2A) were selected as candidate RNA editing sites associated with adipose deposition, and thus require further evaluation. This study mined the potentially functional RNA editing sites in pig adipose tissue and indicated that RNA editing may play an important role in adipose deposition, which provides a new insight into the post-transcriptionally mediated regulation mechanism of fat development.
Collapse
Affiliation(s)
- Yuebo Zhang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Xin Liu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ligang Wang
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun He
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Lixian Wang
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Minter R, Gardiner KJ. Trisomy of Human Chromosome 21 Orthologs Mapping to Mouse Chromosome 10 Cause Age and Sex-Specific Learning Differences: Relevance to Down Syndrome. Genes (Basel) 2021; 12:1697. [PMID: 34828303 PMCID: PMC8618694 DOI: 10.3390/genes12111697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability. The Dp10(1)Yey (Dp10) is a mouse model of DS that is trisomic for orthologs of 25% of the Hsa21 protein-coding genes, the entirety of the Hsa21 syntenic region on mouse chromosome 10. Trisomic genes include several involved in brain development and function, two that modify and regulate the activities of sex hormones, and two that produce sex-specific phenotypes as null mutants. These last four are the only Hsa21 genes with known sexually dimorphic properties. Relatively little is known about the potential contributions to the DS phenotype of segmental trisomy of Mmu10 orthologs. Here, we have tested separate cohorts of female and male Dp10 mice, at 3 and 9 months of age, in an open field elevated zero maze, rotarod, and balance beam, plus the learning and memory tasks, spontaneous alternation, puzzle box, double-H maze, context fear conditioning, and acoustic startle/prepulse inhibition, that depend upon the function of the prefrontal cortex, striatum, hippocampus, and cerebellum. We show that there are age and sex-specific differences in strengths and weaknesses, suggesting that genes within the telomere proximal region of Hsa21 influence the DS phenotype.
Collapse
Affiliation(s)
- Ross Minter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katheleen J. Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Nakahama T, Kawahara Y. Deciphering the Biological Significance of ADAR1-Z-RNA Interactions. Int J Mol Sci 2021; 22:ijms222111435. [PMID: 34768866 PMCID: PMC8584189 DOI: 10.3390/ijms222111435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from different promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endogenous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified in patients with Aicardi–Goutières syndrome (AGS), an inherited encephalopathy characterized by overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore, one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant MDA5 activation.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-3827
| |
Collapse
|
25
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
26
|
Ahmed MM, Block A, Busquet N, Gardiner KJ. Context Fear Conditioning in Down Syndrome Mouse Models: Effects of Trisomic Gene Content, Age, Sex and Genetic Background. Genes (Basel) 2021; 12:genes12101528. [PMID: 34680922 PMCID: PMC8535510 DOI: 10.3390/genes12101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS), trisomy of the long arm of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability (ID). Currently, there are no effective pharmacotherapies. The success of clinical trials to improve cognition depends in part on the design of preclinical evaluations in mouse models. To broaden understanding of the common limitations of experiments in learning and memory, we report performance in context fear conditioning (CFC) in three mouse models of DS, the Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey (abbreviated Dp16, Dp17 and Dp10), separately trisomic for the human Hsa21 orthologs mapping to mouse chromosomes 16, 17 and 10, respectively. We examined female and male mice of the three lines on the standard C57BL/6J background at 3 months of age and Dp17 and Dp10 at 18 months of age. We also examined female and male mice of Dp17 and Dp10 at 3 months of age as F1 hybrids obtained from a cross with the DBA/2J background. Results indicate that genotype, sex, age and genetic background affect CFC performance. These data support the need to use both female and male mice, trisomy of sets of all Hsa21 orthologs, and additional ages and genetic backgrounds to improve the reliability of preclinical evaluations of drugs for ID in DS.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Department of Neurology, Linda Crnic Institute for Down Syndrome, University of Colorado Alzheimer’s and Cognition Center, Aurora, CO 80045, USA;
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aaron Block
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Nicolas Busquet
- Department of Neurology, Animal Behavior and In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katheleen J. Gardiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Correspondence:
| |
Collapse
|
27
|
Shoshan Y, Liscovitch-Brauer N, Rosenthal JJC, Eisenberg E. Adaptive Proteome Diversification by Nonsynonymous A-to-I RNA Editing in Coleoid Cephalopods. Mol Biol Evol 2021; 38:3775-3788. [PMID: 34022057 PMCID: PMC8382921 DOI: 10.1093/molbev/msab154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.
Collapse
Affiliation(s)
- Yoav Shoshan
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | | | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Sapiro AL, Freund EC, Restrepo L, Qiao HH, Bhate A, Li Q, Ni JQ, Mosca TJ, Li JB. Zinc Finger RNA-Binding Protein Zn72D Regulates ADAR-Mediated RNA Editing in Neurons. Cell Rep 2021; 31:107654. [PMID: 32433963 PMCID: PMC7306179 DOI: 10.1016/j.celrep.2020.107654] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, alters RNA sequences from those encoded by DNA. These editing events are dynamically regulated, but few trans regulators of ADARs are known in vivo. Here, we screen RNA-binding proteins for roles in editing regulation with knockdown experiments in the Drosophila brain. We identify zinc-finger protein at 72D (Zn72D) as a regulator of editing levels at a majority of editing sites in the brain. Zn72D both regulates ADAR protein levels and interacts with ADAR in an RNA-dependent fashion, and similar to ADAR, Zn72D is necessary to maintain proper neuromuscular junction architecture and fly mobility. Furthermore, Zn72D’s regulatory role in RNA editing is conserved because the mammalian homolog of Zn72D, Zfr, regulates editing in mouse primary neurons. The broad and conserved regulation of ADAR editing by Zn72D in neurons sustains critically important editing events. Sapiro et al. identify Drosophila Zn72D as an influential regulator of neuronal A-to-I RNA editing and synaptic morphology. Zn72D regulates ADAR levels and editing at a large subset of editing sites, providing insight into the maintenance of critical tissue-specific RNA editing events.
Collapse
Affiliation(s)
- Anne L Sapiro
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emily C Freund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lucas Restrepo
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Huan-Huan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Abstract
C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
30
|
Abstract
RNA editing is an RNA modification that alters the RNA sequence relative to its genomic blueprint. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Editing of a protein-coding region within the RNA molecule may result in non-synonymous substitutions, leading to a modified protein product. These editing sites, also known as "recoding" sites, contribute to the complexity and diversification of the proteome. Recent computational transcriptomic studies have identified thousands of recoding sites in multiple species, many of which are conserved within (but not usually across) lineages and have functional and evolutionary importance. In this chapter we describe the recoding phenomenon across species, consider its potential utility for diversity and adaptation, and discuss its evolution.
Collapse
|
31
|
Increased RNA editing in maternal immune activation model of neurodevelopmental disease. Nat Commun 2020; 11:5236. [PMID: 33067431 PMCID: PMC7567798 DOI: 10.1038/s41467-020-19048-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The etiology of major neurodevelopmental disorders such as schizophrenia and autism is unclear, with evidence supporting a combination of genetic factors and environmental insults, including viral infection during pregnancy. Here we utilized a mouse model of maternal immune activation (MIA) with the viral mimic PolyI:C infection during early gestation. We investigated the transcriptional changes in the brains of mouse fetuses following MIA during the prenatal period, and evaluated the behavioral and biochemical changes in the adult brain. The results reveal an increase in RNA editing levels and dysregulation in brain development-related gene pathways in the fetal brains of MIA mice. These MIA-induced brain editing changes are not observed in adulthood, although MIA-induced behavioral deficits are observed. Taken together, our findings suggest that MIA induces transient dysregulation of RNA editing at a critical time in brain development.
Collapse
|
32
|
Kliuchnikova AA, Goncharov AO, Levitsky LI, Pyatnitskiy MA, Novikova SE, Kuznetsova KG, Ivanov MV, Ilina IY, Farafonova TE, Zgoda VG, Gorshkov MV, Moshkovskii SA. Proteome-Wide Analysis of ADAR-Mediated Messenger RNA Editing during Fruit Fly Ontogeny. J Proteome Res 2020; 19:4046-4060. [PMID: 32866021 DOI: 10.1021/acs.jproteome.0c00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adenosine-to-inosine RNA editing is an enzymatic post-transcriptional modification which modulates immunity and neural transmission in multicellular organisms. In particular, it involves editing of mRNA codons with the resulting amino acid substitutions. We identified such sites for developmental proteomes of Drosophila melanogaster at the protein level using available data for 15 stages of fruit fly development from egg to imago and 14 time points of embryogenesis. In total, 40 sites were obtained, each belonging to a unique protein, including four sites related to embryogenesis. The interactome analysis has revealed that the majority of the editing-recoded proteins were associated with synaptic vesicle trafficking and actomyosin organization. Quantitation data analysis suggested the existence of a phase-specific RNA editing regulation with yet unknown mechanisms. These findings supported the transcriptome analysis results, which showed that a burst in the RNA editing occurs during insect metamorphosis from pupa to imago. Finally, targeted proteomic analysis was performed to quantify editing-recoded and genomically encoded versions of five proteins in brains of larvae, pupae, and imago insects, which showed a clear tendency toward an increase in the editing rate for each of them. These results will allow a better understanding of the protein role in physiological effects of RNA editing.
Collapse
Affiliation(s)
- Anna A Kliuchnikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia.,Pirogov Russian National Research Medical University, 1, Ostrovityanova, Moscow 117997, Russia
| | - Anton O Goncharov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia.,Institute of Biomedical Chemistry, 10, Pogodinskaya, Moscow 119121, Russia
| | - Lev I Levitsky
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38, bld. 1, Leninsky Prospect, Moscow 119334, Russia
| | - Mikhail A Pyatnitskiy
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia.,Institute of Biomedical Chemistry, 10, Pogodinskaya, Moscow 119121, Russia
| | | | - Ksenia G Kuznetsova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia
| | - Mark V Ivanov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38, bld. 1, Leninsky Prospect, Moscow 119334, Russia
| | - Irina Y Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia
| | | | - Victor G Zgoda
- Institute of Biomedical Chemistry, 10, Pogodinskaya, Moscow 119121, Russia.,Skolkovo Institute of Science and Technology, 30, bld. 1, Bolshoy Boulevard, Moscow 121205, Russia
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38, bld. 1, Leninsky Prospect, Moscow 119334, Russia
| | - Sergei A Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia.,Pirogov Russian National Research Medical University, 1, Ostrovityanova, Moscow 117997, Russia
| |
Collapse
|
33
|
Sladek AL, Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front Synaptic Neurosci 2020; 12:30. [PMID: 32792936 PMCID: PMC7393603 DOI: 10.3389/fnsyn.2020.00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
AMPA-type glutamate receptors in the CNS are normally impermeable to Ca2+, but the aberrant expression of Ca2+-permeable AMPA receptors (CP-AMPARs) occurs in pathological conditions such as ischemia or epilepsy, or degenerative diseases such as ALS. Here, we show that select populations of retinal ganglion cells (RGCs) similarly express high levels of CP-AMPARs in a mouse model of glaucoma. CP-AMPAR expression increased dramatically in both On sustained alpha and Off transient alpha RGCs, and this increase was prevented by genomic editing of the GluA2 subunit. On sustained alpha RGCs with elevated CP-AMPAR levels displayed profound synaptic depression, which was reduced by selectively blocking CP-AMPARs, buffering Ca2+ with BAPTA, or with the CB1 antagonist AM251, suggesting that depression was mediated by a retrograde transmitter which might be triggered by the influx of Ca2+ through CP-AMPARs. Thus, glaucoma may alter the composition of AMPARs and depress excitatory synaptic input in select populations of RGCs.
Collapse
Affiliation(s)
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
34
|
Heraud-Farlow JE, Walkley CR. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol 2020; 10:200085. [PMID: 32603639 PMCID: PMC7574547 DOI: 10.1098/rsob.200085] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is a post-transcriptional modification of RNA which changes its sequence, coding potential and secondary structure. Catalysed by the adenosine deaminase acting on RNA (ADAR) proteins, ADAR1 and ADAR2, A-to-I editing occurs at approximately 50 000-150 000 sites in mice and into the millions of sites in humans. The vast majority of A-to-I editing occurs in repetitive elements, accounting for the discrepancy in total numbers of sites between species. The species-conserved primary role of editing by ADAR1 in mammals is to suppress innate immune activation by unedited cell-derived endogenous RNA. In the absence of editing, inverted paired sequences, such as Alu elements, are thought to form stable double-stranded RNA (dsRNA) structures which trigger activation of dsRNA sensors, such as MDA5. A small subset of editing sites are within coding sequences and are evolutionarily conserved across metazoans. Editing by ADAR2 has been demonstrated to be physiologically important for recoding of neurotransmitter receptors in the brain. Furthermore, changes in RNA editing are associated with various pathological states, from the severe autoimmune disease Aicardi-Goutières syndrome, to various neurodevelopmental and psychiatric conditions and cancer. However, does detection of an editing site imply functional importance? Genetic studies in humans and genetically modified mouse models together with evolutionary genomics have begun to clarify the roles of A-to-I editing in vivo. Furthermore, recent developments suggest there may be the potential for distinct functions of editing during pathological conditions such as cancer.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Carl R Walkley
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
35
|
Han J, An O, Hong H, Chan THM, Song Y, Shen H, Tang SJ, Lin JS, Ng VHE, Tay DJT, Molias FB, Pitcheshwar P, Tan HQ, Yang H, Chen L. Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. SCIENCE ADVANCES 2020; 6:eaba5136. [PMID: 32596459 PMCID: PMC7299630 DOI: 10.1126/sciadv.aba5136] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 05/02/2023]
Abstract
RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant A-to-I RNA editing profiles are implicated in cancers. Albeit changes in expression and activity of ADAR genes are thought to have been responsible for the dysregulated RNA editome in diseases, they are not always correlated, indicating the involvement of secondary regulators. Here, we uncover DAP3 as a potent repressor of editing and a strong oncogene in cancer. DAP3 mainly interacts with the deaminase domain of ADAR2 and represses editing via disrupting association of ADAR2 with its target transcripts. PDZD7, an exemplary DAP3-repressed editing target, undergoes a protein recoding editing at stop codon [Stop →Trp (W)]. Because of editing suppression by DAP3, the unedited PDZD7WT, which is more tumorigenic than edited PDZD7Stop518W, is accumulated in tumors. In sum, cancer cells may acquire malignant properties for their survival advantage through suppressing RNA editome by DAP3.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jaymie Siqi Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
36
|
Bajad P, Ebner F, Amman F, Szabó B, Kapoor U, Manjali G, Hildebrandt A, Janisiw MP, Jantsch MF. An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype. Nucleic Acids Res 2020; 48:3286-3303. [PMID: 31956894 PMCID: PMC7102943 DOI: 10.1093/nar/gkaa025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
The RNA-editing protein ADAR is essential for early development in the mouse. Genetic evidence suggests that A to I editing marks endogenous RNAs as 'self'. Today, different Adar knockout alleles have been generated that show a common phenotype of apoptosis, liver disintegration, elevated immune response and lethality at E12.5. All the Adar knockout alleles can be rescued by a concomitant deletion of the innate immunity genes Mavs or Ifih1 (MDA5), albeit to different extents. This suggests multiple functions of ADAR. We analyze AdarΔ7-9 mice that show a unique growth defect phenotype when rescued by Mavs. We show that AdarΔ7-9 can form a truncated, unstable, editing deficient protein that is mislocalized. Histological and hematologic analysis of these mice indicate multiple tissue- and hematopoietic defects. Gene expression profiling shows dysregulation of Rps3a1 and Rps3a3 in rescued AdarΔ7-9. Consistently, a distortion in 40S and 60S ribosome ratios is observed in liver cells. This dysregulation is also seen in AdarΔ2-13; Mavs-/- but not in AdarE861A/E861A; Ifih1-/- mice, suggesting editing-independent functions of ADAR in regulating expression levels of Rps3a1 and Rps3a3. In conclusion, our study demonstrates the importance of ADAR in post-natal development which cannot be compensated by ADARB1.
Collapse
Affiliation(s)
- Prajakta Bajad
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Florian Ebner
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Fabian Amman
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
- Institute of Theoretical Biochemistry, University of Vienna, Währinger Strasse 17, A-1090 Vienna, Austria
| | - Brigitta Szabó
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Utkarsh Kapoor
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Greeshma Manjali
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Alwine Hildebrandt
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Michael P Janisiw
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
37
|
Costa Cruz PH, Kato Y, Nakahama T, Shibuya T, Kawahara Y. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing. RNA (NEW YORK, N.Y.) 2020; 26:454-469. [PMID: 31941663 PMCID: PMC7075269 DOI: 10.1261/rna.072728.119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/09/2020] [Indexed: 05/03/2023]
Abstract
Adenosine-to-inosine RNA editing is an essential post-transcriptional modification catalyzed by adenosine deaminase acting on RNA (ADAR)1 and ADAR2 in mammals. For numerous sites in coding sequences (CDS) and microRNAs, editing is highly conserved and has significant biological consequences, for example, by altering amino acid residues and target recognition. However, no comprehensive and quantitative studies have been undertaken to determine how specific ADARs contribute to conserved sites in vivo. Here, we amplified each RNA region with editing site(s) separately and combined these for deep sequencing. Then, we compared the editing ratios of all sites that were conserved in CDS and microRNAs in the cerebral cortex and spleen of wild-type mice, Adar1E861A/E861AIfih-/- mice expressing inactive ADAR1 (Adar1 KI) and Adar2-/-Gria2R/R (Adar2 KO) mice. We found that most of the sites showed a preference for one ADAR. In contrast, some sites, such as miR-3099-3p, showed no ADAR preference. In addition, we found that the editing ratio for several sites, such as DACT3 R/G, was up-regulated in either Adar mutant mouse strain, whereas a coordinated interplay between ADAR1 and ADAR2 was required for the efficient editing of specific sites, such as the 5-HT2CR B site. We further created double mutant Adar1 KI Adar2 KO mice and observed viable and fertile animals with the complete absence of editing, demonstrating that ADAR1 and ADAR2 are the sole enzymes responsible for all editing sites in vivo. Collectively, these findings indicate that editing is regulated in a site-specific manner by the different interplay between ADAR1 and ADAR2.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Konen LM, Wright AL, Royle GA, Morris GP, Lau BK, Seow PW, Zinn R, Milham LT, Vaughan CW, Vissel B. A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability. Mol Brain 2020; 13:27. [PMID: 32102661 PMCID: PMC7045468 DOI: 10.1186/s13041-020-0545-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/05/2020] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington’s disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer’s disease.
Collapse
Affiliation(s)
- Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Amanda L Wright
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand.,The University of Auckland, Faculty of Medical and Health Sciences, School of Medicine, Grafton, Auckland, 1023, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Benjamin K Lau
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Patrick W Seow
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Luke T Milham
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Christopher W Vaughan
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia. .,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia.
| |
Collapse
|
39
|
Lundin E, Wu C, Widmark A, Behm M, Hjerling-Leffler J, Daniel C, Öhman M, Nilsson M. Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation. BMC Biol 2020; 18:6. [PMID: 31937309 PMCID: PMC6961268 DOI: 10.1186/s12915-019-0736-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape. Results We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type-specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts. Conclusions Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types. Electronic supplementary material The online version of this article (10.1186/s12915-019-0736-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elin Lundin
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| | - Chenglin Wu
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mikaela Behm
- German Cancer Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| |
Collapse
|
40
|
Chalk AM, Taylor S, Heraud-Farlow JE, Walkley CR. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol 2019; 20:268. [PMID: 31815657 PMCID: PMC6900863 DOI: 10.1186/s13059-019-1873-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing, mediated by ADAR1 and ADAR2, occurs at tens of thousands to millions of sites across mammalian transcriptomes. A-to-I editing can change the protein coding potential of a transcript and alter RNA splicing, miRNA biology, RNA secondary structure and formation of other RNA species. In vivo, the editing-dependent protein recoding of GRIA2 is the essential function of ADAR2, while ADAR1 editing prevents innate immune sensing of endogenous RNAs by MDA5 in both human and mouse. However, a significant proportion of A-to-I editing sites can be edited by both ADAR1 and ADAR2, particularly within the brain where both are highly expressed. The physiological function(s) of these shared sites, including those evolutionarily conserved, is largely unknown. RESULTS To generate completely A-to-I editing-deficient mammals, we crossed the viable rescued ADAR1-editing-deficient animals (Adar1E861A/E861AIfih1-/-) with rescued ADAR2-deficient (Adarb1-/-Gria2R/R) animals. Unexpectedly, the global absence of editing was well tolerated. Adar1E861A/E861AIfih1-/-Adarb1-/-Gria2R/R were recovered at Mendelian ratios and age normally. Detailed transcriptome analysis demonstrated that editing was absent in the brains of the compound mutants and that ADAR1 and ADAR2 have similar editing site preferences and patterns. CONCLUSIONS We conclude that ADAR1 and ADAR2 are non-redundant and do not compensate for each other's essential functions in vivo. Physiologically essential A-to-I editing comprises a small subset of the editome, and the majority of editing is dispensable for mammalian homeostasis. Moreover, in vivo biologically essential protein recoding mediated by A-to-I editing is an exception in mammals.
Collapse
Affiliation(s)
- Alistair M Chalk
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia
| | - Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
41
|
Huang H, Kapeli K, Jin W, Wong YP, Arumugam TV, Koh JH, Srimasorn S, Mallilankaraman K, Chua JJE, Yeo GW, Soong TW. Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9. Nucleic Acids Res 2019; 46:7323-7338. [PMID: 29733375 PMCID: PMC6101491 DOI: 10.1093/nar/gky348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.
Collapse
Affiliation(s)
- Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Katannya Kapeli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wenhao Jin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuk Peng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Thiruma Valavan Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sumitra Srimasorn
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gene W Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, USA.,Molecular Engineering Laboratory, A*STAR, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
42
|
Abstract
Modifications of RNA affect its function and stability. RNA editing is unique among these modifications because it not only alters the cellular fate of RNA molecules but also alters their sequence relative to the genome. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Recent transcriptomic studies have identified a number of 'recoding' sites at which A-to-I editing results in non-synonymous substitutions in protein-coding sequences. Many of these recoding sites are conserved within (but not usually across) lineages, are under positive selection and have functional and evolutionary importance. However, systematic mapping of the editome across the animal kingdom has revealed that most A-to-I editing sites are located within mobile elements in non-coding parts of the genome. Editing of these non-coding sites is thought to have a critical role in protecting against activation of innate immunity by self-transcripts. Both recoding and non-coding events have implications for genome evolution and, when deregulated, may lead to disease. Finally, ADARs are now being adapted for RNA engineering purposes.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The direct modification of RNA is now understood to be widespread, evolutionarily conserved and of consequence to cellular and organismal homeostasis. adenosine-to-inosine (A-to-I) RNA editing is one of the most common mammalian RNA modifications. Transcriptome-wide maps of the A-to-I editing exist, yet functions for the majority of editing sites remain opaque. Herein we discuss how hematology has been applied to determine physiological and malignant functions of A-to-I editing. RECENT FINDINGS Functional studies have established that A-to-I editing and ADAR1, responsible for the majority of editing in blood cells, are essential for normal blood cell homeostasis. ADAR1 edits endogenous RNA and reshapes its secondary structure, preventing MDA5 from perceiving the cells own RNA as pathogenic. Roles for ADAR1 in human leukaemia, and most recently, cancer cell intrinsic and extrinsic functions of ADAR1 have been identified that highlight ADAR1 as a therapeutic target in cancer. SUMMARY The studies reviewed have identified the key physiological function of ADAR1 and mechanistic basis for A-to-I editing in normal physiology and have now been extended to cancer. As our understanding of the biology and consequences of A-to-I editing evolve, it may be possible to target ADAR1 function advantageously in a number of settings.
Collapse
|
44
|
Modulation of ADAR mRNA expression in patients with congenital heart defects. PLoS One 2019; 14:e0200968. [PMID: 31039163 PMCID: PMC6490900 DOI: 10.1371/journal.pone.0200968] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is a hydrolytic deamination reaction catalyzed by the adenosine deaminase (ADAR) enzyme acting on double-stranded RNA. This posttranscriptional process diversifies a plethora of transcripts, including coding and noncoding RNAs. Interestingly, few studies have been carried out to determine the role of RNA editing in vascular disease. The aim of this study was to determine the potential role of ADARs in congenital heart disease. Strong downregulation of ADAR2 and increase in ADAR1 expression was observed in blood samples from congenital heart disease (CHD) patients. The decrease in expression of ADAR2 was in line with its downregulation in ventricular tissues of dilated cardiomyopathy patients. To further decipher the plausible regulatory pathway of ADAR2 with respect to heart physiology, miRNA profiling of ADAR2 was performed on tissues from ADAR2-/- mouse hearts. Downregulation of miRNAs (miR-29b, miR-405, and miR-19) associated with cardiomyopathy and cardiac fibrosis was observed. Moreover, the upregulation of miR-29b targets COL1A2 and IGF1, indicated that ADAR2 might be involved in cardiac myopathy. The ADAR2 target vascular development associated protein-coding gene filamin B (FLNB) was selected. The editing levels of FLNB were dramatically reduced in ADAR2-/- mice; however, no observable changes in FLNB expression were noted in ADAR2-/- mice compared to wild-type mice. This study proposes that sufficient ADAR2 enzyme activity might play a vital role in preventing cardiovascular defects.
Collapse
|
45
|
Chen G, Katrekar D, Mali P. RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry 2019; 58:1947-1957. [PMID: 30943016 DOI: 10.1021/acs.biochem.9b00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeted transcriptome engineering, in contrast to genome engineering, offers a complementary and potentially tunable and reversible strategy for cellular engineering. In this regard, adenosine to inosine (A-to-I) RNA base editing was recently engineered to make programmable base conversions on target RNAs. Similar to the DNA base editing technology, A-to-I RNA editing may offer an attractive alternative in a therapeutic setting, especially for the correction of point mutations. This Perspective introduces five currently characterized RNA editing systems and serves as a reader's guide for implementing an appropriate RNA editing strategy for applications in research or therapeutics.
Collapse
Affiliation(s)
- Genghao Chen
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Dhruva Katrekar
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Prashant Mali
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| |
Collapse
|
46
|
Sinigaglia K, Wiatrek D, Khan A, Michalik D, Sambrani N, Sedmík J, Vukić D, O'Connell MA, Keegan LP. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:356-369. [DOI: 10.1016/j.bbagrm.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/12/2018] [Accepted: 10/27/2018] [Indexed: 01/24/2023]
|
47
|
Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 2019; 294:1710-1720. [PMID: 30710018 PMCID: PMC6364763 DOI: 10.1074/jbc.tm118.004166] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herbert "Herb" Tabor, who celebrated his 100th birthday this past year, served the Journal of Biological Chemistry as a member of the Editorial Board beginning in 1961, as an Associate Editor, and as Editor-in-Chief for 40 years, from 1971 until 2010. Among the many discoveries in biological chemistry during this period was the identification of RNA modification by C6 deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA. This posttranscriptional RNA modification by adenosine deamination, known as A-to-I RNA editing, diversifies the transcriptome and modulates the innate immune interferon response. A-to-I editing is catalyzed by a family of enzymes, adenosine deaminases acting on dsRNA (ADARs). The roles of A-to-I editing are varied and include effects on mRNA translation, pre-mRNA splicing, and micro-RNA silencing. Suppression of dsRNA-triggered induction and action of interferon, the cornerstone of innate immunity, has emerged as a key function of ADAR1 editing of self (cellular) and nonself (viral) dsRNAs. A-to-I modification of RNA is essential for the normal regulation of cellular processes. Dysregulation of A-to-I editing by ADAR1 can have profound consequences, ranging from effects on cell growth and development to autoimmune disorders.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
48
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
49
|
Hung LY, Chen YJ, Mai TL, Chen CY, Yang MY, Chiang TW, Wang YD, Chuang TJ. An Evolutionary Landscape of A-to-I RNA Editome across Metazoan Species. Genome Biol Evol 2018; 10:521-537. [PMID: 29294013 PMCID: PMC5800060 DOI: 10.1093/gbe/evx277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is widespread across the kingdom Metazoa. However, for the lack of comprehensive analysis in nonmodel animals, the evolutionary history of A-to-I editing remains largely unexplored. Here, we detect high-confidence editing sites using clustering and conservation strategies based on RNA sequencing data alone, without using single-nucleotide polymorphism information or genome sequencing data from the same sample. We thereby unveil the first evolutionary landscape of A-to-I editing maps across 20 metazoan species (from worm to human), providing unprecedented evidence on how the editing mechanism gradually expands its territory and increases its influence along the history of evolution. Our result revealed that highly clustered and conserved editing sites tended to have a higher editing level and a higher magnitude of the ADAR motif. The ratio of the frequencies of nonsynonymous editing to that of synonymous editing remarkably increased with increasing the conservation level of A-to-I editing. These results thus suggest potentially functional benefit of highly clustered and conserved editing sites. In addition, spatiotemporal dynamics analyses reveal a conserved enrichment of editing and ADAR expression in the central nervous system throughout more than 300 Myr of divergent evolution in complex animals and the comparability of editing patterns between invertebrates and between vertebrates during development. This study provides evolutionary and dynamic aspects of A-to-I editome across metazoan species, expanding this important but understudied class of nongenomically encoded events for comprehensive characterization.
Collapse
Affiliation(s)
- Li-Yuan Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Te-Lun Mai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Da Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Yan S, Lu Y, He L, Zhao X, Wu L, Zhu H, Jiang M, Su Y, Cao W, Tian W, Xing Q. Dynamic Editome of Zebrafish under Aminoglycosides Treatment and Its Potential Involvement in Ototoxicity. Front Pharmacol 2017; 8:854. [PMID: 29213239 PMCID: PMC5702851 DOI: 10.3389/fphar.2017.00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022] Open
Abstract
RNA editing is an important co- and post-transcriptional event that generates RNA and protein diversity. Aminoglycosides are a group of bactericidal antibiotics and a mainstay of antimicrobial therapy for several life-threatening infections. However, aminoglycosides can induce ototoxicity, resulting in damage to the organs responsible for hearing and balance. At low concentrations, aminoglycosides can bind to many RNA sequences and critically influence RNA editing. We used a bioinformatics approach to investigate the effect of aminoglycosides on global mRNA editing events to gain insight into the interactions between mRNA editing and aminoglycoside ototoxicity. We identified 6,850 mRNA editing sites in protein coding genes in embryonic zebrafish, and in about 10% of these, the degree of RNA editing changed more than 15% under aminoglycosides treatment. Twelve ear-development or ototoxicity related genes, including plekhm1, fgfr1a, sox9a, and calrl2, exhibited remarkable changes in mRNA editing levels in zebrafish treated with aminoglycosides. Our results indicate that aminoglycosides may have a widespread and complicated influence on the progress of mRNA editing and expression. Furthermore, these results highlight the potential importance of mRNA editing in the pathogenesis and etiology of aminoglycoside-induced ototoxicity.
Collapse
Affiliation(s)
- Sijia Yan
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yulan Lu
- Children's Hospital, Fudan University, Shanghai, China
| | - Lin He
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xinzhi Zhao
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Lihua Wu
- Zhengzhou People's Hospital, Zhengzhou, China
| | - Huizhong Zhu
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Menglin Jiang
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yu Su
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Wei Cao
- Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Weidong Tian
- Department of Biostatistics and Computational Biology, School of Life Science, Fudan University, Shanghai, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|