1
|
Schwank K, Schmid C, Fremter T, Engel C, Milkereit P, Griesenbeck J, Tschochner H. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 2023; 404:979-1002. [PMID: 37823775 DOI: 10.1515/hsz-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.
Collapse
Affiliation(s)
- Katrin Schwank
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Catharina Schmid
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Tobias Fremter
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Dollinger R, Deng EB, Schultz J, Wu S, Deorio HR, Gilmour DS. Assessment of the roles of Spt5-nucleic acid contacts in promoter proximal pausing of RNA polymerase II. J Biol Chem 2023; 299:105106. [PMID: 37517697 PMCID: PMC10482750 DOI: 10.1016/j.jbc.2023.105106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Promoter proximal pausing of RNA polymerase II (Pol II) is a critical transcriptional regulatory mechanism in metazoans that requires the transcription factor DRB sensitivity-inducing factor (DSIF) and the inhibitory negative elongation factor (NELF). DSIF, composed of Spt4 and Spt5, establishes the pause by recruiting NELF to the elongation complex. However, the role of DSIF in pausing beyond NELF recruitment remains unclear. We used a highly purified in vitro system and Drosophila nuclear extract to investigate the role of DSIF in promoter proximal pausing. We identified two domains of Spt5, the KOW4 and NGN domains, that facilitate Pol II pausing. The KOW4 domain promotes pausing through its interaction with the nascent RNA while the NGN domain does so through a short helical motif that is in close proximity to the non-transcribed DNA template strand. Removal of this sequence in Drosophila has a male-specific dominant negative effect. The alpha-helical motif is also needed to support fly viability. We also show that the interaction between the Spt5 KOW1 domain and the upstream DNA helix is required for DSIF association with the Pol II elongation complex. Disruption of the KOW1-DNA interaction is dominant lethal in vivo. Finally, we show that the KOW2-3 domain of Spt5 mediates the recruitment of NELF to the elongation complex. In summary, our results reveal additional roles for DSIF in transcription regulation and identify specific domains important for facilitating Pol II pausing.
Collapse
Affiliation(s)
- Roberta Dollinger
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eilene B Deng
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Josie Schultz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sharon Wu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Haley R Deorio
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
3
|
Duval M, Yague-Sanz C, Turowski TW, Petfalski E, Tollervey D, Bachand F. The conserved RNA-binding protein Seb1 promotes cotranscriptional ribosomal RNA processing by controlling RNA polymerase I progression. Nat Commun 2023; 14:3013. [PMID: 37230993 DOI: 10.1038/s41467-023-38826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Transcription by RNA polymerase I (RNAPI) represents most of the transcriptional activity in eukaryotic cells and is associated with the production of mature ribosomal RNA (rRNA). As several rRNA maturation steps are coupled to RNAPI transcription, the rate of RNAPI elongation directly influences processing of nascent pre-rRNA, and changes in RNAPI transcription rate can result in alternative rRNA processing pathways in response to growth conditions and stress. However, factors and mechanisms that control RNAPI progression by influencing transcription elongation rate remain poorly understood. We show here that the conserved fission yeast RNA-binding protein Seb1 associates with the RNAPI transcription machinery and promotes RNAPI pausing states along the rDNA. The overall faster progression of RNAPI at the rDNA in Seb1-deficient cells impaired cotranscriptional pre-rRNA processing and the production of mature rRNAs. Given that Seb1 also influences pre-mRNA processing by modulating RNAPII progression, our findings unveil Seb1 as a pause-promoting factor for RNA polymerases I and II to control cotranscriptional RNA processing.
Collapse
Affiliation(s)
- Maxime Duval
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carlo Yague-Sanz
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- URPHYM-GEMO, The University of Namur, 5000, Namur, Belgium
| | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - François Bachand
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
4
|
Yokoyama M, Sasaki M, Kobayashi T. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters. Cell Rep 2023; 42:111944. [PMID: 36640349 DOI: 10.1016/j.celrep.2022.111944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Genome instability can drive aging in many organisms. The ribosomal RNA gene (rDNA) cluster is one of the most unstable regions in the genome and the stability of this region impacts replicative lifespan in budding yeast. To understand the underlying mechanism, we search for yeast mutants with stabler rDNA and longer lifespans than wild-type cells. We show that absence of a transcription elongation factor, Spt4, results in increased rDNA stability, reduced levels of non-coding RNA transcripts from the regulatory E-pro promoter in the rDNA, and extended replicative lifespan in a SIR2-dependent manner. Spt4-dependent lifespan restriction is abolished in the absence of non-coding RNA transcription at the E-pro locus. The amount of Spt4 increases and its function becomes more important as cells age. These findings suggest that Spt4 is a promising aging factor that accelerates cellular senescence through rDNA instability driven by non-coding RNA transcription.
Collapse
Affiliation(s)
- Masaaki Yokoyama
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
5
|
Song A, Chen FX. The pleiotropic roles of SPT5 in transcription. Transcription 2022; 13:53-69. [PMID: 35876486 PMCID: PMC9467590 DOI: 10.1080/21541264.2022.2103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Initially discovered by genetic screens in budding yeast, SPT5 and its partner SPT4 form a stable complex known as DSIF in metazoa, which plays pleiotropic roles in multiple steps of transcription. SPT5 is the most conserved transcription elongation factor, being found in all three domains of life; however, its structure has evolved to include new domains and associated posttranslational modifications. These gained features have expanded transcriptional functions of SPT5, likely to meet the demand for increasingly complex regulation of transcription in higher organisms. This review discusses the pleiotropic roles of SPT5 in transcription, including RNA polymerase II (Pol II) stabilization, enhancer activation, Pol II pausing and its release, elongation, and termination, with a focus on the most recent progress of SPT5 functions in regulating metazoan transcription.
Collapse
Affiliation(s)
- Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| |
Collapse
|
6
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
7
|
Azouzi C, Jaafar M, Dez C, Abou Merhi R, Lesne A, Henras AK, Gadal O. Coupling Between Production of Ribosomal RNA and Maturation: Just at the Beginning. Front Mol Biosci 2021; 8:778778. [PMID: 34765647 PMCID: PMC8575686 DOI: 10.3389/fmolb.2021.778778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35S/47S in yeast/human) is achieved by up to hundreds of RNA polymerase I (Pol I) enzymes simultaneously transcribing a single rRNA gene. In this review, we present recent advances in understanding the coupling between rRNA production and nascent rRNA folding. Mapping of the distribution of Pol I along ribosomal DNA at nucleotide resolution, using either native elongating transcript sequencing (NET-Seq) or crosslinking and analysis of cDNAs (CRAC), revealed frequent Pol I pausing, and CRAC results revealed a direct coupling between pausing and nascent RNA folding. High density of Pol I per gene imposes topological constraints that establish a defined pattern of polymerase distribution along the gene, with a persistent spacing between transcribing enzymes. RNA folding during transcription directly acts as an anti-pausing mechanism, implying that proper folding of the nascent rRNA favors elongation in vivo. Defects in co-transcriptional folding of rRNA are likely to induce Pol I pausing. We propose that premature termination of transcription, at defined positions, can control rRNA production in vivo.
Collapse
Affiliation(s)
- Chaima Azouzi
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Mariam Jaafar
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Annick Lesne
- CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Université Montpellier, Montpellier, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
8
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
9
|
Heiss FB, Daiß JL, Becker P, Engel C. Conserved strategies of RNA polymerase I hibernation and activation. Nat Commun 2021; 12:758. [PMID: 33536435 PMCID: PMC7859239 DOI: 10.1038/s41467-021-21031-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
RNA polymerase (Pol) I transcribes the ribosomal RNA precursor in all eukaryotes. The mechanisms 'activation by cleft contraction' and 'hibernation by dimerization' are unique to the regulation of this enzyme, but structure-function analysis is limited to baker's yeast. To understand whether regulation by such strategies is specific to this model organism or conserved among species, we solve three cryo-EM structures of Pol I from Schizosaccharomyces pombe in different functional states. Comparative analysis of structural models derived from high-resolution reconstructions shows that activation is accomplished by a conserved contraction of the active center cleft. In contrast to current beliefs, we find that dimerization of the S. pombe polymerase is also possible. This dimerization is achieved independent of the 'connector' domain but relies on two previously undescribed interfaces. Our analyses highlight the divergent nature of Pol I transcription systems from their counterparts and suggest conservation of regulatory mechanisms among organisms.
Collapse
Affiliation(s)
- Florian B Heiss
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Philipp Becker
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
10
|
Martínez-Fernández V, Cuevas-Bermúdez A, Gutiérrez-Santiago F, Garrido-Godino AI, Rodríguez-Galán O, Jordán-Pla A, Lois S, Triviño JC, de la Cruz J, Navarro F. Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2020; 26:1360-1379. [PMID: 32503921 PMCID: PMC7491330 DOI: 10.1261/rna.075507.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 05/08/2023]
Abstract
Understanding the functional connection that occurs for the three nuclear RNA polymerases to synthesize ribosome components during the ribosome biogenesis process has been the focal point of extensive research. To preserve correct homeostasis on the production of ribosomal components, cells might require the existence of proteins that target a common subunit of these RNA polymerases to impact their respective activities. This work describes how the yeast prefoldin-like Bud27 protein, which physically interacts with the Rpb5 common subunit of the three RNA polymerases, is able to modulate the transcription mediated by the RNA polymerase I, likely by influencing transcription elongation, the transcription of the RNA polymerase III, and the processing of ribosomal RNA. Bud27 also regulates both RNA polymerase II-dependent transcription of ribosomal proteins and ribosome biogenesis regulon genes, likely by occupying their DNA ORFs, and the processing of the corresponding mRNAs. With RNA polymerase II, this association occurs in a transcription rate-dependent manner. Our data also indicate that Bud27 inactivation alters the phosphorylation kinetics of ribosomal protein S6, a readout of TORC1 activity. We conclude that Bud27 impacts the homeostasis of the ribosome biogenesis process by regulating the activity of the three RNA polymerases and, in this way, the synthesis of ribosomal components. This quite likely occurs through a functional connection of Bud27 with the TOR signaling pathway.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain
| | - Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Sergio Lois
- Sistemas Genómicos. Ronda de Guglielmo Marconi, 6, 46980 Paterna, Valencia, Spain
| | - Juan C Triviño
- Sistemas Genómicos. Ronda de Guglielmo Marconi, 6, 46980 Paterna, Valencia, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| |
Collapse
|
11
|
Naguib A, Sandmann T, Yi F, Watts RJ, Lewcock JW, Dowdle WE. SUPT4H1 Depletion Leads to a Global Reduction in RNA. Cell Rep 2020; 26:45-53.e4. [PMID: 30605685 DOI: 10.1016/j.celrep.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022] Open
Abstract
SUPT4H1 is a transcription elongation factor that makes up part of the RNA polymerase II complex. Recent studies propose a selective role for SUPT4H1 in the transcription of repeat-containing DNA, the translated products of which contribute to neurodegenerative disorders such as C9orf72-amyotrophic lateral sclerosis. To investigate the potential of SUPT4H1 as a therapeutic target in repeat-associated neurodegeneration, we depleted SUPT4H1 by RNA interference to inhibit the function of the SUPT4H1/SUPT5H transcription elongation complex. Depletion of SUPT4H1 leads to a global reduction in all cellular RNA, highlighting the significant challenges that are associated with targeting this molecule for the treatment of human disease. Any requirement of SUPT4H1 for transcription of specific transcripts should be interpreted in the context of global modulatory effects on the transcriptome.
Collapse
Affiliation(s)
- Adam Naguib
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Thomas Sandmann
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | - Fei Yi
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Ryan J Watts
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Joseph W Lewcock
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - William E Dowdle
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| |
Collapse
|
12
|
Kieft R, Zhang Y, Marand AP, Moran JD, Bridger R, Wells L, Schmitz RJ, Sabatini R. Identification of a novel base J binding protein complex involved in RNA polymerase II transcription termination in trypanosomes. PLoS Genet 2020; 16:e1008390. [PMID: 32084124 PMCID: PMC7055916 DOI: 10.1371/journal.pgen.1008390] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/04/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Base J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3'-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of transcription start sites, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes involved in host immune evasion. Our results suggest a novel mechanistic link between base J and Pol II polycistronic transcription termination in kinetoplastids.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Alexandre P. Marand
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Jose Dagoberto Moran
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert Bridger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Scull CE, Schneider DA. Coordinated Control of rRNA Processing by RNA Polymerase I. Trends Genet 2019; 35:724-733. [PMID: 31358304 DOI: 10.1016/j.tig.2019.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022]
Abstract
Ribosomal RNA (rRNA) is co- and post-transcriptionally processed into active ribosomes. This process is dynamically regulated by direct covalent modifications of the polymerase that synthesizes the rRNA, RNA polymerase I (Pol I), and by interactions with cofactors that influence initiation, elongation, and termination activities of Pol I. The rate of transcription elongation by Pol I directly influences processing of nascent rRNA, and changes in Pol I transcription rate result in alternative rRNA processing events that lead to cellular signaling alterations and stress. It is clear that in divergent species, there exists robust organization of nascent rRNA processing events during transcription elongation. This review evaluates the current state of our understanding of the complex relationship between transcription elongation and rRNA processing.
Collapse
Affiliation(s)
- Catherine E Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genet 2019; 15:e1008157. [PMID: 31136569 PMCID: PMC6555540 DOI: 10.1371/journal.pgen.1008157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/07/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. The nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.
Collapse
|
15
|
Tafur L, Sadian Y, Hanske J, Wetzel R, Weis F, Müller CW. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. eLife 2019; 8:43204. [PMID: 30913026 PMCID: PMC6435322 DOI: 10.7554/elife.43204] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/09/2019] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase (Pol) I is a 14-subunit enzyme that solely transcribes pre-ribosomal RNA. Cryo-electron microscopy (EM) structures of Pol I initiation and elongation complexes have given first insights into the molecular mechanisms of Pol I transcription. Here, we present cryo-EM structures of yeast Pol I elongation complexes (ECs) bound to the nucleotide analog GMPCPP at 3.2 to 3.4 Å resolution that provide additional insight into the functional interplay between the Pol I-specific transcription-like factors A49-A34.5 and A12.2. Strikingly, most of the nucleotide-bound ECs lack the A49-A34.5 heterodimer and adopt a Pol II-like conformation, in which the A12.2 C-terminal domain is bound in a previously unobserved position at the A135 surface. Our structural and biochemical data suggest a mechanism where reversible binding of the A49-A34.5 heterodimer could contribute to the regulation of Pol I transcription initiation and elongation.
Collapse
Affiliation(s)
- Lucas Tafur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree, European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Yashar Sadian
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonas Hanske
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rene Wetzel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
16
|
NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I. Proc Natl Acad Sci U S A 2018; 115:E11633-E11641. [PMID: 30482860 PMCID: PMC6294894 DOI: 10.1073/pnas.1809421115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequence motifs that affect RNA polymerase transcription elongation are well studied in prokaryotic organisms and contribute directly to regulation of gene expression. Despite significant work on the regulation of eukaryotic transcription, the effect of DNA template sequence on RNA polymerase I (Pol I) transcription elongation remains unknown. In this study, we examined the effects of DNA sequence motifs on Pol I transcription elongation kinetics in vitro and in vivo. Specifically, we characterized how the spy rho-independent terminator motif from Escherichia coli directly affects Saccharomyces cerevisiae Pol I activity, demonstrating evolutionary conservation of sequence-specific effects on transcription. The insight gained from this analysis led to the identification of a homologous sequence in the ribosomal DNA of S. cerevisiae We then used native elongating transcript sequencing (NETSeq) to determine whether Pol I encounters pause-inducing sequences in vivo. We found hundreds of positions within the ribosomal DNA (rDNA) that reproducibly induce pausing in vivo. We also observed significantly lower Pol I occupancy at G residues in the rDNA, independent of other sequence context, indicating differential nucleotide incorporation rates for Pol I in vivo. These data demonstrate that DNA template sequence elements directly influence Pol I transcription elongation. Furthermore, we have developed the necessary experimental and analytical methods to investigate these perturbations in living cells going forward.
Collapse
|
17
|
Ehara H, Sekine SI. Architecture of the RNA polymerase II elongation complex: new insights into Spt4/5 and Elf1. Transcription 2018; 9:286-291. [PMID: 29624124 PMCID: PMC6150629 DOI: 10.1080/21541264.2018.1454817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transcription by RNA polymerase II (Pol II) is accomplished with the aid of numerous accessory factors specific to each transcriptional stage. The structure of the Pol II elongation complex (EC) bound with Spt4/5, Elf1, and TFIIS unveiled the sophisticated basal EC architecture essential for transcription elongation and other transcription-related events.
Collapse
Affiliation(s)
- Haruhiko Ehara
- a RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama 230-0045 , Japan
| | - Shun-Ichi Sekine
- a RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama 230-0045 , Japan
| |
Collapse
|
18
|
Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park PJ, Winston F. Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. Mol Cell 2017; 66:77-88.e5. [PMID: 28366642 DOI: 10.1016/j.molcel.2017.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Spt5 is an essential and conserved factor that functions in transcription and co-transcriptional processes. However, many aspects of the requirement for Spt5 in transcription are poorly understood. We have analyzed the consequences of Spt5 depletion in Schizosaccharomyces pombe using four genome-wide approaches. Our results demonstrate that Spt5 is crucial for a normal rate of RNA synthesis and distribution of RNAPII over transcription units. In the absence of Spt5, RNAPII localization changes dramatically, with reduced levels and a relative accumulation over the first ∼500 bp, suggesting that Spt5 is required for transcription past a barrier. Spt5 depletion also results in widespread antisense transcription initiating within this barrier region. Deletions of this region alter the distribution of RNAPII on the sense strand, suggesting that the barrier observed after Spt5 depletion is normally a site at which Spt5 stimulates elongation. Our results reveal a global requirement for Spt5 in transcription elongation.
Collapse
Affiliation(s)
- Ameet Shetty
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Scott P Kallgren
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Carina Demel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dan Spatt
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
20
|
Blythe AJ, Yazar-Klosinski B, Webster MW, Chen E, Vandevenne M, Bendak K, Mackay JP, Hartzog GA, Vrielink A. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci 2016; 25:1710-21. [PMID: 27376968 DOI: 10.1002/pro.2976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Berra Yazar-Klosinski
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Michael W Webster
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, 95064
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katerina Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Grant A Hartzog
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
21
|
Crickard JB, Fu J, Reese JC. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 2016; 291:9853-70. [PMID: 26945063 DOI: 10.1074/jbc.m116.716001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) undergoes structural changes during the transitions from initiation, elongation, and termination, which are aided by a collection of proteins called elongation factors. NusG/Spt5 is the only elongation factor conserved in all domains of life. Although much information exists about the interactions between NusG/Spt5 and RNA polymerase in prokaryotes, little is known about how the binding of eukaryotic Spt4/5 affects the biochemical activities of RNAPII. We characterized the activities of Spt4/5 and interrogated the structural features of Spt5 required for it to interact with elongation complexes, bind nucleic acids, and promote transcription elongation. The eukaryotic specific regions of Spt5 containing the Kyrpides, Ouzounis, Woese domains are involved in stabilizing the association with the RNAPII elongation complex, which also requires the presence of the nascent transcript. Interestingly, we identify a region within the conserved NusG N-terminal (NGN) domain of Spt5 that contacts the non-template strand of DNA both upstream of RNAPII and in the transcription bubble. Mutating charged residues in this region of Spt5 did not prevent Spt4/5 binding to elongation complexes, but abrogated the cross-linking of Spt5 to DNA and the anti-arrest properties of Spt4/5, thus suggesting that contact between Spt5 (NGN) and DNA is required for Spt4/5 to promote elongation. We propose that the mechanism of how Spt5/NGN promotes elongation is fundamentally conserved; however, the eukaryotic specific regions of the protein evolved so that it can serve as a platform for other elongation factors and maintain its association with RNAPII as it navigates genomes packaged into chromatin.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
22
|
Zhang Y, French SL, Beyer AL, Schneider DA. The Transcription Factor THO Promotes Transcription Initiation and Elongation by RNA Polymerase I. J Biol Chem 2015; 291:3010-8. [PMID: 26663077 DOI: 10.1074/jbc.m115.673442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Although ribosomal RNA represents the majority of cellular RNA, and ribosome synthesis is closely connected to cell growth and proliferation rates, a complete understanding of the factors that influence transcription of ribosomal DNA is lacking. Here, we show that the THO complex positively affects transcription by RNA polymerase I (Pol I). We found that THO physically associates with the rDNA repeat and interacts genetically with Pol I transcription initiation factors. Pol I transcription in hpr1 or tho2 null mutants is dramatically reduced to less than 20% of the WT level. Pol I occupancy of the coding region of the rDNA in THO mutants is decreased to ~50% of WT level. Furthermore, although the percentage of active rDNA repeats remains unaffected in the mutant cells, the overall rDNA copy number increases ~2-fold compared with WT. Together, these data show that perturbation of THO function impairs transcription initiation and elongation by Pol I, identifying a new cellular target for the conserved THO complex.
Collapse
Affiliation(s)
- Yinfeng Zhang
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024 and
| | - Sarah L French
- the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| | - Ann L Beyer
- the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| | - David A Schneider
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024 and
| |
Collapse
|
23
|
Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5. Mol Cell Biol 2015. [PMID: 26217010 DOI: 10.1128/mcb.00520-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic Spt4-Spt5 heterodimer forms a higher-order complex with RNA polymerase II (and I) to regulate transcription elongation. Extensive genetic and functional data have revealed diverse roles of Spt4-Spt5 in coupling elongation with chromatin modification and RNA-processing pathways. A mechanistic understanding of the diverse functions of Spt4-Spt5 is hampered by challenges in resolving the distribution of functions among its structural domains, including the five KOW domains in Spt5, and a lack of their high-resolution structures. We present high-resolution crystallographic results demonstrating that distinct structures are formed by the first through third KOW domains (KOW1-Linker1 [K1L1] and KOW2-KOW3) of Saccharomyces cerevisiae Spt5. The structure reveals that K1L1 displays a positively charged patch (PCP) on its surface, which binds nucleic acids in vitro, as shown in biochemical assays, and is important for in vivo function, as shown in growth assays. Furthermore, assays in yeast have shown that the PCP has a function that partially overlaps that of Spt4. Synthesis of our results with previous evidence suggests a model in which Spt4 and the K1L1 domain of Spt5 form functionally overlapping interactions with nucleic acids upstream of the transcription bubble, and this mechanism may confer robustness on processes associated with transcription elongation.
Collapse
|
24
|
Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I. Mol Cell Biol 2015; 35:2321-31. [PMID: 25918242 DOI: 10.1128/mcb.01499-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023] Open
Abstract
Spt6 (suppressor of Ty6) has many roles in transcription initiation and elongation by RNA polymerase (Pol) II. These effects are mediated through interactions with histones, transcription factors, and the RNA polymerase. Two lines of evidence suggest that Spt6 also plays a role in rRNA synthesis. First, Spt6 physically associates with a Pol I subunit (Rpa43). Second, Spt6 interacts physically and genetically with Spt4/5, which directly affects Pol I transcription. Utilizing a temperature-sensitive allele, spt6-1004, we show that Spt6 is essential for Pol I occupancy of the ribosomal DNA (rDNA) and rRNA synthesis. Our data demonstrate that protein levels of an essential Pol I initiation factor, Rrn3, are reduced when Spt6 is inactivated, leading to low levels of Pol I-Rrn3 complex. Overexpression of RRN3 rescues Pol I-Rrn3 complex formation; however, rRNA synthesis is not restored. These data suggest that Spt6 is involved in either recruiting the Pol I-Rrn3 complex to the rDNA or stabilizing the preinitiation complex. The findings presented here identify an unexpected, essential role for Spt6 in synthesis of rRNA.
Collapse
|
25
|
Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5. Protein Expr Purif 2014; 100:54-60. [PMID: 24859675 DOI: 10.1016/j.pep.2014.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 11/24/2022]
Abstract
Spt4/5 is a hetero-dimeric transcription elongation factor that can both inhibit and promote transcription elongation by RNA polymerase II (RNAPII). However, Spt4/5's mechanism of action remains elusive. Spt5 is an essential protein and the only universally-conserved RNAP-associated transcription elongation factor. The protein contains multiple Kyrpides, Ouzounis and Woese (KOW) domains. These domains, in other proteins, are thought to bind RNA although there is little direct evidence in the literature to support such a function in Spt5. This could be due, at least in part, to difficulties in expressing and purifying recombinant Spt5. When expressed in Escherichia coli (E. coli), Spt5 is innately insoluble. Here we report a new approach for the successful expression and purification of milligram quantities of three different multi-KOW domain complexes of Saccharomyces cerevisiae Spt4/5 for use in future functional studies. Using the E. coli strain Rosetta2 (DE3) we have developed strategies for co-expression of Spt4 and multi-KOW domain Spt5 complexes from the bi-cistronic pET-Duet vector. In a second strategy, Spt4/5 was expressed via co-transformation of Spt4 in the vector pET-M11 with Spt5 ubiquitin fusion constructs in the vector pHUE. We characterized the multi-KOW domain Spt4/5 complexes by Western blot, limited proteolysis, circular dichroism, SDS-PAGE and size exclusion chromatography-multiangle light scattering and found that the proteins are folded with a Spt4:Spt5 hetero-dimeric stoichiometry of 1:1. These expression constructs encompass a larger region of Spt5 than has previously been reported, and will provide the opportunity to elucidate the biological function of the multi-KOW containing Spt5.
Collapse
|
26
|
Li W, Giles C, Li S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res 2014; 42:7069-83. [PMID: 24813444 PMCID: PMC4066765 DOI: 10.1093/nar/gku333] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Spt5, a transcription elongation factor, and Rpb4, a subunit of RNA polymerase II (RNAP II) that forms a subcomplex with Rpb7, play important roles in transcription elongation and repression of transcription coupled DNA repair (TCR) in eukaryotic cells. How Spt5 physically interacts with RNAP II, and if and/or how Spt5 and Rpb4/7 coordinate to achieve the distinctive functions have been enigmatic. By site-specific incorporation of the unnatural amino acid p-benzoyl-L-phenylalanine, a photoreactive cross-linker, we mapped interactions between Spt5 and RNAP II in Saccharomyces cerevisiae. Through its KOW4-5 domains, Spt5 extensively interacts with Rpb4/7. Spt5 also interacts with Rpb1 and Rpb2, two largest subunits of RNAP II, at the clamp, protrusion and wall domains. These interactions may lock the clamp to the closed conformation and enclose the DNA being transcribed in the central cleft of RNAP II. Deletion of Spt5 KOW4-5 domains decreases transcription elongation and derepresses TCR. Our findings suggest that Spt5 is a key coordinator for holding the RNAP II complex in a closed conformation that is highly competent for transcription elongation but repressive to TCR.
Collapse
Affiliation(s)
- Wentao Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Cristina Giles
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
27
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
28
|
Dronamraju R, Strahl BD. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Nucleic Acids Res 2013; 42:870-81. [PMID: 24163256 PMCID: PMC3902893 DOI: 10.1093/nar/gkt1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II is sequentially modified for recruitment of numerous accessory factors during transcription. One such factor is Spt6, which couples transcription elongation with histone chaperone activity and the regulation of H3 lysine 36 methylation. Here, we show that CTD association of Spt6 is required for Ser2 CTD phosphorylation and for the protein stability of Ctk1 (the major Ser2 CTD kinase). We also find that Spt6 associates with Ctk1, and, unexpectedly, Ctk1 and Ser2 CTD phosphorylation are required for the stability of Spt6-thus revealing a Spt6-Ctk1 feed-forward loop that robustly maintains Ser2 phosphorylation during transcription. In addition, we find that the BUR kinase and the polymerase associated factor transcription complex function upstream of the Spt6-Ctk1 loop, most likely by recruiting Spt6 to the CTD at the onset of transcription. Consistent with requirement of Spt6 in histone gene expression and nucleosome deposition, mutation or deletion of members of the Spt6-Ctk1 loop leads to global loss of histone H3 and sensitivity to hydroxyurea. In sum, these results elucidate a new control mechanism for the regulation of RNAPII CTD phosphorylation during transcription elongation that is likely to be highly conserved.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
29
|
Viktorovskaya OV, Engel KL, French SL, Cui P, Vandeventer PJ, Pavlovic EM, Beyer AL, Kaplan CD, Schneider DA. Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II. Cell Rep 2013; 4:974-84. [PMID: 23994471 DOI: 10.1016/j.celrep.2013.07.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/30/2013] [Indexed: 12/29/2022] Open
Abstract
Multisubunit RNA polymerases (msRNAPs) exhibit high sequence and structural homology, especially within their active sites, which is generally thought to result in msRNAP functional conservation. However, we show that mutations in the trigger loop (TL) in the largest subunit of RNA polymerase I (Pol I) yield phenotypes unexpected from studies of Pol II. For example, a well-characterized gain-of-function mutation in Pol II results in loss of function in Pol I (Pol II: rpb1- E1103G; Pol I: rpa190-E1224G). Studies of chimeric Pol II enzymes hosting Pol I or Pol III TLs suggest that consequences of mutations that alter TL dynamics are dictated by the greater enzymatic context and not solely the TL sequence. Although the rpa190-E1224G mutation diminishes polymerase activity, when combined with mutations that perturb Pol I catalysis, it enhances polymerase function, similar to the analogous Pol II mutation. These results suggest that Pol I and Pol II have different rate-limiting steps.
Collapse
Affiliation(s)
- Olga V Viktorovskaya
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mol Cell Biol 2013; 33:3259-73. [PMID: 23775116 DOI: 10.1128/mcb.00270-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription elongation factors associate with RNA polymerase II and aid its translocation through chromatin. One such factor is the conserved Paf1 complex (Paf1C), which regulates gene expression through several mechanisms, including the stimulation of cotranscriptional histone modifications. Previous studies revealed a prominent role for the Rtf1 subunit in tethering Paf1C to the RNA polymerase II elongation machinery. Here, we investigated the mechanism by which Rtf1 couples Paf1C to active chromatin. We show that a highly conserved domain of Rtf1 is necessary and sufficient for mediating a physical interaction between Rtf1 and the essential transcription elongation factor Spt5. Mutations that alter this Rtf1 domain or delete the Spt5 C-terminal repeat domain (CTR) disrupt the interaction between Rtf1 and Spt5 and release Paf1C from chromatin. When expressed in cells as the only source of Rtf1, the Spt5-interacting domain of Rtf1 can associate independently with active genes in a pattern similar to that of full-length Rtf1 and in a manner dependent on the Spt5 CTR. In vitro experiments indicate that the interaction between the Rtf1 Spt5-interacting domain and the Spt5 CTR is direct. Collectively, our results provide molecular insight into a key attachment point between Paf1C and the RNA polymerase II elongation machinery.
Collapse
|
31
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
32
|
Turowski TW. The impact of transcription on posttranscriptional processes in yeast. Gene 2013; 526:23-9. [PMID: 23639960 DOI: 10.1016/j.gene.2013.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/06/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
In eukaryotes, three RNA polymerases are responsible for transcription. These complex enzymes show many similarities with one another, such as several common or highly homologue subunits, while some other features, such as transcript length, diversity, processing, and transcription regulation, are unique to each polymerase. The present article reviews recent publications focusing on the impact of transcription of various RNA species in yeast on posttranscriptional steps such as pre-RNA processing, transport and decay. Two major conclusions emerge from a critical analysis of the current knowledge. (1) The kinetics of transcription elongation affects cotranscriptional pre-RNA processing. (2) The efficiency of transcription, by saturating the proteins interacting with RNA, indirectly affects the processing, export and decay of transcripts.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
33
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
34
|
Abstract
During transcription elongation, RNA polymerase II (Pol II) binds the general elongation factor Spt5. Spt5 contains a repetitive C-terminal region (CTR) that is required for cotranscriptional recruitment of the Paf1 complex (D. L. Lindstrom et al., Mol. Cell. Biol. 23:1368-1378, 2003; Z. Zhang, J. Fu, and D. S. Gilmour, Genes Dev. 19:1572-1580, 2005). Here we report a new role of the Spt5 CTR in the recruitment of 3' RNA-processing factors. Chromatin immunoprecipitation (ChIP) revealed that the Spt5 CTR is required for normal recruitment of pre-mRNA cleavage factor I (CFI) to the 3' ends of Saccharomyces cerevisiae genes. RNA contributes to CFI recruitment, as RNase treatment prior to ChIP further decreases CFI ChIP signals. Genome-wide ChIP profiling detected occupancy peaks of CFI subunits around 100 nucleotides downstream of the polyadenylation (pA) sites of genes. CFI recruitment to this defined region may result from simultaneous binding to the Spt5 CTR, to nascent RNA containing the pA sequence, and to the elongating Pol II isoform that is phosphorylated at serine 2 (S2) residues in its C-terminal domain (CTD). Consistent with this model, the CTR interacts with CFI in vitro but is not required for pA site recognition and transcription termination in vivo.
Collapse
|
35
|
Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 2012; 417:13-27. [PMID: 22306403 PMCID: PMC3382729 DOI: 10.1016/j.jmb.2012.01.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/25/2022]
Abstract
Evolutionary related multisubunit RNA polymerases (RNAPs) transcribe the genomes of all living organisms. Whereas the core subunits of RNAPs are universally conserved in all three domains of life—indicative of a common evolutionary descent—this only applies to one RNAP-associated transcription factor—Spt5, also known as NusG in bacteria. All other factors that aid RNAP during the transcription cycle are specific for the individual domain or only conserved between archaea and eukaryotes. Spt5 and its bacterial homologue NusG regulate gene expression in several ways by (i) modulating transcription processivity and promoter proximal pausing, (ii) coupling transcription and RNA processing or translation, and (iii) recruiting termination factors and thereby silencing laterally transferred DNA and protecting the genome against double-stranded DNA breaks. This review discusses recent discoveries that identify Spt5-like factors as evolutionary conserved nexus for the regulation and coordination of the machineries responsible for information processing in the cell.
Collapse
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
36
|
Regulation of ribosomal RNA production by RNA polymerase I: does elongation come first? GENETICS RESEARCH INTERNATIONAL 2012; 2012:276948. [PMID: 22567380 PMCID: PMC3335655 DOI: 10.1155/2012/276948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022]
Abstract
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35-47S) can be achieved by up to 150 RNA polymerase I (Pol I) enzymes simultaneously transcribing each rRNA gene. In this paper, we present recent advances made in understanding the regulatory mechanisms that control elongation. Built-in Pol I elongation factors, such as Rpa34/Rpa49 in budding yeast and PAF53/CAST in humans, are instrumental to the extremely high rate of rRNA production per gene. rRNA elongation mechanisms are intrinsically linked to chromatin structure and to the higher-order organization of the rRNA genes (rDNA). Factors such as Hmo1 in yeast and UBF1 in humans are key players in rDNA chromatin structure in vivo. Finally, elongation factors known to regulate messengers RNA production by RNA polymerase II are also involved in rRNA production and work cooperatively with Rpa49 in vivo.
Collapse
|
37
|
Crisucci EM, Arndt KM. The Roles of the Paf1 Complex and Associated Histone Modifications in Regulating Gene Expression. GENETICS RESEARCH INTERNATIONAL 2011; 2011. [PMID: 22408743 PMCID: PMC3296560 DOI: 10.4061/2011/707641] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The conserved Paf1 complex (Paf1C) carries out multiple functions during transcription by RNA polymerase (pol) II, and these functions are required for the proper expression of numerous genes in yeast and metazoans. In the elongation stage of the transcription cycle, the Paf1C associates with RNA pol II, interacts with other transcription elongation factors, and facilitates modifications to the chromatin template. At the end of elongation, the Paf1C plays an important role in the termination of RNA pol II transcripts and the recruitment of proteins required for proper RNA 3′ end formation. Significantly, defects in the Paf1C are associated with several human diseases. In this paper, we summarize current knowledge on the roles of the Paf1C in RNA pol II transcription.
Collapse
Affiliation(s)
- Elia M Crisucci
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
38
|
Beckouët F, Mariotte-Labarre S, Peyroche G, Nogi Y, Thuriaux P. Rpa43 and its partners in the yeast RNA polymerase I transcription complex. FEBS Lett 2011; 585:3355-9. [PMID: 21983101 DOI: 10.1016/j.febslet.2011.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
An Rpa43/Rpa14 stalk protrudes from RNA polymerase I (RNAPI), with homology to Rpb7/Rpb4 (RNAPII), Rpc25/Rpc17 (RNAPIII) and RpoE/RpoF (archaea). In fungi and vertebrates, Rpa43 contains hydrophilic domains forming about half of its size, but these domains lack in Schizosaccharomyces pombe and most other eukaryote lineages. In Saccharomyces cerevisiae, they can be lost with little or no growth effect, as shown by deletion mapping and by domain swapping with fission yeast, but genetically interact with rpa12Δ, rpa34Δ or rpa49Δ, lacking non-essential subunits important for transcript elongation. Two-hybrid data and other genetic evidence suggest that Rpa43 directly bind Spt5, an RNAPI elongation factor also acting in RNAPII-dependent transcription, and may also interact with the nucleosomal chaperone Spt6.
Collapse
Affiliation(s)
- Frédéric Beckouët
- CEA, iBiTec-S, Service de Biologie Intégrative & Génétique Moléculaire, F-91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
39
|
Leporé N, Lafontaine DLJ. A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast. PLoS One 2011; 6:e24962. [PMID: 21949810 PMCID: PMC3176313 DOI: 10.1371/journal.pone.0024962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022] Open
Abstract
Ribogenesis is a multistep error-prone process that is actively monitored by quality control mechanisms. How ribosomal RNA synthesis, pre-rRNA processing and nucleolar surveillance are integrated is unclear. Nor is it understood how defective ribosomes are recognized. We report in budding yeast that, in vivo, the interaction between the transcription elongation factor Spt5 and Rpa190, the largest subunit of RNA polymerase (Pol) I, requires the Spt5 C-terminal region (CTR), a conserved and highly repetitive domain that is reminiscent of the RNA Pol II C-terminal domain (CTD). We show that this sequence is also required for the interaction between Spt5 and Nrd1, an RNA specific binding protein, and an exosome cofactor. Both the Spt4-Spt5, and the Nrd1-Nab3 complexes interact functionally with Rrp6, and colocalize at the rDNA. Mutations in the RNA binding domain of Nrd1, but not in its RNA Pol II CTD-interacting domain, and mutations in the RRM of Nab3 led to the accumulation of normal and aberrant polyadenylated pre-rRNAs. Altogether these results indicate that Nrd1-Nab3 contributes to recruiting the nucleolar surveillance to elongating polymerases to survey nascent rRNA transcripts.
Collapse
Affiliation(s)
- Nathalie Leporé
- RNA Metabolism, Fonds de la Recherche Scientifique (FRS-FNRS), Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
| | - Denis L. J. Lafontaine
- RNA Metabolism, Fonds de la Recherche Scientifique (FRS-FNRS), Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Académie Wallonie–Bruxelles, Charleroi-Gosselies, Belgium
- * E-mail:
| |
Collapse
|
40
|
Schneider DA. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 2011; 493:176-84. [PMID: 21893173 DOI: 10.1016/j.gene.2011.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/11/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023]
Abstract
Synthesis of the translation apparatus is a central activity in growing and/or proliferating cells. Because of its fundamental importance and direct connection to cell proliferation, ribosome synthesis has been a focus of ongoing research for several decades. As a consequence, much is known about the essential factors involved in this process. Many studies have shown that transcription of the ribosomal DNA by RNA polymerase I is a major target for cellular regulation of ribosome synthesis rates. The initiation of transcription by RNA polymerase I has been implicated as a regulatory target, however, recent studies suggest that the elongation step in transcription is also influenced and regulated by trans-acting factors. This review describes the factors required for rRNA synthesis and focuses on recent works that have begun to identify and characterize factors that influence transcription elongation by RNA polymerase I and its regulation.
Collapse
Affiliation(s)
- David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Kaul Human Genetics, Room 442, Birmingham, AL 35294, USA.
| |
Collapse
|
41
|
Anderson SJ, Sikes ML, Zhang Y, French SL, Salgia S, Beyer AL, Nomura M, Schneider DA. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. J Biol Chem 2011; 286:18816-24. [PMID: 21467039 DOI: 10.1074/jbc.m110.202101] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spt5p is a universally conserved transcription factor that plays multiple roles in eukaryotic transcription elongation. Spt5p forms a heterodimer with Spt4p and collaborates with other transcription factors to pause or promote RNA polymerase II transcription elongation. We have shown previously that Spt4p and Spt5p also influence synthesis of ribosomal RNA by RNA polymerase (Pol) I; however, previous studies only characterized defects in Pol I transcription induced by deletion of SPT4. Here we describe two new, partially active mutations in SPT5 and use these mutant strains to characterize the effect of Spt5p on Pol I transcription. Genetic interactions between spt5 and rpa49Δ mutations together with measurements of ribosomal RNA synthesis rates, rDNA copy number, and Pol I occupancy of the rDNA demonstrate that Spt5p plays both positive and negative roles in transcription by Pol I. Electron microscopic analysis of mutant and WT strains confirms these observations and supports the model that Spt4/5 may contribute to pausing of RNA polymerase I early during transcription elongation but promotes transcription elongation downstream of the pause(s). These findings bolster the model that Spt5p and related homologues serve diverse critical roles in the control of transcription.
Collapse
Affiliation(s)
- Susan J Anderson
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024, USA
| | | | | | | | | | | | | | | |
Collapse
|