1
|
Sánchez-Alba L, Ying L, Maletic MD, De Bolòs A, Borràs-Gas H, Liu B, Varejão N, Amador V, Mulder MPC, Reverter D. Structural basis for the human SENP5's SUMO isoform discrimination. Nat Commun 2025; 16:4764. [PMID: 40404649 PMCID: PMC12098989 DOI: 10.1038/s41467-025-60029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Post-translational SUMO modification is a widespread mechanism for regulating protein function within cells. In humans, SUMO-conjugated proteins are partially regulated by the deconjugating activity of six SENP family members. The proteolytic activity of these enzymes resides within a conserved catalytic domain that exhibits specificity for the two primary SUMO isoforms: SUMO1 and SUMO2/3. SENP5, along with SENP3, are nucleolar proteins involved in ribosome biogenesis and preferentially target SUMO2/3 isoforms. Here, we present the crystal structures of human SENP5 in complex with both SUMO1 and SUMO2 isoforms. These structures reveal a minimal complex interface and elucidate the molecular basis for SENP5's preference for the SUMO2 isoform. This preference can be attributed to a basic patch surrounding SENP5 Arg624 at the interface. Swapping mutagenesis and structural analysis demonstrate that Arg624 is favorably oriented to interact with Asp63 in SUMO2/3, while its interaction with the equivalent Glu67 in SUMO1 is less favorable. These results suggest that subtle structural differences within SUMO isoforms can significantly influence their deconjugation by SENP enzymes, opening new avenues for exploring the regulation of SUMOylation in various cellular processes and for developing therapeutic agents targeting SUMOylation pathways.
Collapse
Affiliation(s)
- Lucía Sánchez-Alba
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Li Ying
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Qingdao University, Qingdao, China
| | - Matthew D Maletic
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anna De Bolòs
- Institut de Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBABS), Barcelona, Spain
| | - Helena Borràs-Gas
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bing Liu
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virginia Amador
- Institut de Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBABS), Barcelona, Spain
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
2
|
Ip WH, Fiedler M, Gornott B, Morische M, Bertzbach LD, Dobner T. Cellular SUMO-specific proteases regulate HAdV-C5 E1B-55K SUMOylation and virus-induced cell transformation. Front Cell Infect Microbiol 2024; 14:1484241. [PMID: 39397864 PMCID: PMC11466889 DOI: 10.3389/fcimb.2024.1484241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Various viral proteins are post-translationally modified by SUMO-conjugation during the human adenovirus (HAdV) replication cycle. This modification leads to diverse consequences for target proteins as it influences their intracellular localization or cell transformation capabilities. SUMOylated HAdV proteins include the multifunctional oncoprotein E1B-55K. Our previous research, along with that of others, has demonstrated a substantial influence of yet another adenoviral oncoprotein, E4orf6, on E1B-55K SUMOylation levels. Protein SUMOylation can be reversed by cellular sentrin/SUMO-specific proteases (SENPs). In this study, we investigated the interaction of E1B-55K with cellular SENPs to understand deSUMOylation activities and their consequences for cell transformation mediated by this adenoviral oncoprotein. We show that E1B-55K interacts with and is deSUMOylated by SENP 1, independently of E4orf6. Consistent with these results, we found that SENP 1 prevents E1A/E1B-dependent focus formation in rodent cells. We anticipate these findings to be the groundwork for future studies on adenovirus-host interactions, the mechanisms that underlie E1B-55K SUMOylation, as well as the role of this major adenoviral oncoprotein in HAdV-mediated cell transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
3
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey TC, Fillipakopoulos P, White R, Goding CR. DNA damage remodels the MITF interactome to increase melanoma genomic instability. Genes Dev 2024; 38:70-94. [PMID: 38316520 PMCID: PMC10903946 DOI: 10.1101/gad.350740.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Université Laval, Québec City, Québec G1V 4G2, Canada
- Endocrinology-Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec City, Québec G1V 4G2, Canada
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Sovan Sarkar
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Timothy C Humphrey
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom;
| |
Collapse
|
4
|
Yang D, Geng T, Harrison AG, Cahoon JG, Xing J, Jiao B, Wang M, Cheng C, Hill RE, Wang H, Vella AT, Cheng G, Wang Y, Wang P. UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors. Nat Commun 2024; 15:780. [PMID: 38278841 PMCID: PMC10817939 DOI: 10.1038/s41467-024-45141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown. Here, we screen 375 definite ubiquitin ligase knockout cell lines and identify Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5) as a positive regulator of RLR transcription. UBR5 deficiency reduces antiviral immune responses to RNA viruses, while increases viral replication in primary cells and mice. Ubr5 knockout mice are more susceptible to lethal RNA virus infection than wild type littermates. Mechanistically, UBR5 mediates the Lysine 63-linked ubiquitination of Tripartite Motif Protein 28 (TRIM28), an epigenetic repressor of RLRs. This modification prevents intramolecular SUMOylation of TRIM28, thus disengages the TRIM28-imposed brake on RLR transcription. In sum, UBR5 enables rapid upregulation of RLR expression to boost antiviral immune responses by ubiquitinating and de-SUMOylating TRIM28.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| | - Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jian Xing
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Baihai Jiao
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Mark Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, EH4, 2XU, UK
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Barroso-Gomila O, Merino-Cacho L, Muratore V, Perez C, Taibi V, Maspero E, Azkargorta M, Iloro I, Trulsson F, Vertegaal ACO, Mayor U, Elortza F, Polo S, Barrio R, Sutherland JD. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun 2023; 14:7656. [PMID: 37996419 PMCID: PMC10667490 DOI: 10.1038/s41467-023-43326-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Hundreds of E3 ligases play a critical role in recognizing specific substrates for modification by ubiquitin (Ub). Separating genuine targets of E3s from E3-interactors remains a challenge. We present BioE3, a powerful approach for matching substrates to Ub E3 ligases of interest. Using BirA-E3 ligase fusions and bioUb, site-specific biotinylation of Ub-modified substrates of particular E3s facilitates proteomic identification. We show that BioE3 identifies both known and new targets of two RING-type E3 ligases: RNF4 (DNA damage response, PML bodies), and MIB1 (endocytosis, autophagy, centrosome dynamics). Versatile BioE3 identifies targets of an organelle-specific E3 (MARCH5) and a relatively uncharacterized E3 (RNF214). Furthermore, BioE3 works with NEDD4, a HECT-type E3, identifying new targets linked to vesicular trafficking. BioE3 detects altered specificity in response to chemicals, opening avenues for targeted protein degradation, and may be applicable for other Ub-likes (UbLs, e.g., SUMO) and E3 types. BioE3 applications shed light on cellular regulation by the complex UbL network.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Laura Merino-Cacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Coralia Perez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Vincenzo Taibi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ibon Iloro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Fredrik Trulsson
- Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333, ZA, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333, ZA, Leiden, The Netherlands
| | - Ugo Mayor
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di oncologia ed emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| |
Collapse
|
6
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey T, Fillipakopoulos P, White R, Goding CR. DNA damage-induced interaction between a lineage addiction oncogenic transcription factor and the MRN complex shapes a tissue-specific DNA Damage Response and cancer predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537819. [PMID: 37131595 PMCID: PMC10153263 DOI: 10.1101/2023.04.21.537819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; Endocrinology – Nephrology Axis, CHU de Québec – Université Laval Research Center, Quebec City, QC, Canada, G1V 4G2
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Biochemistry and Molecular Medicine, University of California, Davis, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Timothy Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| |
Collapse
|
7
|
Krapf SA, Lund J, Bakke HG, Nyman TA, Bartesaghi S, Peng XR, Rustan AC, Thoresen GH, Kase ET. SENP2 knockdown in human adipocytes reduces glucose metabolism and lipid accumulation, while increases lipid oxidation. Metabol Open 2023; 18:100234. [PMID: 37013149 PMCID: PMC10066554 DOI: 10.1016/j.metop.2023.100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
Adipose tissue is one of the main regulative sites for energy metabolism. Excess lipid storage and expansion of white adipose tissue (WAT) is the primary contributor to obesity, a strong predisposing factor for development of insulin resistance. Sentrin-specific protease (SENP) 2 has been shown to play a role in metabolism in murine fat and skeletal muscle cells, and we have previously demonstrated its role in energy metabolism of human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism in primary human fat cells by using cultured primary human adipocytes to knock down the SENP2 gene. Glucose uptake and oxidation, as well as accumulation and distribution of oleic acid into complex lipids were decreased, while oleic acid oxidation was increased in SENP2-knockdown cells compared to control adipocytes. Furthermore, lipogenesis was reduced by SENP2-knockdown in adipocytes. Although TAG accumulation relative to total uptake was unchanged, there was increased mRNA expression of metabolically relevant genes such as UCP1 and PPARGC1A and mRNA and proteomic data revealed increased levels of mRNA and proteins related to mitochondrial function by SENP2-knockdown. In conclusion, SENP2 is an important regulator of energy metabolism in primary human adipocytes and its knockdown reduce glucose metabolism and lipid accumulation, while increasing lipid oxidation in human adipocytes.
Collapse
|
8
|
Barroso-Gomila O, Mayor U, Barrio R, Sutherland JD. SUMO-ID: A Strategy for the Identification of SUMO-Dependent Proximal Interactors. Methods Mol Biol 2023; 2602:177-189. [PMID: 36446975 DOI: 10.1007/978-1-0716-2859-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications by the ubiquitin-like family (UbL) of proteins determine the biological fate of a substrate, including new interaction partners. In the case of the small ubiquitin-like modifier (SUMO), this is achieved in part through its non-covalent interaction with SUMO-interacting motifs (SIMs) found in some proteins. Investigating such partner-complex formation is particularly challenging due to the fast dynamics and reversibility of SUMO modifications and the low affinity of SUMO-SIM interactions. Here, we present a detailed protocol of SUMO-ID, a technology that merges promiscuous proximity biotinylation by TurboID enzyme and protein-fragment complementation strategy to specifically biotinylate SUMO-dependent interactors of particular substrates. When coupled to streptavidin-affinity purification and mass spectrometry, SUMO-ID efficiently identifies SUMO-dependent interactors of a given protein. The methodology describes all the steps from SUMO-ID cell line generation to LC-MS sample preparation to study SUMO-dependent interactors of a particular protein. The protocol is generic and therefore adaptable to study other UbL-dependent interactors, such as ubiquitin.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ugo Mayor
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| |
Collapse
|
9
|
Wang L, Li J, Yu C. SENP3 Aggravates Renal Tubular Epithelial Cell Apoptosis in Lipopolysaccharide-Induced Acute Kidney Injury via deSUMOylation of Drp1. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:424-435. [PMID: 36466072 PMCID: PMC9710481 DOI: 10.1159/000525308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sepsis causes acute kidney injury (AKI) in critically ill patients, although the mechanisms underlying the pathophysiology are not fully understood. SUMO-specific proteases 3 (SENP3), a member of the deSUMOylating enzyme family, is known as a redox sensor and could regulate multiple cellular signaling pathways. However, the role of SENP3 in septic AKI remains unclear. OBJECTIVES The purpose of this study was to investigate the role of SENP3 in lipopolysaccharide (LPS)-induced AKI model. METHODS C57BL/6 mice were given intraperitoneal injection of LPS (10 mg/kg). NRK-52E cells were treated with LPS in vitro. The SENP3 protein expression was analyzed by Western blotting. The levels of reactive oxygen species (ROS) in cells were measured using DCFH-DA. SENP3-siRNA or SENP3-plasmid was, respectively, transfected into NRK-52E cells to knock down or overexpress the SENP3 expression. Western blotting was performed to analyze the protein expression of cleaved caspase 3, cytochrome c, and dynamin-related protein 1 (Drp1). The mitochondrial membrane potential was measured using JC-1 assay kit. Co-immunoprecipitation was used to determine the interaction of Drp1 and SMUO2/3. RESULTS SENP3 protein expression was obviously increased in renal tissues from the mouse model of LPS-induced AKI. Accordingly, SENP3 expression was upregulated in NRK-52E cells treated with LPS in a ROS-dependent manner in vitro. Knockdown of SENP3 dramatically ameliorated LPS-induced apoptosis of NRK-52E cells, whereas overexpression of SENP3 further aggravated LPS-induced apoptosis of NRK-52E cells. Mechanistically, SENP3 triggered Drp1 recruitment to mitochondria by increasing the deSUMOylation of Drp1. CONCLUSION SENP3 aggravated renal tubular epithelial cell apoptosis in LPS-induced AKI via Drp1 deSUMOylation manner.
Collapse
|
10
|
Okuda K, Silva Costa Franco MM, Yasunaga A, Gazzinelli R, Rabinovitch M, Cherry S, Silverman N. Leishmania amazonensis sabotages host cell SUMOylation for intracellular survival. iScience 2022; 25:104909. [PMID: 36060064 PMCID: PMC9436752 DOI: 10.1016/j.isci.2022.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmania parasites use elaborate virulence mechanisms to invade and thrive in macrophages. These virulence mechanisms inhibit host cell defense responses and generate a specialized replicative niche, the parasitophorous vacuole. In this work, we performed a genome-wide RNAi screen in Drosophila macrophage-like cells to identify the host factors necessary for Leishmania amazonensis infection. This screen identified 52 conserved genes required specifically for parasite entry, including several components of the SUMOylation machinery. Further studies in mammalian macrophages found that L. amazonensis infection inhibited SUMOylation within infected macrophages and this inhibition enhanced parasitophorous vacuole growth and parasite proliferation through modulation of multiple genes especially ATP6V0D2, which in turn affects CD36 expression and cholesterol levels. Together, these data suggest that parasites actively sabotage host SUMOylation and alter host transcription to improve their intracellular niche and enhance their replication.
Collapse
Affiliation(s)
- Kendi Okuda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Miriam Maria Silva Costa Franco
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
- Centro de Tecnologia de Vacinas, Universidade Federal of Minas Gerais, Belo Horizonte, MG 31270, Brazil
- Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG 30190, Brazil
| | - Michel Rabinovitch
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| |
Collapse
|
11
|
Frank D, Garnish SE, Sandow JJ, Weir A, Liu L, Clayer E, Meza L, Rashidi M, Cobbold SA, Scutts SR, Doerflinger M, Anderton H, Lawlor KE, Lalaoui N, Kueh AJ, Eng VV, Ambrose RL, Herold MJ, Samson AL, Feltham R, Murphy JM, Ebert G, Pearson JS, Vince JE. Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. iScience 2022; 25:104632. [PMID: 35800780 PMCID: PMC9254354 DOI: 10.1016/j.isci.2022.104632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Pathogen recognition and TNF receptors signal via receptor interacting serine/threonine kinase-3 (RIPK3) to cause cell death, including MLKL-mediated necroptosis and caspase-8-dependent apoptosis. However, the post-translational control of RIPK3 is not fully understood. Using mass-spectrometry, we identified that RIPK3 is ubiquitylated on K469. The expression of mutant RIPK3 K469R demonstrated that RIPK3 ubiquitylation can limit both RIPK3-mediated apoptosis and necroptosis. The enhanced cell death of overexpressed RIPK3 K469R and activated endogenous RIPK3 correlated with an overall increase in RIPK3 ubiquitylation. Ripk3K469R/K469R mice challenged with Salmonella displayed enhanced bacterial loads and reduced serum IFNγ. However, Ripk3K469R/K469R macrophages and dermal fibroblasts were not sensitized to RIPK3-mediated apoptotic or necroptotic signaling suggesting that, in these cells, there is functional redundancy with alternate RIPK3 ubiquitin-modified sites. Consistent with this idea, the mutation of other ubiquitylated RIPK3 residues also increased RIPK3 hyper-ubiquitylation and cell death. Therefore, the targeted ubiquitylation of RIPK3 may act as either a brake or accelerator of RIPK3-dependent killing. RIPK3 can be ubiquitylated on K469 to limit RIPK3-induced necroptosis and apoptosis Ripk3K469R/K469R mice are more susceptible to Salmonella infection Several ubiquitylated or surface exposed lysines can limit RIPK3-induced cell death Hyper-ubiquitylated RIPK3 correlates with RIPK3 signaling and cell death
Collapse
|
12
|
Lund J, Krapf SA, Sistek M, Bakke HG, Bartesaghi S, Peng XR, Rustan AC, Thoresen GH, Kase ET. SENP2 is vital for optimal insulin signaling and insulin-stimulated glycogen synthesis in human skeletal muscle cells. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100061. [PMID: 34909683 PMCID: PMC8663970 DOI: 10.1016/j.crphar.2021.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Sentrin-specific protease (SENP) 2 has been suggested as a possible novel drug target for the treatment of obesity and type 2 diabetes mellitus after observations of a palmitate-induced increase in SENP2 that lead to increased fatty acid oxidation and improved insulin sensitivity in skeletal muscle cells from mice. However, no precedent research has examined the role of SENP2 in human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism as well as insulin sensitivity in human skeletal muscle using cultured primary human myotubes. Acute (4 h) oleic acid oxidation was reduced in SENP2-knockdown (SENP2-KD) cells compared to control cells, with no difference in uptake. After prelabeling (24 h) with oleic acid, total lipid content and incorporation into triacylglycerol was decreased, while incorporation into other lipids, as well as complete oxidation and β-oxidation was increased in SENP2-KD cells. Basal glucose uptake (i.e., not under insulin-stimulated conditions) was higher in SENP2-KD cells, whereas oxidation was similar to control myotubes. Further, basal glycogen synthesis was not different in SENP2-KD myotubes, but both insulin-stimulated glycogen synthesis and AktSer473 phosphorylation was completely blunted in SENP2-KD cells. In conclusion, SENP2 plays an important role in fatty acid and glucose metabolism in human myotubes. Interestingly, it also appears to have a pivotal role in regulating myotube insulin sensitivity. Future studies should examine the role of SENP2 in regulation of insulin sensitivity in other tissues and in vivo, defining the potential for SENP2 as a drug target.
Collapse
Affiliation(s)
- Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Corresponding author. Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Solveig A. Krapf
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Medina Sistek
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Eili T. Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
13
|
Yamada S, Sato A, Ishihara N, Akiyama H, Sakakibara SI. Drp1 SUMO/deSUMOylation by Senp5 isoforms influences ER tubulation and mitochondrial dynamics to regulate brain development. iScience 2021; 24:103484. [PMID: 34988397 PMCID: PMC8710555 DOI: 10.1016/j.isci.2021.103484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Akiyama
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| | - Shin-ichi Sakakibara
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| |
Collapse
|
14
|
Barroso-Gomila O, Trulsson F, Muratore V, Canosa I, Merino-Cacho L, Cortazar AR, Pérez C, Azkargorta M, Iloro I, Carracedo A, Aransay AM, Elortza F, Mayor U, Vertegaal ACO, Barrio R, Sutherland JD. Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun 2021; 12:6671. [PMID: 34795231 PMCID: PMC8602451 DOI: 10.1038/s41467-021-26807-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The fast dynamics and reversibility of posttranslational modifications by the ubiquitin family pose significant challenges for research. Here we present SUMO-ID, a technology that merges proximity biotinylation by TurboID and protein-fragment complementation to find SUMO-dependent interactors of proteins of interest. We develop an optimized split-TurboID version and show SUMO interaction-dependent labelling of proteins proximal to PML and RANGAP1. SUMO-dependent interactors of PML are involved in transcription, DNA damage, stress response and SUMO modification and are highly enriched in SUMO Interacting Motifs, but may only represent a subset of the total PML proximal proteome. Likewise, SUMO-ID also allow us to identify interactors of SUMOylated SALL1, a less characterized SUMO substrate. Furthermore, using TP53 as a substrate, we identify SUMO1, SUMO2 and Ubiquitin preferential interactors. Thus, SUMO-ID is a powerful tool that allows to study the consequences of SUMO-dependent interactions, and may further unravel the complexity of the ubiquitin code.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Fredrik Trulsson
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Veronica Muratore
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Iñigo Canosa
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Laura Merino-Cacho
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Ana Rosa Cortazar
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Coralia Pérez
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Mikel Azkargorta
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ibon Iloro
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Ana M. Aransay
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Felix Elortza
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ugo Mayor
- grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Alfred C. O. Vertegaal
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160, Derio, Spain.
| | - James D. Sutherland
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| |
Collapse
|
15
|
Hepatitis B Core Protein Is Post-Translationally Modified through K29-Linked Ubiquitination. Cells 2020; 9:cells9122547. [PMID: 33256078 PMCID: PMC7760836 DOI: 10.3390/cells9122547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
Hepatitis B virus (HBV) core protein (HBc) plays many roles in the HBV life cycle, such as regulation of transcription, RNA encapsidation, reverse transcription, and viral release. To accomplish these functions, HBc interacts with many host proteins and undergoes different post-translational modifications (PTMs). One of the most common PTMs is ubiquitination, which was shown to change the function, stability, and intracellular localization of different viral proteins, but the role of HBc ubiquitination in the HBV life cycle remains unknown. Here, we found that HBc protein is post-translationally modified through K29-linked ubiquitination. We performed a series of co-immunoprecipitation experiments with wild-type HBc, lysine to arginine HBc mutants and wild-type ubiquitin, single lysine to arginine ubiquitin mutants, or single ubiquitin-accepting lysine constructs. We observed that HBc protein could be modified by ubiquitination in transfected as well as infected hepatoma cells. In addition, ubiquitination predominantly occurred on HBc lysine 7 and the preferred ubiquitin chain linkage was through ubiquitin-K29. Mass spectrometry (MS) analyses detected ubiquitin protein ligase E3 component N-recognin 5 (UBR5) as a potential E3 ubiquitin ligase involved in K29-linked ubiquitination. These findings emphasize that ubiquitination of HBc may play an important role in HBV life cycle.
Collapse
|
16
|
Zhao Q, Ma Y, Li Z, Zhang K, Zheng M, Zhang S. The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Department of Spine Center, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
17
|
Neuronal Localization of SENP Proteins with Super Resolution Microscopy. Brain Sci 2020; 10:brainsci10110778. [PMID: 33113832 PMCID: PMC7693135 DOI: 10.3390/brainsci10110778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/03/2023] Open
Abstract
SUMOylation of proteins plays a key role in modulating neuronal function. For this reason, the balance between protein SUMOylation and deSUMOylation requires fine regulation to guarantee the homeostasis of neural tissue. While extensive research has been carried out on the localization and function of small ubiquitin-related modifier (SUMO) variants in neurons, less attention has been paid to the SUMO-specific isopeptidases that constitute the human SUMO-specific isopeptidase (SENP)/Ubiquitin-Specific Protease (ULP) cysteine protease family (SENP1-3 and SENP5-7). Here, for the first time, we studied the localization of SENP1, SENP6, and SENP7 in cultured hippocampal primary neurons at a super resolution detail level, with structured illumination microscopy (SIM). We found that the deSUMOylases partially colocalize with pre- and post-synaptic markers such as synaptophysin and drebrin. Thus, further confirming the presence with synaptic markers of the negative regulators of the SUMOylation machinery.
Collapse
|
18
|
Jansen NS, Vertegaal ACO. A Chain of Events: Regulating Target Proteins by SUMO Polymers. Trends Biochem Sci 2020; 46:113-123. [PMID: 33008689 DOI: 10.1016/j.tibs.2020.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) regulate virtually all nuclear processes. The fate of the target protein is determined by the architecture of the attached SUMO protein, which can be of polymeric nature. Here, we highlight the multifunctional aspects of dynamic signal transduction by SUMO polymers. The SUMO-targeted ubiquitin ligases (STUbLs) RING-finger protein 4 (RNF4) and RNF111 recognize SUMO polymers in a chain-architecture-dependent manner, leading to the formation of hybrid chains, which could enable proteasomal destruction of proteins. Recent publications have highlighted essential roles for SUMO chain disassembly by the mammalian SUMO proteases SENP6 and SENP7 and the yeast SUMO protease Ulp2. SENP6 is particularly important for centromere assembly. These recent findings demonstrate the diversity of SUMO polymer signal transduction for proteolytic and nonproteolytic purposes.
Collapse
Affiliation(s)
- Nicolette S Jansen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
19
|
Wesalo JS, Luo J, Morihiro K, Liu J, Deiters A. Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. Chembiochem 2020; 21:141-148. [PMID: 31664790 PMCID: PMC6980333 DOI: 10.1002/cbic.201900464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/03/2019] [Indexed: 11/06/2022]
Abstract
The Staudinger reduction and its variants have exceptional compatibility with live cells but can be limited by slow kinetics. Herein we report new small-molecule triggers that turn on proteins through a Staudinger reduction/self-immolation cascade with substantially improved kinetics and yields. We achieved this through site-specific incorporation of a new set of azidobenzyloxycarbonyl lysine derivatives in mammalian cells. This approach allowed us to activate proteins by adding a nontoxic, bioorthogonal phosphine trigger. We applied this methodology to control a post-translational modification (SUMOylation) in live cells, using native modification machinery. This work significantly improves the rate, yield, and tunability of the Staudinger reduction-based activation, paving the way for its application in other proteins and organisms.
Collapse
Affiliation(s)
- Joshua S. Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Ji Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Kunihiko Morihiro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| |
Collapse
|
20
|
Rodriguez A, Briley SM, Patton BK, Tripurani SK, Rajapakshe K, Coarfa C, Rajkovic A, Andrieux A, Dejean A, Pangas SA. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice. Development 2019; 146:dev.176701. [PMID: 31704792 PMCID: PMC6918767 DOI: 10.1242/dev.176701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023]
Abstract
The number and quality of oocytes within the ovarian reserve largely determines fertility and reproductive lifespan in mammals. An oocyte-specific transcription factor cascade controls oocyte development, and some of these transcription factors, such as newborn ovary homeobox gene (NOBOX), are candidate genes for primary ovarian insufficiency in women. Transcription factors are frequently modified by the post-translational modification SUMOylation, but it is not known whether SUMOylation is required for function of the oocyte-specific transcription factors or if SUMOylation is required in oocytes during their development within the ovarian follicle. To test this, the sole E2 SUMO-conjugating enzyme, Ube2i, was ablated in mouse oocytes beginning in primordial follicles. Loss of oocyte Ube2i resulted in female infertility with major defects in stability of the primordial follicle pool, ovarian folliculogenesis, ovulation and meiosis. Transcriptomic profiling of ovaries suggests that loss of oocyte Ube2i caused defects in both oocyte- and granulosa cell-expressed genes, including NOBOX and some of its known target genes. Together, these studies show that SUMOylation is required in the mammalian oocyte during folliculogenesis for both oocyte development and communication with ovarian somatic cells.
Collapse
Affiliation(s)
- Amanda Rodriguez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shawn M. Briley
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bethany K. Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swamy K. Tripurani
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aleksander Rajkovic
- Department of Pathology, University of California, San Francisco, CA 94134, USA
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Pasteur Institute, 75015 Paris, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Pasteur Institute, 75015 Paris, France
| | - Stephanie A. Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Author for correspondence ()
| |
Collapse
|
21
|
Eugenio-Pérez D, Briones-Herrera A, Martínez-Klimova E, Pedraza-Chaverri J. Divide et Impera: Drp1-mediated Mitochondrial Fission in Glioma Malignancy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:423-433. [PMID: 31543706 PMCID: PMC6747948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondria are pivotal organelles involved in vital cellular functions, including energy generation, reactive oxygen species and calcium signaling, as well as intermediate biosynthesis. They are dynamic organelles that adapt their shape, size, and distribution to changes in intracellular conditions, being able to divide, fuse, or move along the cell, processes known as mitochondrial dynamics. Mitochondrial dynamics are involved in cell division and migration, as well as maintenance of pluripotency in stem (non-differentiated) cells. Thus, its central role in carcinogenesis is not surprising. Particularly, mitochondrial dynamics have been found to be pivotal to the development of gliomas, a lethal group of tumors developed from glial cells, which are nervous system cells that provide support to neurons. Unfortunately, prognosis of glioma patients is poor, most of them do not survive more than five years after diagnosis. In this context, it is fundamental to understand the cellular mechanisms involved in this pathology, in order to develop an appropriate clinical approach. As previously mentioned, mitochondrial dynamics is central to glioma development, particularly, mitochondrial division (fission) and one of its central effectors, dynamin-related protein 1 (Drp1), have been observed to be enhanced in gliomas and involved in the maintenance of stem cells (which initiate and maintain the tumor), as well as in migration and invasiveness, being central to gliomagenesis. In this review, we discuss the findings on mitochondrial fission role in these processes, further, we analyze the potential use of Drp1 as a novel prognostic biomarker in glioma patients.
Collapse
Affiliation(s)
| | | | | | - José Pedraza-Chaverri
- To whom all correspondence should be addressed: José Pedraza-Chaverri, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510 Mexico;
| |
Collapse
|
22
|
The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation. Nat Commun 2019; 10:3987. [PMID: 31485003 PMCID: PMC6726658 DOI: 10.1038/s41467-019-11773-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
In contrast to our extensive knowledge on ubiquitin polymer signaling, we are severely limited in our understanding of poly-SUMO signaling. We set out to identify substrates conjugated to SUMO polymers, using knockdown of the poly-SUMO2/3 protease SENP6. We identify over 180 SENP6 regulated proteins that represent highly interconnected functional groups of proteins including the constitutive centromere-associated network (CCAN), the CENP-A loading factors Mis18BP1 and Mis18A and DNA damage response factors. Our results indicate a striking protein group de-modification by SENP6. SENP6 deficient cells are severely compromised for proliferation, accumulate in G2/M and frequently form micronuclei. Accumulation of CENP-T, CENP-W and CENP-A to centromeres is impaired in the absence of SENP6. Surprisingly, the increase of SUMO chains does not lead to ubiquitin-dependent proteasomal degradation of the CCAN subunits. Our results indicate that SUMO polymers can act in a proteolysis-independent manner and consequently, have a more diverse signaling function than previously expected. While the biological roles of ubiquitin chains are well studied, little is known about the functions of SUMO polymers. Here, the authors identify poly-SUMOylation substrates and provide evidence that SUMO polymers regulate the accumulation of CCAN subunits at chromatin and centromeres.
Collapse
|
23
|
Agrotis A, von Chamier L, Oliver H, Kiso K, Singh T, Ketteler R. Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins. J Biol Chem 2019; 294:12610-12621. [PMID: 31315929 PMCID: PMC6709618 DOI: 10.1074/jbc.ac119.009977] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 α (LC3)/GABA type A receptor-associated protein (GABARAP) comprises a family of ubiquitin-like proteins involved in (macro)autophagy, an important intracellular degradation pathway that delivers cytoplasmic material to lysosomes via double-membrane vesicles called autophagosomes. The only currently known cellular molecules covalently modified by LC3/GABARAP are membrane phospholipids such as phosphatidylethanolamine in the autophagosome membrane. Autophagy-related 4 cysteine peptidase (ATG4) proteases process inactive pro-LC3/GABARAP before lipidation, and the same proteases can also deconjugate LC3/GABARAP from lipids. To determine whether LC3/GABARAP has other molecular targets, here we generated a pre-processed LC3B mutant (Q116P) that is resistant to ATG4-mediated deconjugation. Upon expression in human cells and when assessed by immunoblotting under reducing and denaturing conditions, deconjugation-resistant LC3B accumulated in multiple forms and at much higher molecular weights than free LC3B. We observed a similar accumulation when pre-processed versions of all mammalian LC3/GABARAP isoforms were expressed in ATG4-deficient cell lines, suggesting that LC3/GABARAP can attach also to other larger molecules. We identified ATG3, the E2-like enzyme involved in LC3/GABARAP lipidation, as one target of conjugation with multiple copies of LC3/GABARAP. We show that LC3B-ATG3 conjugates are distinct from the LC3B-ATG3 thioester intermediate formed before lipidation, and we biochemically demonstrate that ATG4B can cleave LC3B-ATG3 conjugates. Finally, we determined ATG3 residue Lys-243 as an LC3B modification site. Overall, we provide the first cellular evidence that mammalian LC3/GABARAP post-translationally modifies proteins akin to ubiquitination ("LC3ylation"), with ATG4 proteases acting like deubiquitinating enzymes to counteract this modification ("deLC3ylation").
Collapse
Affiliation(s)
- Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Lucas von Chamier
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Harriet Oliver
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Koshiro Kiso
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Tanya Singh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
24
|
Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS One 2019; 14:e0213331. [PMID: 30973885 PMCID: PMC6459529 DOI: 10.1371/journal.pone.0213331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
Interruption of blood supply to the heart is a leading cause of death and disability. However, the molecular events that occur during heart ischemia, and how these changes prime consequent cell death upon reperfusion, are poorly understood. Protein SUMOylation is a post-translational modification that has been strongly implicated in the protection of cells against a variety of stressors, including ischemia-reperfusion. In particular, the SUMO2/3-specific protease SENP3 has emerged as an important determinant of cell survival after ischemic infarct. Here, we used the Langendorff perfusion model to examine changes in the levels and localisation of SUMOylated target proteins and SENP3 in whole heart. We observed a 50% loss of SENP3 from the cytosolic fraction of hearts after preconditioning, a 90% loss after ischemia and an 80% loss after ischemia-reperfusion. To examine these effects further, we performed ischemia and ischemia-reperfusion experiments in the cardiomyocyte H9C2 cell line. Similar to whole hearts, ischemia induced a decrease in cytosolic SENP3. Furthermore, shRNA-mediated knockdown of SENP3 led to an increase in the rate of cell death upon reperfusion. Together, our results indicate that cardiac ischemia dramatically alter levels of SENP3 and suggest that this may a mechanism to promote cell survival after ischemia-reperfusion in heart.
Collapse
|
25
|
Antoniou-Kourounioti M, Mimmack ML, Porter ACG, Farr CJ. The Impact of the C-Terminal Region on the Interaction of Topoisomerase II Alpha with Mitotic Chromatin. Int J Mol Sci 2019; 20:ijms20051238. [PMID: 30871006 PMCID: PMC6429393 DOI: 10.3390/ijms20051238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Type II topoisomerase enzymes are essential for resolving DNA topology problems arising through various aspects of DNA metabolism. In vertebrates two isoforms are present, one of which (TOP2A) accumulates on chromatin during mitosis. Moreover, TOP2A targets the mitotic centromere during prophase, persisting there until anaphase onset. It is the catalytically-dispensable C-terminal domain of TOP2 that is crucial in determining this isoform-specific behaviour. In this study we show that, in addition to the recently identified chromatin tether domain, several other features of the alpha-C-Terminal Domain (CTD). influence the mitotic localisation of TOP2A. Lysine 1240 is a major SUMOylation target in cycling human cells and the efficiency of this modification appears to be influenced by T1244 and S1247 phosphorylation. Replacement of K1240 by arginine results in fewer cells displaying centromeric TOP2A accumulation during prometaphase-metaphase. The same phenotype is displayed by cells expressing TOP2A in which either of the mitotic phosphorylation sites S1213 or S1247 has been substituted by alanine. Conversely, constitutive modification of TOP2A by fusion to SUMO2 exerts the opposite effect. FRAP analysis of protein mobility indicates that post-translational modification of TOP2A can influence the enzyme's residence time on mitotic chromatin, as well as its subcellular localisation.
Collapse
Affiliation(s)
- Melissa Antoniou-Kourounioti
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Michael L Mimmack
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Andrew C G Porter
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK.
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| |
Collapse
|
26
|
Abstract
Covalent modification of proteins with the small ubiquitin-related modifier (SUMO) is found in all eukaryotes and is involved in many important processes. SUMO attachment may change interaction properties, subcellular localization, or stability of a modified protein. Usually, only a small fraction of a protein is modified at a given time because sumoylation is a highly dynamic process. The sumoylated state of a protein is controlled by the activity of the sumoylation enzymes that promote either their mono- or poly-sumoylation (SUMO chain formation), by SUMO proteases that reverse these modifications, and by SUMO-targeted ubiquitin ligases (STUbL, ULS) that mediate their degradation by the proteasome. While some organisms, such as humans, express multiple isoforms, budding yeast SUMO is encoded by a single and essential gene termed SMT3. The analysis of the simpler SUMO system in budding yeast has been instrumental in the identification of enzymes acting on this modification and controlling its dynamics. Sumoylation of proteins changes dramatically during the cell division cycle and under various stress conditions. Here we summarize various approaches that employ Saccharomyces cerevisiae as a model system to study the dynamics of sumoylation and how it is controlled.
Collapse
|
27
|
Mohapatra G, Gaur P, Mujagond P, Singh M, Rana S, Pratap S, Kaur N, Verma S, Krishnan V, Singh N, Srikanth CV. A SUMOylation-dependent switch of RAB7 governs intracellular life and pathogenesis of Salmonella Typhimurium. J Cell Sci 2019; 132:jcs.222612. [PMID: 30510112 DOI: 10.1242/jcs.222612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Salmonella Typhimurium is an intracellular pathogen that causes gastroenteritis in humans. Aided by a battery of effector proteins, S. Typhimurium resides intracellularly in a specialized vesicle, called the Salmonella-containing vacuole (SCV) that utilizes the host endocytic vesicular transport pathway (VTP). Here, we probed the possible role of SUMOylation, a post-translation modification pathway, in SCV biology. Proteome analysis by complex mass-spectrometry (MS/MS) revealed a dramatically altered SUMO-proteome (SUMOylome) in S. Typhimurium-infected cells. RAB7, a component of VTP, was key among several crucial proteins identified in our study. Detailed MS/MS assays, in vitro SUMOylation assays and structural docking analysis revealed SUMOylation of RAB7 (RAB7A) specifically at lysine 175. A SUMOylation-deficient RAB7 mutant (RAB7K175R) displayed longer half-life, was beneficial to SCV dynamics and functionally deficient. Collectively, the data revealed that RAB7 SUMOylation blockade by S. Typhimurium ensures availability of long-lived but functionally compromised RAB7, which was beneficial to the pathogen. Overall, this SUMOylation-dependent switch of RAB7 controlled by S. Typhimurium is an unexpected mode of VTP pathway regulation, and unveils a mechanism of broad interest well beyond Salmonella-host crosstalk. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gayatree Mohapatra
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India.,Manipal Acadamy of Higher Education, Manipal, Karnataka 576104, India
| | - Preksha Gaur
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Prabhakar Mujagond
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Mukesh Singh
- Pediatric Biology Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO box #04, Faridabad - 121001 Haryana, India
| | - Sarika Rana
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India.,Manipal Acadamy of Higher Education, Manipal, Karnataka 576104, India
| | - Shivendra Pratap
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Navneet Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Building 114, 16th Street, Charlestown, MA 02129, USA
| | - Vengadesan Krishnan
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Nirpendra Singh
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - C V Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| |
Collapse
|
28
|
Umbaugh CS, Figueiredo ML. Lysines residing in putative Small Ubiquitin-like MOdifier (SUMO) motifs regulate fate and function of 37 KDa laminin receptor. Biochimie 2019; 156:92-99. [DOI: 10.1016/j.biochi.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/06/2018] [Indexed: 01/17/2023]
|
29
|
Choi JO, Fan C, Kim D, Sharif M, An H, Park Y. Elucidating the transactivation domain of the pleiotropic transcription factor Myrf. Sci Rep 2018; 8:13075. [PMID: 30166609 PMCID: PMC6117317 DOI: 10.1038/s41598-018-31477-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Myrf is a newly discovered membrane-bound transcription factor that plays an essential role in as diverse organisms as human, worm, and slime mold. Myrf is generated as a type-II membrane protein in the endoplasmic reticulum (ER). It forms homo-oligomers to undergo auto-cleavage that releases Myrf N-terminal fragment from the ER membrane as a homo-trimer. The homo-trimer of Myrf N-terminal fragments enters the nucleus and binds the Myrf motif to activate transcription. Despite its prominent role as a transcriptional activator, little is known about the transactivation domain of Myrf. Here, we report that the N-terminal-most (NTM) domain of Myrf is required for transcriptional activity and, when fused to a Gal4 fragment, enables it to activate transcription. The transactivation function of the NTM domain did not require homo-trimerization. We also discovered that the NTM domain can be sumoylated at three lysine residues (K123, K208, and K276), with K276 serving as the main acceptor. K276 sumoylation repressed the transactivation function of the NTM domain without affecting the stability or nuclear localization of Myrf N-terminal fragment. In sum, this study identifies the NTM domain as the transactivation domain of Myrf and the potential regulatory impact of its K276 sumoylation.
Collapse
Affiliation(s)
- Jin-Ok Choi
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, NY, 14203, USA
| | - Chuandong Fan
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, NY, 14203, USA
| | - Dongkyeong Kim
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, NY, 14203, USA
| | - Mohamed Sharif
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, NY, 14203, USA
| | - Hongjoo An
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, NY, 14203, USA
| | - Yungki Park
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
30
|
Hoard TM, Yang XP, Jetten AM, ZeRuth GT. PIAS-family proteins negatively regulate Glis3 transactivation function through SUMO modification in pancreatic β cells. Heliyon 2018; 4:e00709. [PMID: 30094379 PMCID: PMC6077130 DOI: 10.1016/j.heliyon.2018.e00709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/09/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Gli-similar 3 (Glis3) is Krüppel-like transcription factor associated with the transcriptional regulation of insulin. Mutations within the Glis3 locus have been implicated in a number of pathologies including diabetes mellitus and hypothyroidism. Despite its clinical significance, little is known about the proteins and posttranslational modifications that regulate Glis3 transcriptional activity. In this report, we demonstrate that the SUMO-pathway associated proteins, PIASy and Ubc9 are capable of regulating Glis3 transactivation function through a SUMO-dependent mechanism. We present evidence that SUMOylation of Glis3 by PIAS-family proteins occurs at two conserved lysine residues within the Glis3 N-terminus and modification of Glis3 by SUMO dramatically inhibited insulin transcription. Finally, we provide evidence that Glis3 SUMOylation increases under conditions of chronically elevated glucose and correlates with decreased insulin transcription. Collectively, these results indicate that SUMOylation may serve as a mechanism to regulate Glis3 activity in β cells.
Collapse
Affiliation(s)
- Tyler M Hoard
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Xiao Ping Yang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gary T ZeRuth
- Department of Biological Sciences, Murray State University, Murray, KY, USA.,Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
31
|
Abstract
Post-translational modification of substrate proteins by SUMO conjugation regulates a diverse array of cellular processes. While predominantly a nuclear protein modification, there is a growing appreciation that SUMOylation of proteins outside the nucleus plays direct roles in controlling synaptic transmission, neuronal excitability, and adaptive responses to cell stress. Furthermore, alterations in protein SUMOylation are observed in a wide range of neurological and neurodegenerative diseases, and several extranuclear disease-associated proteins have been shown to be directly SUMOylated. Here, focusing mainly on SUMOylation of synaptic and mitochondrial proteins, we outline recent developments and discoveries, and present our opinion as to the most exciting avenues for future research to define how SUMOylation of extranuclear proteins regulates neuronal and synaptic function.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
32
|
Garvin AJ, Morris JR. SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160281. [PMID: 28847818 PMCID: PMC5577459 DOI: 10.1098/rstb.2016.0281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO) isoforms have also been found to be key to coordination of the response (Morris et al. 2009 Nature462, 886-890 (doi:10.1038/nature08593); Galanty et al. 2009 Nature462, 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
33
|
Gudey SK, Sundar R, Heldin CH, Bergh A, Landström M. Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFβ stimulation in cancer. Oncotarget 2017; 8:97703-97726. [PMID: 29228645 PMCID: PMC5716685 DOI: 10.18632/oncotarget.20097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a key regulator of epithelial-to-mesenchymal transition (EMT) during embryogenesis and in tumors. The effect of TGFβ, on ΕΜΤ, is conveyed by induction of the pro-invasive transcription factor Snail1. In this study, we report that TGFβ stimulates Snail1 sumoylation in aggressive prostate, breast and lung cancer cells. Sumoylation of Snail1 lysine residue 234 confers its transcriptional activity, inducing the expression of classical EMT genes, as well as TGFβ receptor I (TβRI) and the transcriptional repressor Hes1. Mutation of Snail1 lysine residue 234 to arginine (K234R) abolished sumoylation of Snail1, as well as its migratory and invasive properties in human prostate cancer cells. An increased immunohistochemical expression of Snail1, Sumo1, TβRI, Hes1, and c-Jun was observed in aggressive prostate cancer tissues, consistent with their functional roles in tumorigenesis.
Collapse
Affiliation(s)
| | - Reshma Sundar
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Marene Landström
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
34
|
Coleman KE, Békés M, Chapman JR, Crist SB, Jones MJK, Ueberheide BM, Huang TT. SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. eLife 2017; 6:e24325. [PMID: 28475037 PMCID: PMC5419743 DOI: 10.7554/elife.24325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 01/02/2023] Open
Abstract
NEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates. Using this strategy, we identified Ubc12, a NEDD8-specific E2 conjugating enzyme, as a substrate for auto-neddylation. Furthermore, we characterized SENP8/DEN1 as the protease that counteracts Ubc12 auto-neddylation, and observed aberrant neddylation of Ubc12 and other NEDD8 conjugation pathway components in SENP8-deficient cells. Importantly, loss of SENP8 function contributes to accumulation of CRL substrates and defective cell cycle progression. Thus, our study highlights the importance of SENP8 in maintaining proper neddylation levels for CRL-dependent proteostasis.
Collapse
Affiliation(s)
- Kate E Coleman
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Miklós Békés
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Jessica R Chapman
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Sarah B Crist
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Mathew JK Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, Unites States
| | - Beatrix M Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
35
|
The Human Cytomegalovirus IE1 Protein Antagonizes PML Nuclear Body-Mediated Intrinsic Immunity via the Inhibition of PML De Novo SUMOylation. J Virol 2017; 91:JVI.02049-16. [PMID: 27903803 DOI: 10.1128/jvi.02049-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation. Here, we demonstrate that IE1 acts via abrogating the de novo SUMOylation of PML. In order to overcome reversible SUMOylation dynamics, we made use of a cell-based assay that combines inducible IE1 expression with a SUMO mutant resistant to SUMO proteases. Interestingly, we observed that IE1 expression did not affect preSUMOylated PML; however, it clearly prevented de novo SUMO conjugation. Consistent results were obtained by in vitro SUMOylation assays, demonstrating that IE1 alone is sufficient for this effect. Furthermore, IE1 acts in a selective manner, since K160 was identified as the main target lysine. This is strengthened by the fact that IE1 also prevents As2O3-mediated hyperSUMOylation of K160, thereby blocking PML degradation. Since IE1 did not interfere with coiled-coil-mediated PML dimerization, we propose that IE1 affects PML autoSUMOylation either by directly abrogating PML E3 ligase function or by preventing access to SUMO sites. Thus, our data suggest a novel mechanism for how a viral protein counteracts a cellular restriction factor by selectively preventing the de novo SUMOylation at specific lysine residues without affecting global protein SUMOylation. IMPORTANCE The human cytomegalovirus IE1 protein acts as an important antagonist of a cellular restriction mechanism that is mediated by subnuclear structures termed PML nuclear bodies. This function of IE1 is required for efficient viral replication and thus constitutes a potential target for antiviral strategies. In this paper, we further elucidate the molecular mechanism for how IE1 antagonizes PML NBs. We show that tight binding of IE1 to PML interferes with the de novo SUMOylation of a distinct lysine residue that is also the target of stress-mediated hyperSUMOylation of PML. This is of importance since it represents a novel mechanism used by a viral antagonist of intrinsic immunity. Furthermore, it highlights the possibility of developing small molecules that specifically abrogate this PML-antagonistic activity of IE1 and thus inhibit viral replication.
Collapse
|
36
|
Le NT, Martin JF, Fujiwara K, Abe JI. Sub-cellular localization specific SUMOylation in the heart. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2041-2055. [PMID: 28130202 DOI: 10.1016/j.bbadis.2017.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/21/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022]
Abstract
Although the majority of SUMO substrates are localized in the nucleus, SUMOylation is not limited to nuclear proteins and can be also detected in extra-nuclear proteins. In this review, we will highlight and discuss how SUMOylation in different cellular compartments regulate biological processes. First, we will discuss the key role of SUMOylation of proteins in the extra-nuclear compartment in cardiomyocytes, which is overwhelmingly cardio-protective. On the other hand, SUMOylation of nuclear proteins is generally detrimental to the cardiac function mainly because of the trans-repressive nature of SUMOylation on many transcription factors. We will also discuss the potential role of SUMOylation in epigenetic regulation. In this review, we will propose a new concept that shuttling of SUMO proteases between the nuclear and extra-nuclear compartments without changing their enzymatic activity regulates the extent of SUMOylation in these compartments and determines the response and fate of cardiomyocytes after cardiac insults. Approaches focused specifically to inhibit this shuttling in cardiomyocytes will be necessary to understand the whole picture of SUMOylation and its pathophysiological consequences in the heart, especially after cardiac insults. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Keigi Fujiwara
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
37
|
Fuhrman-Luck RA, Silva LM, Hastie ML, Gorman JJ, Clements JA. Determining Protease Substrates Within a Complex Protein Background Using the PROtein TOpography and Migration Analysis Platform (PROTOMAP). Methods Mol Biol 2017; 1574:145-170. [PMID: 28315249 DOI: 10.1007/978-1-4939-6850-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The PROtein TOpography and Migration Analysis Platform (PROTOMAP) approach is a degradomics technique used to determine protease substrates within complex protein backgrounds. The method involves protein separation according to protein relative mobility, using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Gel lanes are then sliced into horizontal sections, and in-gel trypsin digestion performed for each gel slice. Extracted peptides and corresponding proteins are identified using liquid chromatography-tandem mass spectrometry and bioinformatics. Results are compiled in silico to generate a peptograph for every identified protein, being a pictorial representation of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins shown by their peptograph to have migrated further through the gel (i.e., to a lower gel slice) in the lane containing the active protease(s) of interest, as compared to the control, are deemed putative protease substrates. PROTOMAP has broad applicability to a range of experimental conditions and protein pools. Coupling this with its simple and robust methodology, the PROTOMAP approach has emerged as a valuable tool with which to determine protease substrates in complex systems.
Collapse
Affiliation(s)
- R A Fuhrman-Luck
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - L M Silva
- Translational Research Institute, Brisbane, Queensland, Australia
- Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - M L Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - J J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - J A Clements
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
- Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
38
|
Digiacomo V, Gando IA, Venticinque L, Hurtado A, Meruelo D. The Transition of the 37-Kda Laminin Receptor (Rpsa) to Higher Molecular Weight Species: Sumoylation or Artifact? Cell Mol Biol Lett 2016; 20:571-85. [PMID: 26146125 DOI: 10.1515/cmble-2015-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/18/2015] [Indexed: 11/15/2022] Open
Abstract
The 37-kDa laminin receptor (37LRP or RPSA) is a remarkable, multifaceted protein that functions in processes ranging from matrix adhesion to ribosome biogenesis. Its ability to engage extracellular laminin is further thought to contribute to cellular migration and invasion. Most commonly associated with metastatic cancer, RPSA is also increasingly found to be important in other pathologies, including microbial infection, neurodegenerative disease and developmental malformations. Importantly, it is thought to have higher molecular weight forms, including a 67-kDa species (67LR), the expression of which is linked to strong laminin binding and metastatic behavior. The composition of these larger forms has remained elusive and controversial. Homo- and heterodimerization have been proposed as events capable of building the larger species from the monomeric 37-kDa precursor, but solid evidence is lacking. Here, we present data suggesting that higher molecular weight species require SUMOylation to form. We also comment on the difficulty of isolating larger RPSA species for unambiguous identification and demonstrate that cell lines stably expressing tagged RPSA for long periods of time fail to produce tagged higher molecular weight RPSA. It is possible that higher molecular weight species like 67LR are not derived from RPSA.
Collapse
|
39
|
Mitzelfelt KA, Limphong P, Choi MJ, Kondrat FDL, Lai S, Kolander KD, Kwok WM, Dai Q, Grzybowski MN, Zhang H, Taylor GM, Lui Q, Thao MT, Hudson JA, Barresi R, Bushby K, Jungbluth H, Wraige E, Geurts AM, Benesch JLP, Riedel M, Christians ES, Minella AC, Benjamin IJ. The Human 343delT HSPB5 Chaperone Associated with Early-onset Skeletal Myopathy Causes Defects in Protein Solubility. J Biol Chem 2016; 291:14939-53. [PMID: 27226619 PMCID: PMC4946913 DOI: 10.1074/jbc.m116.730481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Indexed: 12/23/2022] Open
Abstract
Mutations of HSPB5 (also known as CRYAB or αB-crystallin), a bona fide heat shock protein and molecular chaperone encoded by the HSPB5 (crystallin, alpha B) gene, are linked to multisystem disorders featuring variable combinations of cataracts, cardiomyopathy, and skeletal myopathy. This study aimed to investigate the pathological mechanisms involved in an early-onset myofibrillar myopathy manifesting in a child harboring a homozygous recessive mutation in HSPB5, 343delT. To study HSPB5 343delT protein dynamics, we utilize model cell culture systems including induced pluripotent stem cells derived from the 343delT patient (343delT/343delT) along with isogenic, heterozygous, gene-corrected control cells (WT KI/343delT) and BHK21 cells, a cell line lacking endogenous HSPB5 expression. 343delT/343delT and WT KI/343delT-induced pluripotent stem cell-derived skeletal myotubes and cardiomyocytes did not express detectable levels of 343delT protein, contributable to the extreme insolubility of the mutant protein. Overexpression of HSPB5 343delT resulted in insoluble mutant protein aggregates and induction of a cellular stress response. Co-expression of 343delT with WT prevented visible aggregation of 343delT and improved its solubility. Additionally, in vitro refolding of 343delT in the presence of WT rescued its solubility. We demonstrate an interaction between WT and 343delT both in vitro and within cells. These data support a loss-of-function model for the myopathy observed in the patient because the insoluble mutant would be unavailable to perform normal functions of HSPB5, although additional gain-of-function effects of the mutant protein cannot be excluded. Additionally, our data highlight the solubilization of 343delT by WT, concordant with the recessive inheritance of the disease and absence of symptoms in carrier individuals.
Collapse
Affiliation(s)
- Katie A Mitzelfelt
- From the Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | | | | | - Frances D L Kondrat
- the Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | | | - Wai-Meng Kwok
- Departments of Anesthesiology and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | | - Huali Zhang
- the Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan 410078, China
| | - Graydon M Taylor
- the Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Qiang Lui
- the Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah 84132
| | | | - Judith A Hudson
- the Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Rita Barresi
- the National Health Service England Health Science Services for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne NE2 4AZ, United Kingdom
| | - Kate Bushby
- Neuromuscular Genetics, Newcastle University John Walton Centre for Muscular Dystrophy Research, Medical Research Council Centre for Neuromuscular Diseases, Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Heinz Jungbluth
- the Department of Paediatric Neurology, Neuromuscular Service Evelina Children's Hospital, Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 7EH, United Kingdom, the Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London SE1 1UL, United Kingdom, the Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience, King's College London SE5 9RX, United Kingdom
| | - Elizabeth Wraige
- the Department of Paediatric Neurology, Neuromuscular Service Evelina Children's Hospital, Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 7EH, United Kingdom
| | | | - Justin L P Benesch
- the Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Elisabeth S Christians
- the Sorbonne Universités, University Pierre and Marie Curie, Univ Paris 06, CNRS, Laboratoire de Biologie du Dévelopment de Villefranche sur mer (LBDV), UMR 7009, 181 Chemin du Lazaret, 06230 Villefranche sur mer, France, and
| | - Alex C Minella
- the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ivor J Benjamin
- From the Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, the Cardiovascular Center,
| |
Collapse
|
40
|
Abstract
SUMOylation is a ubiquitin-related transient posttranslational modification pathway catalyzing the conjugation of small ubiquitin-like modifier (SUMO) proteins (SUMO1, SUMO2, and SUMO3) to lysine residues of proteins. SUMOylation targets a wide variety of cellular regulators and thereby affects a multitude of different cellular processes. SUMO/sentrin-specific proteases are able to remove SUMOs from targets, contributing to a tight control of SUMOylated proteins. Genetic and cell biological experiments indicate a critical role of balanced SUMOylation/deSUMOylation for proper cardiac development, metabolism, and stress adaptation. Here, we review the current knowledge about SUMOylation/deSUMOylation in the heart and provide an integrated picture of cardiac functions of the SUMO system under physiologic or pathologic conditions. We also describe potential therapeutic approaches targeting the SUMO machinery to combat heart disease.
Collapse
Affiliation(s)
- Luca Mendler
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Thomas Braun
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| | - Stefan Müller
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| |
Collapse
|
41
|
Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres. Int J Mol Sci 2016; 17:ijms17050646. [PMID: 27136539 PMCID: PMC4881472 DOI: 10.3390/ijms17050646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 01/14/2023] Open
Abstract
Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise.
Collapse
|
42
|
Guerra de Souza AC, Prediger RD, Cimarosti H. SUMO-regulated mitochondrial function in Parkinson's disease. J Neurochem 2016; 137:673-86. [PMID: 26932327 DOI: 10.1111/jnc.13599] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by cardinal motor signs such as rigidity, bradykinesia or rest tremor that arise from a significant death of dopaminergic neurons. Non-dopaminergic degeneration also occurs and it seems to induce the deficits in olfactory, emotional, and memory functions that precede the classical motor symptoms in PD. Despite the majority of PD cases being sporadic, several genes have previously been associated with the hereditary forms of the disease. The proteins encoded by some of these genes, including α-synuclein, DJ-1, and parkin, are modified by small ubiquitin-like modifier (SUMO), a post-translational modification that regulates a variety of cellular processes. Among the several pathogenic mechanisms proposed for PD is mitochondrial dysfunction. Recent studies suggest that SUMOylation can interfere with mitochondrial dynamics, which is essential for neuronal function, and may play a pivotal role in PD pathogenesis. Here, we present an overview of recent studies on mitochondrial disturbance in PD and the potential SUMO-modified proteins and pathways involved in this process. SUMOylation, a post-translational modification, interferes with mitochondrial dynamics, and may play a pivotal role in Parkinson's disease (PD). SUMOylation maintains α-synuclein (α-syn) in a soluble form and activates DJ-1, decreasing mitochondrial oxidative stress. SUMOylation may reduce the amount of parkin available for mitochondrial recruitment and decreases mitochondrial biogenesis through suppression of peroxisomal proliferator-activated receptor-γ co-activator 1 α (PGC-1α). Mitochondrial fission can be regulated by dynamin-related protein 1 SUMO-1- or SUMO-2/3-ylation. A fine balance for the SUMOylation/deSUMOylation of these proteins is required to ensure adequate mitochondrial function in PD.
Collapse
Affiliation(s)
- Ana Cristina Guerra de Souza
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| | - Helena Cimarosti
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| |
Collapse
|
43
|
Liu Y, Li Y, Lu X. Regulators in the DNA damage response. Arch Biochem Biophys 2016; 594:18-25. [PMID: 26882840 DOI: 10.1016/j.abb.2016.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/05/2023]
Abstract
Maintenance of genome integrity is essential for the proper function of all cells and organisms. In response to both endogenous and exogenous DNA damaging agents, mammalian cells have evolved a delicate system to sense DNA damage, stop cell cycle progression, modulate cell metabolism, repair damaged DNA, and induce programmed cell death if the damage is too severe. This coordinated global signaling network, namely the DNA damage response (DDR), ensures the genome stability under DNA damaging stress. A variety of regulators have been shown to modulate the activity and levels of key proteins in the DDR, including kinases, phosphatases, ubiquitin ligases, deubiquitinases, and other protein modifying enzymes. Epigenetic regulators, particularly microRNAs and long noncoding RNAs, have been emerging as an important payer of regulation in addition to canonical DNA damage signaling proteins. In this review, we will discuss the functional interaction between the regulators and their targets in the DDR.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yujing Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Ureña E, Pirone L, Chafino S, Pérez C, Sutherland JD, Lang V, Rodriguez MS, Lopitz-Otsoa F, Blanco FJ, Barrio R, Martín D. Evolution of SUMO Function and Chain Formation in Insects. Mol Biol Evol 2015; 33:568-84. [PMID: 26538142 PMCID: PMC4866545 DOI: 10.1093/molbev/msv242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes.
Collapse
Affiliation(s)
- Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Lucia Pirone
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | | | - Valérie Lang
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | | | - Francisco J Blanco
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
45
|
Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:139-47. [PMID: 26522917 DOI: 10.1016/j.bbamcr.2015.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/05/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
Abstract
Protein modification with the small ubiquitin-like modifier (SUMO) is a reversible process regulating many central biological pathways. The reversibility of SUMOylation is ensured by SUMO proteases many of which belong to the sentrin/SUMO-specific protease (SENP) family. In recent years, many advances have been made in allocating SENPs to specific biological pathways. However, due to difficulties in obtaining recombinant full-length active SENPs for thorough enzymatic characterization, our knowledge on these proteases is still limited. In this work, we used in vitro synthesized full-length human SENPs to perform a side-by-side comparison of their activities and substrate specificities. ProSUMO1/2/3, RanGAP1-SUMO1/2/3 and polySUMO2/3 chains were used as substrates in these analyses. We found that SENP1 is by far the most versatile and active SENP whereas SENP3 stands out as the least active of these enzymes. Finally, a comparison between the activities of full-length SENPs and their catalytic domains suggests that in some cases their non-catalytic regions influence their activity.
Collapse
|
46
|
Abstract
The small ubiquitin-like modifier SUMO regulates many aspects of cellular physiology to maintain cell homeostasis, both under normal conditions and during cell stress. Components of the transcriptional apparatus and chromatin are among the most prominent SUMO substrates. The prevailing view is that SUMO serves to repress transcription. However, as we will discuss in this review, this model needs to be refined, because recent studies have revealed that SUMO can also have profound positive effects on transcription.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Aurélie Nguéa P
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
47
|
Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol 2015; 35:2932-46. [PMID: 26100020 DOI: 10.1128/mcb.00397-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival.
Collapse
|
48
|
Fasci D, Anania VG, Lill JR, Salvesen GS. SUMO deconjugation is required for arsenic-triggered ubiquitylation of PML. Sci Signal 2015; 8:ra56. [PMID: 26060329 DOI: 10.1126/scisignal.aaa3929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute promyelocytic leukemia is characterized by a chromosomal translocation that produces an oncogenic fusion protein of the retinoic acid receptor α (RARα) and promyelocytic leukemia protein (PML). Arsenic trioxide chemotherapy of this cancer induces the PML moiety to organize nuclear bodies, where the oncoprotein is degraded. This process requires the participation of two SUMO paralogs (SUMO1 and SUMO2) to promote PML ubiquitylation mediated by the ubiquitin E3 ligase RNF4 and reorganization of PML nuclear bodies. We demonstrated that the ubiquitylation of PML required the SUMO deconjugation machinery, primarily the deconjugating enzyme SENP1, and was suppressed by expression of non-deconjugatable SUMO2. We hypothesized that constitutive SUMO2 conjugation and deconjugation occurred basally and that arsenic trioxide treatment caused the exchange of SUMO2 for SUMO1 on a fraction of Lys(65) in PML. On the basis of data obtained with mutational analysis and quantitative proteomics, we propose that the SUMO switch at Lys(65) of PML enhanced nuclear body formation, subsequent SUMO2 conjugation to Lys(160), and consequent RNF4-dependent ubiquitylation of PML. Our work provides insights into how the SUMO system achieves selective SUMO paralog modification and highlights the crucial role of SENPs in defining the specificity of SUMO signaling.
Collapse
Affiliation(s)
- Domenico Fasci
- Cell Death and Survival Networks Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA. Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Veronica G Anania
- Department of Protein Chemistry, Genentech Research and Early Development, South San Francisco, CA 92056, USA
| | - Jennie R Lill
- Department of Protein Chemistry, Genentech Research and Early Development, South San Francisco, CA 92056, USA
| | - Guy S Salvesen
- Cell Death and Survival Networks Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Eckhoff J, Dohmen RJ. In Vitro Studies Reveal a Sequential Mode of Chain Processing by the Yeast SUMO (Small Ubiquitin-related Modifier)-specific Protease Ulp2. J Biol Chem 2015; 290:12268-81. [PMID: 25833950 DOI: 10.1074/jbc.m114.622217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/06/2022] Open
Abstract
Sumoylation is a post-translational modification essential in most eukaryotes that regulates stability, localization, activity, or interaction of a multitude of proteins. It is a reversible process wherein counteracting ligases and proteases, respectively, mediate the conjugation and deconjugation of SUMO molecules to/from target proteins. Apart from attachment of single SUMO moieties to targets, formation of poly-SUMO chains occurs by the attachment of additional SUMO molecules to lysine residues in the N-terminal extensions of SUMO. In Saccharomyces cerevisiae there are apparently only two SUMO(Smt3)-specific proteases: Ulp1 and Ulp2. Ulp2 has been shown to be important for the control of poly-SUMO conjugates in cells and to dismantle SUMO chains in vitro, but the mechanism by which it acts remains to be elucidated. Applying an in vitro approach, we found that Ulp2 acts sequentially rather than stochastically, processing substrate-linked poly-SUMO chains from their distal ends down to two linked SUMO moieties. Furthermore, three linked SUMO units turned out to be the minimum length of a substrate-linked chain required for efficient binding to and processing by Ulp2. Our data suggest that Ulp2 disassembles SUMO chains by removing one SUMO moiety at a time from their ends (exo mechanism). Apparently, Ulp2 recognizes surfaces at or near the N terminus of the distal SUMO moiety, as attachments to this end significantly reduce cleavage efficiency. Our studies suggest that Ulp2 controls the dynamic range of SUMO chain lengths by trimming them from the distal ends.
Collapse
Affiliation(s)
- Julia Eckhoff
- From the Institute for Genetics, Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - R Jürgen Dohmen
- From the Institute for Genetics, Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
50
|
Kumar A, Zhang KYJ. Advances in the development of SUMO specific protease (SENP) inhibitors. Comput Struct Biotechnol J 2015; 13:204-11. [PMID: 25893082 PMCID: PMC4397505 DOI: 10.1016/j.csbj.2015.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
Sumoylation is a reversible post-translational modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to their substrate proteins. Prior to their conjugation, SUMO proteins need to be proteolytically processed from its precursor form to mature or active form. SUMO specific proteases (SENPs) are cysteine proteases that cleave the pro or inactive form of SUMO at C-terminus using its hydrolase activity to expose two glycine residues. SENPs also catalyze the de-conjugation of SUMO proteins using their isopeptidase activity, which is crucial for recycling of SUMO from substrate proteins. SENPs are important for maintaining the balance between sumoylated and unsumoylated proteins required for normal cellular physiology. Several studies reported the overexpression of SENPs in disease conditions and highlighted their role in the development of various diseases, especially cancer. In this review, we will address the current biological understanding of various SENP isoforms and their role in the pathogenesis of different cancers and other diseases. We will then discuss the advances in the development of protein-based, peptidyl and small molecule inhibitors of various SENP isoforms. Finally, we will summarize successful examples of computational screening that allowed the identification of SENP inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|