1
|
Sun H, Lagarrigue F, Wang H, Fan Z, Lopez-Ramirez MA, Chang JT, Ginsberg MH. Distinct integrin activation pathways for effector and regulatory T cell trafficking and function. J Exp Med 2021; 218:e20201524. [PMID: 33104169 PMCID: PMC7590511 DOI: 10.1084/jem.20201524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Integrin activation mediates lymphocyte trafficking and immune functions. Conventional T cell (Tconv cell) integrin activation requires Rap1-interacting adaptor molecule (RIAM). Here, we report that Apbb1ip-/- (RIAM-null) mice are protected from spontaneous colitis due to IL-10 deficiency, a model of inflammatory bowel disease (IBD). Protection is ascribable to reduced accumulation and homing of Tconv cells in gut-associated lymphoid tissue (GALT). Surprisingly, there are abundant RIAM-null regulatory T cells (T reg cells) in the GALT. RIAM-null T reg cells exhibit normal homing to GALT and lymph nodes due to preserved activation of integrins αLβ2, α4β1, and α4β7. Similar to Tconv cells, T reg cell integrin activation and immune function require Rap1; however, lamellipodin (Raph1), a RIAM paralogue, compensates for RIAM deficiency. Thus, in contrast to Tconv cells, RIAM is dispensable for T reg cell integrin activation and suppressive function. In consequence, inhibition of RIAM can inhibit spontaneous Tconv cell-mediated autoimmune colitis while preserving T reg cell trafficking and function.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Frederic Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Hsin Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | | | - John T. Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Mark H. Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
2
|
Yuan M, Yang Y, Li Y, Yan Z, Lin C, Chen J. Mucin-Like Domain of Mucosal Addressin Cell Adhesion Molecule-1 Facilitates Integrin α4β7-Mediated Cell Adhesion Through Electrostatic Repulsion. Front Cell Dev Biol 2021; 8:603148. [PMID: 33381505 PMCID: PMC7767916 DOI: 10.3389/fcell.2020.603148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The homing of lymphocytes from blood to gut-associated lymphoid tissue is regulated by interaction between integrin α4β7 with mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) expressed on the endothelium of high endothelial venules (HEVs). However, the molecular basis of mucin-like domain, a specific structure of MAdCAM-1 regulating integrin α4β7-mediated cell adhesion remains obscure. In this study, we used heparan sulfate (HS), which is a highly acidic linear polysaccharide with a highly variable structure, to mimic the negative charges of the extracellular microenvironment and detected the adhesive behaviors of integrin α4β7 expressing 293T cells to immobilized MAdCAM-1 in vitro. The results showed that HS on the surface significantly promoted integrin α4β7-mediated cell adhesion, decreased the percentage of cells firmly bound and increased the rolling velocities at high wall shear stresses, which was dependent on the mucin-like domain of MAdCAM-1. Moreover, breaking the negative charges of the extracellular microenvironment of CHO-K1 cells expressing MAdCAM-1 with sialidase inhibited cell adhesion and rolling velocity of 293T cells. Mechanistically, electrostatic repulsion between mucin-like domain and negative charges of the extracellular microenvironment led to a more upright conformation of MAdCAM-1, which facilitates integrin α4β7-mediated cell adhesion. Our findings elucidated the important role of the mucin-like domain in regulating integrin α4β7-mediated cell adhesion, which could be applied to modulate lymphocyte homing to lymphoid tissues or inflammatory sites.
Collapse
Affiliation(s)
- MengYa Yuan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - YanRong Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yue Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - ZhanJun Yan
- Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - ChangDong Lin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Sun H, Kuk W, Rivera-Nieves J, Lopez-Ramirez MA, Eckmann L, Ginsberg MH. β7 Integrin Inhibition Can Increase Intestinal Inflammation by Impairing Homing of CD25 hiFoxP3 + Regulatory T Cells. Cell Mol Gastroenterol Hepatol 2019; 9:369-385. [PMID: 31707128 PMCID: PMC7016000 DOI: 10.1016/j.jcmgh.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Integrin α4β7 mediates lymphocyte trafficking to the gut and gut-associated lymphoid tissues, a process critical for recruitment of effector lymphocytes from the circulation to the gut mucosa in inflammatory bowel disease (IBD) and murine models of intestinal inflammation. Antibody blockade of β7 integrins generally is efficacious in IBD; however, some patients fail to respond, and a few patients can experience exacerbations. This study examined the effects of loss of β7 integrin function in murine models of IBD. METHODS In a mouse IBD model caused by lack of interleukin 10, a cytokine important in CD25hiFoxP3+ regulatory T cell (Treg) function, genetic deletion of β7 integrin or antibody blockade of α4β7-mucosal addressin cell adhesion molecule-1 interaction paradoxically exacerbated colitis. RESULTS Loss of β7 impaired the capacity of Tregs homing to the gut and therefore suppress intestinal inflammation in an adoptive T-cell transfer model; however, the intrinsic suppressive function of β7-deficient Tregs remained intact, indicating that the β7 deficiency selectively impacts gut homing. Deletion of β7 integrin did not worsen colitis in an acute dextran sodium sulfate model in which Treg number and function were normal. CONCLUSIONS In Integrin subunit beta (Itgb)7-/-Il10-/- mice, loss of β7-dependent Treg homing to gut-associated lymphoid tissues combined with loss of intrinsic Treg function exacerbated intestinal inflammation. These results suggest that IBD patients with reduced CD25hiFoxP3+ Treg numbers or function or lack of interleukin 10 could be at risk for failure of α4β7 blocking therapy.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Wun Kuk
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, California
| | | | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
4
|
Lertjuthaporn S, Cicala C, Van Ryk D, Liu M, Yolitz J, Wei D, Nawaz F, Doyle A, Horowitch B, Park C, Lu S, Lou Y, Wang S, Pan R, Jiang X, Villinger F, Byrareddy SN, Santangelo PJ, Morris L, Wibmer CK, Biris K, Mason RD, Gorman J, Hiatt J, Martinelli E, Roederer M, Fujikawa D, Gorini G, Franchini G, Arakelyan A, Ansari AA, Pattanapanyasat K, Kong XP, Fauci AS, Arthos J. Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to α4β7. PLoS Pathog 2018; 14:e1007278. [PMID: 30153309 PMCID: PMC6130882 DOI: 10.1371/journal.ppat.1007278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/10/2018] [Accepted: 08/12/2018] [Indexed: 01/16/2023] Open
Abstract
The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4β7, a gut-homing receptor. Using both cell-surface expressed α4β7 and a soluble α4β7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4β7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4β7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4β7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4β7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4β7. It includes the canonical LDV/I α4β7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4β7 interactions. These mAbs recognize conformations absent from the β- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4β7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Allison Doyle
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Brooke Horowitch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yang Lou
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Constantinos Kurt Wibmer
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristin Biris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Joseph Hiatt
- Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Dai Fujikawa
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Giacomo Gorini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Kovit Pattanapanyasat
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
5
|
Wang S, Wu C, Zhang Y, Zhong Q, Sun H, Cao W, Ge G, Li G, Zhang XF, Chen J. Integrin α4β7 switches its ligand specificity via distinct conformer-specific activation. J Cell Biol 2018; 217:2799-2812. [PMID: 29789438 PMCID: PMC6080939 DOI: 10.1083/jcb.201710022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/11/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
CCL25, CXCL10, and Mn2+ induce three distinct active conformations of integrin α4β7, which have selective high affinity for either MAdCAM-1, VCAM-1, or nonselective high affinity for both ligands. Via this mechanism, integrin α4β7 adopts different active conformations to switch its ligand-binding specificity. Chemokine (C-C motif) ligand 25 (CCL25) and C-X-C motif chemokine 10 (CXCL10) induce the ligand-specific activation of integrin α4β7 to mediate the selective adhesion of lymphocytes to mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) or vascular cell adhesion molecule-1 (VCAM-1). However, the mechanism underlying the selective binding of different ligands by α4β7 remains obscure. In this study, we demonstrate that CCL25 and CXCL10 induce distinct active conformers of α4β7 with a high affinity for either MAdCAM-1 or VCAM-1. Single-cell force measurements show that CCL25 increases the affinity of α4β7 for MAdCAM-1 but decreases its affinity for VCAM-1, whereas CXCL10 has the opposite effect. Structurally, CCL25 induces a more extended active conformation of α4β7 compared with CXCL10-activated integrin. These two distinct intermediate open α4β7 conformers selectively bind to MAdCAM-1 or VCAM-1 by distinguishing their immunoglobulin domain 2. Notably, Mn2+ fully opens α4β7 with a high affinity for both ligands. Thus, integrin α4β7 adopts different active conformations to switch its ligand-binding specificity.
Collapse
Affiliation(s)
- ShiHui Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - ChenYu Wu
- Department of Bioengineering and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - YueBin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - QingLu Zhong
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - Hao Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - WenPeng Cao
- Department of Bioengineering and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - GuoHui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - X Frank Zhang
- Department of Bioengineering and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Sun H, Lagarrigue F, Gingras AR, Fan Z, Ley K, Ginsberg MH. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol 2018. [PMID: 29535192 PMCID: PMC5881498 DOI: 10.1083/jcb.201707055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sun et al. establish the importance of transmission of changes in β-integrin transmembrane domain (TMD) topology in physiological integrin affinity modulation and biological function. Introduction of a flexible kink in the β7 integrin TMD blocks talin-mediated agonist-induced α4β7 integrin activation and function in gut lymphoid tissue development. Integrin activation regulates adhesion, extracellular matrix assembly, and cell migration, thereby playing an indispensable role in development and in many pathological processes. A proline mutation in the central integrin β3 transmembrane domain (TMD) creates a flexible kink that uncouples the topology of the inner half of the TMD from the outer half. In this study, using leukocyte integrin α4β7, which enables development of gut-associated lymphoid tissue (GALT), we examined the biological effect of such a proline mutation and report that it impairs agonist-induced talin-mediated activation of integrin α4β7, thereby inhibiting rolling lymphocyte arrest, a key step in transmigration. Furthermore, the α4β7(L721P) mutation blocks lymphocyte homing to and development of the GALT. These studies show that impairing the ability of an integrin β TMD to transmit talin-induced TMD topology inhibits agonist-induced physiological integrin activation and biological function in development.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | | | - Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
7
|
Rot A, Massberg S, Khandoga AG, von Andrian UH. Chemokines and Hematopoietic Cell Trafficking. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
|
9
|
Wang Y, Yao WR, Duan JZ, Xu W, Yang GB. Mucosal addressin cell adhesion molecule-1 of rhesus macaques: molecular cloning, expression, and alteration after viral infection. Dig Dis Sci 2014; 59:2433-43. [PMID: 24828920 DOI: 10.1007/s10620-014-3209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mucosal addressin cell adhesion molecule-1 (MAdCAM-1), a member of the immunoglobulin superfamily, is essential for gut-specific homing of leukocytes; however, it has not been well characterized in rhesus macaques. AIMS To obtain the complete nucleotide sequence of rhesus macaque MAdCAM-1 cDNA and determine its distribution in gut-associated lymphoid tissues (GALT) and its alteration in duodenal mucosa after simian/human immunodeficiency virus (SHIV) infection. METHODS MAdCAM-1 cDNA was cloned from the colon mucosa of a rhesus macaque by 3'- and 5'-RACE. The distribution and abundance of MAdCAM-1 mRNA in the GALT were examined by nested and real-time RT-PCR. The alterations of MAdCAM-1 mRNA levels in SHIV-infected duodenal mucosa were determined by real-time RT-PCR. RESULTS The nucleotide sequence of rhesus macaque MAdCAM-1 cDNA (1,503 bp nucleotides) including the 5'- and 3'-untranslated regions was obtained. The coding region (1,086 bp) showed 87.56% and the Ig-like domain 1, 2 and TM + cytoplasmic domains showed >93% nucleotide sequence identity to that of humans. Like humans, rhesus macaques lacked MAdCAM-1 IgA1-like domain, which could be a common feature for all primates appeared later during vertebrate evolution. Two species of MAdCAM-1 mRNA were detected and high-level transcripts were observed primarily in the GALT. The full-length MAdCAM-1 expressed in vitro could bind to human α4β7. MAdCAM-1 mRNA levels were statistically significantly reduced in SHIV-infected duodenal mucosa. CONCLUSIONS These data provided a basis for using rhesus macaques in pathological and therapeutic studies on leukocyte homing related diseases such as inflammatory bowel disease and HIV/AIDS.
Collapse
Affiliation(s)
- Yue Wang
- National Center for AIDS/STD Control and Prevention, China-CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Yue J, Pan Y, Sun L, Zhang K, Liu J, Lu L, Chen J. The unique disulfide bond-stabilized W1 β4-β1 loop in the α4 β-propeller domain regulates integrin α4β7 affinity and signaling. J Biol Chem 2013; 288:14228-14237. [PMID: 23553626 DOI: 10.1074/jbc.m113.462630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α4β7 mediates rolling and firm adhesion of lymphocytes pre- and post-activation, which is distinct from most integrins only mediating firm cell adhesion upon activation. This two-phase cell adhesion suggests a unique molecular basis for the dynamic interaction of α4β7 with its ligand, mucosal addressin cell adhesion molecule 1 (MAdCAM-1). Here we report that a disulfide bond-stabilized W1 β4-β1 loop in α4 β-propeller domain plays critical roles in regulating integrin α4β7 affinity and signaling. Either breaking the disulfide bond or deleting the disulfide bond-occluded segment in the W1 β4-β1 loop inhibited rolling cell adhesion supported by the low-affinity interaction between MAdCAM-1 and inactive α4β7 but negligibly affected firm cell adhesion supported by the high-affinity interaction between MAdCAM-1 and Mn(2+)-activated α4β7. Additionally, disrupting the disulfide bond or deleting the disulfide bond-occluded segment not only blocked the conformational change and activation of α4β7 triggered by talin or phorbol-12-myristate-13-acetate via inside-out signaling but also disrupted integrin-mediated outside-in signaling and impaired phosphorylation of focal adhesion kinase and paxillin. Thus, these findings reveal a particular molecular basis for α4β7-mediated rolling cell adhesion and a novel regulatory element of integrin affinity and signaling.
Collapse
Affiliation(s)
- Jiao Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - YouDong Pan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - LiFang Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Lu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
Yu Y, Zhu J, Huang PS, Wang JH, Pullen N, Springer TA. Domain 1 of mucosal addressin cell adhesion molecule has an I1-set fold and a flexible integrin-binding loop. J Biol Chem 2013; 288:6284-94. [PMID: 23297416 DOI: 10.1074/jbc.m112.413153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mucosal addressin cell adhesion molecule (MAdCAM) binds integrin α4β7. Their interaction directs lymphocyte homing to mucosa-associated lymphoid tissues. The interaction between the two immunoglobulin superfamily (IgSF) domains of MAdCAM and integrin α4β7 is unusual in its ability to mediate either rolling adhesion or firm adhesion of lymphocytes on vascular surfaces. We determined four crystal structures of the IgSF domains of MAdCAM to test for unusual structural features that might correlate with this functional diversity. Higher resolution 1.7- and 1.4-Å structures of the IgSF domains of MAdCAM in a previously described crystal lattice revealed two alternative conformations of the integrin-binding loop, which were deformed by large lattice contacts. New crystal forms in the presence of two different Fabs to MAdCAM demonstrate a shift in IgSF domain topology from the I2- to I1-set, with a switch of integrin-binding loop from CC' to CD. The I1-set fold and CD loop appear biologically relevant. The different conformations seen in crystal structures suggest that the integrin-binding loop of MAdCAM is inherently flexible. This contrasts with rigidity of the corresponding loops in vascular cell adhesion molecule, intercellular adhesion molecule (ICAM)-1, ICAM-2, ICAM-3, and ICAM-5 and may reflect a specialization of MAdCAM to mediate both rolling and firm adhesion by binding to different α4β7 integrin conformations.
Collapse
Affiliation(s)
- Yamei Yu
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
12
|
Qi J, Zhang K, Zhang Q, Sun Y, Fu T, Li G, Chen J. Identification, characterization, and epitope mapping of human monoclonal antibody J19 that specifically recognizes activated integrin α4β7. J Biol Chem 2012; 287:15749-59. [PMID: 22418441 DOI: 10.1074/jbc.m112.341263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α(4)β(7) is a lymphocyte homing receptor that mediates both rolling and firm adhesion of lymphocytes on vascular endothelium, two of the critical steps in lymphocyte migration and tissue-specific homing. The rolling and firm adhesions of lymphocytes rely on the dynamic shift between the inactive and active states of integrin α(4)β(7), which is associated with the conformational rearrangement of integrin molecules. Activation-specific antibodies, which specifically recognize the activated integrins, have been used as powerful tools in integrin studies, whereas there is no well characterized activation-specific antibody to integrin α(4)β(7). Here, we report the identification, characterization, and epitope mapping of an activation-specific human mAb J19 against integrin α(4)β(7). J19 was discovered by screening a human single-chain variable fragment phage library using an activated α(4)β(7) mutant as target. J19 IgG specifically bound to the high affinity α(4)β(7) induced by Mn(2+), DTT, ADP, or CXCL12, but not to the low affinity integrin. Moreover, J19 IgG did not interfere with α(4)β(7)-MAdCAM-1 interaction. The epitope of J19 IgG was mapped to Ser-331, Ala-332, and Ala-333 of β(7) I domain and a seven-residue segment from 184 to 190 of α(4) β-propeller domain, which are buried in low affinity integrin with bent conformation and only exposed in the high affinity extended conformation. Taken together, J19 is a potentially powerful tool for both studies on α(4)β(7) activation mechanism and development of novel therapeutics targeting the activated lymphocyte expressing high affinity α(4)β(7).
Collapse
Affiliation(s)
- JunPeng Qi
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|