1
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
2
|
Duan H, Li M, Liu J, Sun J, Wu C, Chen Y, Guo X, Liu X. An Integrated Approach Based on Network Analysis Combined With Experimental Verification Reveals PI3K/Akt/Nrf2 Signaling Is an Important Way for the Anti-Myocardial Ischemia Activity of Yi-Qi-Tong-Luo Capsule. Front Pharmacol 2022; 13:794528. [PMID: 35250556 PMCID: PMC8889021 DOI: 10.3389/fphar.2022.794528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Yiqi-Tongluo Capsule (YTC) is a Chinese traditional patent medicine that has been used in the treatment of myocardial ischemia (MI). However, its molecular mechanisms against MI have not been clear. Methods: Network analysis and experimental verification were used to explore the potential molecular mechanisms of YTC for MI treatment. Firstly, the main components in the capsules and the potential targets of these components were predicted by online databases. The MI related genes were collected from Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The drug targets and disease targets were intersected, and then the protein-protein interaction (PPI) and Drug-Molecular-Target-Disease Network (DMTD) were constructed, and GO enrichment analysis and KEGG pathway enrichment analysis were performed. Based on the H2O2-stimulated H9c2 cells, flow cytometry, western blot (WB) and immunofluorescence experiments were performed to verify the network analysis prediction. Results: A total of 100 active components and 165 targets of YTC were predicted, in which there were 109 targets intersected with the targets of MI. GO and KEGG analysis showed that these potential targets were related to a variety of biological processes and molecular mechanisms, including oxidative stress and PI3K/AKT pathway. Astragaloside IV (AS IV) and paeoniflorin (PAE) might be the main active components in YTC. The results of cell counting kit-8 (CCK-8) showed that YTC alleviated the damage of H2O2 to H9c2 cells. The results of flow cytometry, DAPI staining and JC-1 probe showed that YTC alleviated H2O2 induced apoptosis in H9c2 cells. In addition, YTC reduced the level of intracellular superoxide anion, increased the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and reduced the content of malondialdehyde (MDA) in H2O2-induced H9c2 cells. The results of immunofluorescence and WB showed that the phosphorylation of PI3K and Akt were increased, the expression of Bcl-2 was up-regulated and the expression of cleaved caspase-3 and Bax were down-regulated. Besides, the nuclear translocation of Nrf2 were increased. Conclusion: In conclusion, the results of this study showed that YTC might alleviate MI by suppressing apoptosis induced by oxidative stress via the PI3K/Akt/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Huxinyue Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiyan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinglong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Iloun P, Hooshmandi E, Gheibi S, Kashfi K, Ghasemi R, Ahmadiani A. Roles and Interaction of the MAPK Signaling Cascade in Aβ25-35-Induced Neurotoxicity Using an Isolated Primary Hippocampal Cell Culture System. Cell Mol Neurobiol 2021; 41:1497-1507. [PMID: 32601776 PMCID: PMC11448686 DOI: 10.1007/s10571-020-00912-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized with increased formation of amyloid-β (Aβ) in the brain. Aβ peptide toxicity is associated with disturbances of several intracellular signaling pathways such as mitogen activated protein kinases (MAPKs). The aim of this study was to investigate the role of MAPKs and their interactions in Aβ-induced neurotoxicity using isolated hippocampal neurons from the rat. Primary hippocampal cells were cultured in neurobasal medium for 4 days. Cells were treated with Aβ25-35 and/or MAPKs inhibitors for 24 h. Cell viability was determined by an MTT assay and phosphorylated levels of P38, JNK, and ERK were measured by Western blots. Aβ treatment (10-40 µM) significantly decreased hippocampal cell viability in a dose-dependent manner. Inhibition of P38 and ERK did not restore cell viability, while JNK inhibition potentiated the Aβ-induced neurotoxicity. Compared to the controls, Aβ treatment increased levels of phosphorylated JNK, ERK, and c-Jun, while it had no effect on levels of phosphorylated P38. In addition, P38 inhibition led to decreased expression levels of phosphorylated ERK; inhibition of JNK resulted in decreased expression of c-Jun; and inhibition of ERK, decreased phosphorylated levels of JNK. These results strongly suggest that P38, ERK, and JNK are not independently involved in Aβ-induced toxicity in the hippocampal cells. In AD, which is a multifactorial disease, inhibiting a single member of the MAPK signaling pathway, does not seem to be sufficient to mitigate Aβ-induced toxicity and thus their interactions with each other or potentially with different signaling pathways should be taken into account.
Collapse
Affiliation(s)
- Parisa Iloun
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Velenjak, Chamran Exp. Way, P.O. Box 19615-1178, Tehran, Iran
| | - Sevda Gheibi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Rasoul Ghasemi
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Velenjak, Chamran Exp. Way, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
4
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Zhao F, Bai R, Li J, Feng X, Jiao S, Wuken S, Ge F, Zhang Q, Zhou X, Tu P, Chai X. Meconopsis horridula Hook. f. & Thomson extract and its alkaloid oleracein E exert cardioprotective effects against acute myocardial ischaemic injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112893. [PMID: 32387233 DOI: 10.1016/j.jep.2020.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/19/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Meconopsis horridula Hook. f. & Thomson (MH) is a traditional Tibetan medicine used to promote blood circulation, remove bruises, remove stasis and relieve chest pain which benefit to cardiovascular diseases. Oleracein E (OE), a major tetrahydroisoquinoline alkaloid, can be isolated from MH ethanol extract. The antioxidant and anti-apoptotic effects of OE have been reported by previous pharmacological research. The objective of this article was to investigate the cardioprotective effects of MH extract and OE in an ICR mouse of acute myocardial ischaemic injury. A left anterior descending (LAD) artery ligation mouse model of AMI was established. In vivo, cardiac function after MH and OE treatment was determined through measurement of EF, FS, LVEDd, and LVEDs by echocardiography. The levels of SOD, MDA, CK-MB and LDH in serum were also detected. A TUNEL assay was used to verify apoptosis. Changes in collagen deposition and inflammatory cell infiltration in ischemic myocardial tissue were observed by histopathological examination. In vitro, H9c2 cells were pre-treated with OE for 6 h, and then cultured in serum-free medium with H2O2 for 2 h. CCK8 assay measured cell viability, and flow cytometry determined apoptosis levels and ROS content. The mechanism was explored by western blotting. These results showed that MH and OE significantly affected acute myocardial ischaemia by improving cardiac function and that OE downregulated the expression of related proteins in the MAPK signalling pathway. These findings provide substantial evidence of MH may applicate in clinic, and indicate that such medicines have potential value for the treatment of ischaemia-induced heart disease.
Collapse
Affiliation(s)
- Feng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruifeng Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junjun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shungang Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shana Wuken
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fuxing Ge
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaochun Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengfei Tu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingyun Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Tumor Necrosis Factor-α-Mediated Metaplastic Inhibition of LTP Is Constitutively Engaged in an Alzheimer's Disease Model. J Neurosci 2019; 39:9083-9097. [PMID: 31570539 DOI: 10.1523/jneurosci.1492-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
LTP, a fundamental mechanism of learning and memory, is a highly regulated process. One form of regulation is metaplasticity (i.e., the activity-dependent and long-lasting changes in neuronal state that orchestrate the direction, magnitude, and persistence of future synaptic plasticity). We have previously described a heterodendritic metaplasticity effect, whereby strong high-frequency priming stimulation in stratum oriens inhibits subsequent LTP in the stratum radiatum of hippocampal area CA1, potentially by engagement of the enmeshed astrocytic network. This effect may occur due to neuron-glia interactions in response to priming stimulation that leads to the release of gliotransmitters. Here we found in male rats that TNFα and associated signal transduction enzymes, but not interleukin-1β (IL-1β), were responsible for mediating the metaplasticity effect. Replacing priming stimulation with TNFα incubation reproduced these effects. As TNFα levels are elevated in Alzheimer's disease, we examined whether heterodendritic metaplasticity is dysregulated in a transgenic mouse model of the disease, either before or after amyloid plaque formation. We showed that TNFα and IL-1β levels were significantly increased in aged but not young transgenic mice. Although control LTP was impaired in the young transgenic mice, it was not TNFα-dependent. In the older transgenic mice, however, LTP was impaired in a way that occluded further reduction by heterosynaptic metaplasticity, whereas LTP was entirely rescued by incubation with a TNFα antibody, but not an IL-1β antibody. Thus, TNFα mediates a heterodendritic metaplasticity in healthy rodents that becomes constitutively and selectively engaged in a mouse model of Alzheimer's disease.SIGNIFICANCE STATEMENT The proinflammatory cytokine TNFα is known to be capable of inhibiting LTP and is upregulated several-fold in brain tissue, serum, and CSF of Alzheimer's disease (AD) patients. However, the mechanistic roles played by TNFα in plasticity and AD remain poorly understood. Here we show that TNFα and its downstream signaling molecules p38 MAPK, ERK, and JNK contribute fundamentally to a long-range metaplastic inhibition of LTP in rats. Moreover, the impaired LTP in aged APP/PS1 mice is rescued by incubation with a TNFα antibody. Thus, there is an endogenous engagement of the metaplasticity mechanism in this mouse model of AD, supporting the idea that blocking TNFα might be of therapeutic benefit in the disease.
Collapse
|
7
|
c-Jun promotes the survival of H9c2 cells under hypoxia via PTEN/Akt signaling pathway. J Physiol Biochem 2019; 75:433-441. [DOI: 10.1007/s13105-019-00695-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
|
8
|
JNK and cardiometabolic dysfunction. Biosci Rep 2019; 39:BSR20190267. [PMID: 31270248 PMCID: PMC6639461 DOI: 10.1042/bsr20190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiometabolic syndrome (CMS) describes the cluster of metabolic and cardiovascular diseases that are generally characterized by impaired glucose tolerance, intra-abdominal adiposity, dyslipidemia, and hypertension. CMS currently affects more than 25% of the world’s population and the rates of diseases are rapidly rising. These CMS conditions represent critical risk factors for cardiovascular diseases including atherosclerosis, heart failure, myocardial infarction, and peripheral artery disease (PAD). Therefore, it is imperative to elucidate the underlying signaling involved in disease onset and progression. The c-Jun N-terminal Kinases (JNKs) are a family of stress signaling kinases that have been recently indicated in CMS. The purpose of this review is to examine the in vivo implications of JNK as a potential therapeutic target for CMS. As the constellation of diseases associated with CMS are complex and involve multiple tissues and environmental triggers, carefully examining what is known about the JNK pathway will be important for specificity in treatment strategies.
Collapse
|
9
|
Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Front Pharmacol 2018; 9:715. [PMID: 30026697 PMCID: PMC6041399 DOI: 10.3389/fphar.2018.00715] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
In this article, we review the literature regarding the role of c-Jun N-terminal kinases (JNKs) in cerebral and myocardial ischemia/reperfusion injury. Numerous studies demonstrate that JNK-mediated signaling pathways play an essential role in cerebral and myocardial ischemia/reperfusion injury. JNK-associated mechanisms are involved in preconditioning and post-conditioning of the heart and the brain. The literature and our own studies suggest that JNK inhibitors may exert cardioprotective and neuroprotective properties. The effects of modulating the JNK-depending pathways in the brain and the heart are reviewed. Cardioprotective and neuroprotective mechanisms of JNK inhibitors are discussed in detail including synthetic small molecule inhibitors (AS601245, SP600125, IQ-1S, and SR-3306), ion channel inhibitor GsMTx4, JNK-interacting proteins, inhibitors of mixed-lineage kinase (MLK) and MLK-interacting proteins, inhibitors of glutamate receptors, nitric oxide (NO) donors, and anesthetics. The role of JNKs in ischemia/reperfusion injury of the heart in diabetes mellitus is discussed in the context of comorbidities. According to reviewed literature, JNKs represent promising therapeutic targets for protection of the brain and the heart against ischemic stroke and myocardial infarction, respectively. However, different members of the JNK family exert diverse physiological properties which may not allow for systemic administration of non-specific JNK inhibitors for therapeutic purposes. Currently available candidate JNK inhibitors with high therapeutic potential are identified. The further search for selective JNK3 inhibitors remains an important task.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yana Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- RASA Center, Kazan Federal University, Kazan, Russia
| | - Igor A. Schepetkin
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
10
|
|
11
|
Salie R, Lochner A, Loubser DJ. The significance of the washout period in preconditioning. Cardiovasc Ther 2018; 35. [PMID: 28118517 DOI: 10.1111/1755-5922.12252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
AIMS Exposure of the heart to 5 min global ischaemia (I) followed by 5 min reperfusion (R) (ischaemic preconditioning, IPC) or transient Beta 2-adrenergic receptor (B2-AR) stimulation with formoterol (B2PC), followed by 5 min washout before index ischaemia, elicits cardioprotection against subsequent sustained ischaemia. As the washout period during preconditioning is essential for subsequent cardioprotection, the aim of this study was to investigate the involvement of protein kinase A (PKA), reactive oxygen species (ROS), extracellular signal-regulated kinase (ERK), PKB/Akt, p38 MAPK and c-jun N-terminal kinase (JNK) during this period. METHODS Isolated perfused rat hearts were exposed to IPC (1x5min I / 5min R) or B2PC (1x5min Formoterol / 5min R) followed by 35 min regional ischaemia and reperfusion. Inhibitors for PKA (Rp-8CPT-cAMP)(16μM), ROS (NAC)(300μM), PKB (A-6730)(2.5μM), ERKp44/p42 (PD98,059)(10μM), p38MAPK (SB239063)(1μM) or JNK (SP600125)(10μM) were administered for 5 minutes before 5 minutes global ischaemia / 5 min reperfusion (IPC) or for 5 minutes before and during administration of formoterol (B2PC) prior to regional ischaemia, reperfusion and infarct size (IS) determination. Hearts exposed to B2PC or IPC were freeze-clamped during the washout period for Western blots analysis of PKB, ERKp44/p42, p38MAPK and JNK. RESULTS The PKA blocker abolished both B2PC and IPC, while NAC significantly increased IS of IPC but not of B2PC. Western blot analysis showed that ERKp44/p42 and PKB activation during washout after B2PC compared to IPC was significantly increased. IPC compared to B2PC showed significant p38MAPK and JNKp54/p46 activation. PKB and ERK inhibition or p38MAPK and JNK inhibition during the washout period of B2PC and IPC respectively, significantly increased IS. CONCLUSION PKA activation before regional ischaemia is a prerequisite for cardioprotection in both B2PC and IPC. However, ROS was crucial only in IPC. Kinase activation during the washout phase of IPC and B2PC, albeit different, affords the same cardioprotective response.
Collapse
Affiliation(s)
- Ruduwaan Salie
- Biomedical Research and Innovation Platform, South African Medical Research Council, Parow Valley, Cape Town, South Africa.,Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, Tygerberg, Cape Town, South Africa
| | - Amanda Lochner
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, Tygerberg, Cape Town, South Africa
| | - Dirk J Loubser
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, Tygerberg, Cape Town, South Africa
| |
Collapse
|
12
|
Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, Fay WP, Siebenlist U, Chandrasekar B. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 2017; 292:2345-2358. [PMID: 28053087 DOI: 10.1074/jbc.m116.764522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- John M Erikson
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anthony J Valente
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Srinivas Mummidi
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hemanth Kumar Kandikattu
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Vincent G DeMarco
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Shawn B Bender
- the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and.,Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - William P Fay
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Ulrich Siebenlist
- Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Bysani Chandrasekar
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211, .,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and
| |
Collapse
|
13
|
Jian Z, Liang B, Pan X, Xu G, Guo SS, Li T, Zhou T, Xiao YB, Li AL. CUEDC2 modulates cardiomyocyte oxidative capacity by regulating GPX1 stability. EMBO Mol Med 2016; 8:813-29. [PMID: 27286733 PMCID: PMC4931293 DOI: 10.15252/emmm.201506010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The irreversible loss of cardiomyocytes due to oxidative stress is the main cause of heart dysfunction following ischemia/reperfusion (I/R) injury and ageing-induced cardiomyopathy. Here, we report that CUEDC2, a CUE domain-containing protein, plays a critical role in oxidative stress-induced cardiac injury. Cuedc2(-/-) cardiomyocytes exhibited a greater resistance to oxidative stress-induced cell death. Loss of CUEDC2 enhanced the antioxidant capacity of cardiomyocytes, promoted reactive oxygen species (ROS) scavenging, and subsequently inhibited the redox-dependent activation of signaling pathways. Notably, CUEDC2 promoted E3 ubiquitin ligases tripartite motif-containing 33 (TRIM33)-mediated the antioxidant enzyme, glutathione peroxidase 1 (GPX1) ubiquitination, and proteasome-dependent degradation. Ablation of CUEDC2 upregulated the protein level of GPX1 in the heart significantly. Strikingly, in vivo, the infarct size of Cuedc2(-/-) heart was significantly decreased after I/R injury, and aged Cuedc2(-/-) mice preserved better heart function as the overall ROS levels in their hearts were significantly lower. Our results demonstrated a novel role of CUEDC2 in cardiomyocyte death regulation. Manipulating CUEDC2 level might be an attractive therapeutic strategy for promoting cardiomyocyte survival following oxidative stress-induced cardiac injury.
Collapse
Affiliation(s)
- Zhao Jian
- Institute of Cardiovascular Surgery, Xinqiao Hospital Third Military Medical University, Chongqing, China
| | - Bing Liang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Guang Xu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Sai-Sai Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Ting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Ying-Bin Xiao
- Institute of Cardiovascular Surgery, Xinqiao Hospital Third Military Medical University, Chongqing, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
14
|
AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. J Mol Cell Cardiol 2015; 91:104-13. [PMID: 26746142 DOI: 10.1016/j.yjmcc.2015.12.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 02/06/2023]
Abstract
AMP-activated kinase (AMPK) is a stress responsive kinase that regulates cellular metabolism and protects against cardiomyocyte injury during ischemia-reperfusion (IR). Mitochondria play an important role in cell survival, but the specific actions of activated AMPK in maintaining mitochondrial integrity and function during reperfusion are unknown. Thus, we assessed the consequences of AMPK inactivation on heart mitochondrial function during reperfusion. Mouse hearts expressing wild type (WT) or kinase-dead (KD) AMPK were studied. Mitochondria isolated from KD hearts during reperfusion had intact membrane integrity, but demonstrated reduced oxidative capacity, increased hydrogen peroxide production and decreased resistance to mitochondrial permeability transition pore opening compared to WT. KD hearts showed increased activation of the mitogen activated protein kinase kinase 4 (MKK4) and downstream c-Jun terminal kinase (JNK) and greater necrosis during reperfusion after coronary occlusion. Transgenic expression of mitochondrial catalase (MCAT) prevented the excessive cardiac JNK activation and attenuated the increased myocardial necrosis observed during reperfusion in KD mice. Inhibition of JNK increased the resistance of KD hearts to mPTP opening, contractile dysfunction and necrosis during IR. Thus, intrinsic activation of AMPK is critical to prevent excess mitochondrial reactive oxygen production and consequent JNK signaling during reperfusion, thereby protecting against mPTP opening, irreversible mitochondrial damage and myocardial injury.
Collapse
|
15
|
Joshi S, Wei J, Bishopric NH. A cardiac myocyte-restricted Lin28/let-7 regulatory axis promotes hypoxia-mediated apoptosis by inducing the AKT signaling suppressor PIK3IP1. Biochim Biophys Acta Mol Basis Dis 2015; 1862:240-51. [PMID: 26655604 DOI: 10.1016/j.bbadis.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE The let-7 family of microRNAs (miRs) regulates critical cell functions, including survival signaling, differentiation, metabolic control and glucose utilization. These functions may be important during myocardial ischemia. MiR-let-7 expression is under tight temporal and spatial control through multiple redundant mechanisms that may be stage-, isoform- and tissue-specific. OBJECTIVE To determine the mechanisms and functional consequences of miR-let-7 regulation by hypoxia in the heart. METHODS AND RESULTS MiR-let-7a, -7c and -7g were downregulated in the adult mouse heart early after coronary occlusion, and in neonatal rat ventricular myocytes subjected to hypoxia. Let-7 repression did not require glucose depletion, and occurred at a post-transcriptional level. Hypoxia also induced the RNA binding protein Lin28, a negative regulator of let-7. Hypoxia ineither induced Lin28 nor repressed miR-let-7 in cardiac fibroblasts. Both changes were abrogated by treatment with the histone deacetylase inhibitor trichostatin A. Restoration of let-7g to hypoxic myocytes and to ischemia-reperfused mouse hearts in vivo via lentiviral transduction potentiated the hypoxia-induced phosphorylation and activation of Akt, and prevented hypoxia-dependent caspase activation and death. Mechanistically, phosphatidyl inositol 3-kinase interacting protein 1 (Pik3ip1), a negative regulator of PI3K, was identified as a novel target of miR-let-7 by a crosslinking technique showing that miR-let-7g specifically targets Pik3ip1 to the cardiac myocyte Argonaute complex RISC. Finally, in non-failing and failing human myocardium, we found specific inverse relationships between Lin28 and miR-let-7g, and between miR-let-7g and PIK3IP1. CONCLUSION A conserved hypoxia-responsive Lin28-miR-let-7-Pik3ip1 regulatory axis is specific to cardiac myocytes and promotes apoptosis during myocardial ischemic injury.
Collapse
Affiliation(s)
- Shaurya Joshi
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianqin Wei
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nanette H Bishopric
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
16
|
Ischemia triggered ATP release through Pannexin-1 channel by myocardial cells activates sympathetic fibers. Microvasc Res 2015; 104:32-7. [PMID: 26596404 DOI: 10.1016/j.mvr.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/31/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022]
Abstract
The cardiovascular system is extensively innervated by the autonomic nervous system, and the autonomic modulation including sympathetic innervation is crucial to the function of heart during normal and ischemic conditions. Severe myocardial ischemia could cause acute myocardial infarction, which is one of the leading diseases in the world. Thus studying the sympathetic modulation during ischemia could reduce the probability of myocardial infarction and further heart failure. The neurotransmitter ATP is released by myocardial cells during ischemia; however, the effect of ATP release remains elusive. We examined whether ATP released during ischemia functions as a neurotransmitter that activates sympathetic nerve in the heart. A novel technique of recording the sympathetic fiber calcium imaging in mouse cardiac tissue slices was used. We have applied the Cre/loxP system to specifically express GCaMP3, a genetically encoded calcium indicator, in the sympathetic nerve. Using this technique, we found that ATP released by myocardial cells through Pannexin-1 channel during ischemia could evoke calcium responses in cardiac sympathetic nerve fibers. Our study provides a new approach to study the cell and nerve interaction in the cardiac system, as well as a new understanding of ATP function during ischemia.
Collapse
|
17
|
Bnip3 Binds and Activates p300: Possible Role in Cardiac Transcription and Myocyte Morphology. PLoS One 2015; 10:e0136847. [PMID: 26317696 PMCID: PMC4552727 DOI: 10.1371/journal.pone.0136847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/17/2015] [Indexed: 12/04/2022] Open
Abstract
Bnip3 is a hypoxia-regulated member of the Bcl-2 family of proteins that is implicated in apoptosis, programmed necrosis, autophagy and mitophagy. Mitochondria are thought to be the primary targets of Bnip3 although its activities may extend to the ER, cytoplasm, and nucleus. Bnip3 is induced in the heart by ischemia and pressure-overload, and may contribute to cardiomyopathy and heart failure. Only mitochondrial-dependent programmed death actions have been described for Bnip3 in the heart. Here we describe a novel activity of Bnip3 in cultured cardiac myocytes and transgenic mice overexpressing Bnip3 in the heart (Bnip3-TG). In cultured myocytes Bnip3 bound and activated the acetyltransferase p300, increased acetylation of histones and the transcription factor GATA4, and conferred p300 and GATA4-sensitive cellular morphological changes. In intact Bnip3-TG hearts Bnip3 also bound p300 and GATA4 and conferred enhanced GATA4 acetylation. Bnip3-TG mice underwent age-dependent ventricular dilation and heart failure that was partially prevented by p300 inhibition with curcumin. The results suggest that Bnip3 regulates cardiac gene expression and perhaps myocyte morphology by activating nuclear p300 acetyltransferase activity and hyperacetylating histones and p300-selective transcription factors.
Collapse
|
18
|
Abstract
Akt/PKB, a serine/threonine kinase member of the AGC family of proteins, is involved in the regulation of a plethora of cellular processes triggered by a wide diversity of extracellular signals and is thus considered a key signalling molecule in higher eukaryotes. Deregulation of Akt signalling is associated with a variety of human diseases, revealing Akt-dependent pathways as an attractive target for therapeutic intervention. Since its discovery in the early 1990s, a large body of work has focused on Akt phosphorylation of two residues, Thr308 and Ser473, and modification of these two sites has been established as being equivalent to Akt activation. More recently, Akt has been identified as a substrate for many different post-translational modifications, including not only phosphorylation of other residues, but also acetylation, glycosylation, oxidation, ubiquitination and SUMOylation. These modifications could provide additional regulatory steps for fine-tuning Akt function, Akt trafficking within the cell and/or for determining the substrate specificity of this signalling molecule. In the present review, we provide an overview of these different post-translational modifications identified for Akt, focusing on their consequences for this kinase activity.
Collapse
|
19
|
Nilsson GE, Vaage J, Stensløkken KO. Oxygen- and temperature-dependent expression of survival protein kinases in crucian carp (Carassius carassius) heart and brain. Am J Physiol Regul Integr Comp Physiol 2015; 308:R50-61. [PMID: 25377478 DOI: 10.1152/ajpregu.00094.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Living without oxygen is limited to very few vertebrates, one species being the fresh water fish crucian carp (Carassius carassius), which can survive months of anoxia at low temperatures. Mammalian heart and brain are particularly intolerant to oxygen deprivation, yet these organs can be conditioned to display increased resistance, possibly due to activation of several protein kinases. We hypothesized increased phosphorylation status of these kinases in hypoxic and anoxic crucian carp heart and brain. Moreover, we wanted to investigate whether the kinases showing the strongest phosphorylation during hypoxia/anoxia, ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ, also had increased expression and phosphorylation at cold temperatures, to better cope with the anoxic periods during winter. We found small differences in the phosphorylation status of ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ during 10 days of severe hypoxia in both heart and brain (0.3 mg O₂/l) and varying responses to reoxygenation. In contrast, 7 days of anoxia (<0.01 mg O₂/l) markedly increased phosphorylation of ERK 1/2, p38-MAPK, JNK in the heart, and p38-MAPK and PKCε in the brain. Similarly, varying acclimation temperature between 4, 10 and 20°C induced large changes in phosphorylation status. Total protein expression in heart and brain neither changed during different oxygen regimes nor with different acclimation temperatures, except for ERK 1/2, which slightly decreased in the heart at 4°C compared with 20°C. A phylogenetic analysis confirmed that these protein kinases are evolutionarily conserved across a wide range of vertebrate species. Our findings indicate important roles of several protein kinases during oxygen deprivation.
Collapse
Affiliation(s)
- Göran E Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo Hospital, Oslo, Norway; and
| | | |
Collapse
|
20
|
Abstract
The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.
Collapse
Affiliation(s)
- Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | |
Collapse
|
21
|
Jang S, Javadov S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK. PLoS One 2014; 9:e113526. [PMID: 25423094 PMCID: PMC4244102 DOI: 10.1371/journal.pone.0113526] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
c-Jun N-terminal kinase (JNK), a stress-activated MAPK, is activated during cardiac ischemia-reperfusion (IR). The role of JNK inhibitors in cardioprotection against IR still remains controversial, in part, due to spill-over effects of non-specific inhibitors. In the present study, we sought to examine whether inhibition of JNK by SU3327, a specific JNK inhibitor that inhibits upstream JNK signaling rather than the kinase activity of JNK, improves cardiac function and reduces heart damage during IR. Hearts of male Sprague-Dawley rats perfused by Langendorff were subjected to 25 min of global ischemia followed by 30 min reperfusion in the presence or absence of SU3327. Cardiac function was monitored throughout the perfusion period. Myocardial damage was extrapolated from LDH activity in the coronary effluent. At the end of reperfusion, mitochondria were isolated and used to measure respiration rates and mitochondrial permeability transition pore opening. Protein analysis of mitochondria predictably revealed that SU3327 inhibited JNK phosphorylation. Although SU3327 significantly reduced cell damage during the first minutes of reperfusion, it did not improve cardiac function and, furthermore, reduced the mitochondrial respiratory control index. Interestingly, SU3327 activated the other stress-related MAPK, p38, and greatly increased its translocation to mitochondria. Mitochondrial P-JNK and P-p38 were co-immunoprecipitated with complex III of the electron transfer chain. Thus, JNK plays an essential role in cardiac signaling under both physiological and pathological conditions. Its inhibition by SU3327 during IR aggravates cardiac function. The detrimental effects of JNK inhibition are associated with reciprocal p38 activation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
22
|
Aceros H, Farah G, Noiseux N, Mukaddam-Daher S. Moxonidine modulates cytokine signalling and effects on cardiac cell viability. Eur J Pharmacol 2014; 740:168-182. [PMID: 25036265 DOI: 10.1016/j.ejphar.2014.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
Regression of left ventricular hypertrophy and improved cardiac function in SHR by the centrally acting imidazoline I1-receptor agonist, moxonidine, are associated with differential actions on circulating and cardiac cytokines. Herein, we investigated cell-type specific I1-receptor (also known as nischarin) signalling and the mechanisms through which moxonidine may interfere with cytokines to affect cardiac cell viability. Studies were performed on neonatal rat cardiomyocytes and fibroblasts incubated with interleukin (IL)-1β (5 ng/ml), tumor necrosis factor (TNF)-α (10 ng/ml), and moxonidine (10(-7) and 10(-5) M), separately and in combination, for 15 min, and 24 and 48 h for the measurement of MAPKs (ERK1/2, JNK, and p38) and Akt activation and inducible NOS (iNOS) expression, by Western blotting, and cardiac cell viability/proliferation and apoptosis by flow cytometry, MTT assay, and Live/Dead assay. Participation of imidazoline I1-receptors and the signalling proteins in the detected effects was identified using imidazoline I1-receptor antagonist and signalling protein inhibitors. The results show that IL-1β, and to a lower extent, TNF-α, causes cell death and that moxonidine protects against starvation- as well as IL-1β -induced mortality, mainly by maintaining membrane integrity, and in part, by improving mitochondrial activity. The protection involves activation of Akt, ERK1/2, p38, JNK, and iNOS. In contrast, moxonidine stimulates basal and IL-1β-induced fibroblast mortality by mechanisms that include inhibition of JNK and iNOS. Thus, apart from their actions on the central nervous system, imidazoline I1-receptors are directly involved in cardiac cell growth and death, and may play an important role in cardiovascular diseases associated with inflammation.
Collapse
Affiliation(s)
- Henry Aceros
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada
| | - Georges Farah
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada
| | - Nicolas Noiseux
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Suhayla Mukaddam-Daher
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada; Department of Medicine, Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|
23
|
Hu X, Wu R, Shehadeh LA, Zhou Q, Jiang C, Huang X, Zhang L, Gao F, Liu X, Yu H, Webster KA, Wang J. Severe hypoxia exerts parallel and cell-specific regulation of gene expression and alternative splicing in human mesenchymal stem cells. BMC Genomics 2014; 15:303. [PMID: 24758227 PMCID: PMC4234502 DOI: 10.1186/1471-2164-15-303] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/16/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The endosteum of the bone marrow provides a specialized hypoxic niche that may serve to preserve the integrity, pluripotency, longevity and stemness of resident mesenchymal stem cells (MSCs). To explore the molecular genetic consequences of such a niche we subjected human (h) MSCs to a pO2 of 4 mmHg and analyzed global gene expression and alternative splicing (AS) by genome-exon microarray and RT-qPCR, and phenotype by western blot and immunostaining. RESULTS Out of 446 genes differentially regulated by >2.5-fold, down-regulated genes outnumbered up-regulated genes by 243:203. Exon analyses revealed 60 hypoxia-regulated AS events with splice indices (SI) >1.0 from 53 genes and a correlation between high SI and degree of transcript regulation. Parallel analyses of a publicly available AS study on human umbilical vein endothelial cells (HUVECs) showed that there was a strong cell-specific component with only 11 genes commonly regulated in hMSCs and HUVECs and 17 common differentially spliced genes. Only 3 genes were differentially responsive to hypoxia at the gene (>2.0) and AS levels in both cell types. Functional assignments revealed unique profiles of gene expression with complex regulation of differentiation, extracellular matrix, intermediate filament and metabolic marker genes. Antioxidant genes, striated muscle genes and insulin/IGF-1 signaling intermediates were down-regulated. There was a coordinate induction of 9 out of 12 acidic keratins that along with other epithelial and cell adhesion markers implies a partial mesenchymal to epithelial transition. CONCLUSIONS We conclude that severe hypoxia confers a quiescent phenotype in hMSCs that is reflected by both the transcriptome profile and gene-specific changes of splicosome actions. The results reveal that severe hypoxia imposes markedly different patterns of gene regulation of MSCs compared with more moderate hypoxia. This is the first study to report hypoxia-regulation of AS in stem/progenitor cells and the first molecular genetic characterization of MSC in a hypoxia-induced quiescent immobile state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Keith A Webster
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P,R, China.
| | | |
Collapse
|
24
|
Hyperglycemia-induced inhibition of DJ-1 expression compromised the effectiveness of ischemic postconditioning cardioprotection in rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:564902. [PMID: 24303086 PMCID: PMC3835206 DOI: 10.1155/2013/564902] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/15/2013] [Indexed: 11/22/2022]
Abstract
Ischemia postconditioning (IpostC) is an effective way to alleviate ischemia and reperfusion injury; however, the protective effects seem to be impaired in candidates with diabetes mellitus. To gain deep insight into this phenomenon, we explored the role of DJ-1, a novel oncogene, that may exhibit powerful antioxidant capacity in postconditioning cardioprotection in a rat model of myocardial ischemia reperfusion injury. Compared with normal group, cardiac DJ-1 was downregulated in diabetes. Larger postischemic infarct size as well as exaggeration of oxidative stress was observed, while IpostC reversed the above changes in normal but not in diabetic rats. DJ-1 was increased after ischemia and postconditioning contributed to a further elevation; however, no alteration of DJ-1 was documented in all subgroups of diabetic rats. Alteration of the cardioprotective PI3K/Akt signaling proteins may be responsible for the ineffectiveness of postconditioning in diabetes. There is a positive correlation relationship between p-Akt and DJ-1 but a negative correlation between infarct size and DJ-1, which may partially explain the interaction of DJ-1 and IpostC cardioprotection. Our result indicates a beneficial role of DJ-1 in myocardial ischemia reperfusion. Downregulation of cardiac DJ-1 may be responsible for the compromised diabetic heart responsiveness to IpostC cardioprotection.
Collapse
|
25
|
Abstract
JNK is involved in a broad range of physiological processes. Several inflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's and Parkinson's disease have been linked with the dysregulated JNK pathway. Research on disease models using the relevant knockout mice has highlighted the importance of specific JNK isoformsin-particular disorders and has stimulated further efforts in the drug-discovery area. However, most of the experimental evidence for the efficacy of JNK inhibition in animal models is from studies using JNK inhibitors, which are not isoform selective. Some of the more recent compounds exhibit good oral bioavailability, CNS penetration and selectivity against the rest of the kinome. Efforts to design isoform-selective inhibitors have produced a number of examples with various selectivity profiles. This article presents recent progress in this area and comment on the role of isoform selectivity for efficacy.
Collapse
|
26
|
Blaustein M, Pérez-Munizaga D, Sánchez MA, Urrutia C, Grande A, Risso G, Srebrow A, Alfaro J, Colman-Lerner A. Modulation of the Akt pathway reveals a novel link with PERK/eIF2α, which is relevant during hypoxia. PLoS One 2013; 8:e69668. [PMID: 23922774 PMCID: PMC3726764 DOI: 10.1371/journal.pone.0069668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/11/2013] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical compounds that modulate PI3K/Akt pathway and monitored the activity of the three UPR branches: PERK, IRE1 and ATF6. The antiproliferative and antiviral drug Akt-IV strongly and persistently activated all three branches of the UPR. We present evidence that activation of PERK/eIF2α requires Akt and that PERK is a direct Akt target. Chemical activation of this novel Akt/PERK pathway by Akt-IV leads to cell death, which was largely dependent on the presence of PERK and IRE1. Finally, we show that hypoxia-induced activation of eIF2α requires Akt, providing a physiologically relevant condition for the interaction between Akt and the PERK branch of the UPR. These data suggest the UPR and the Akt pathway signal to one another as a means of controlling cell fate.
Collapse
Affiliation(s)
- Matías Blaustein
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Pérez-Munizaga
- Fundación Ciencia y Vida, Santiago de Chile, Chile
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Manuel Alejandro Sánchez
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Alicia Grande
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Risso
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Alejandro Colman-Lerner
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
27
|
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 2013; 8:863-84. [PMID: 23176689 DOI: 10.2217/fca.12.58] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia-reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia-reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular & Cellular Pharmacology, University of Miami Medical Center, FL 33101, USA.
| |
Collapse
|
28
|
Notas G, Alexaki VI, Kampa M, Pelekanou V, Charalampopoulos I, Sabour-Alaoui S, Pediaditakis I, Dessirier V, Gravanis A, Stathopoulos EN, Tsapis A, Castanas E. APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4748-58. [PMID: 23071284 DOI: 10.4049/jimmunol.1102891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The TNF superfamily ligands APRIL and BAFF bind with different affinity to two receptors, BCMA and TACI, and induce cell survival and/or proliferation, whereas BAFF also binds specifically to BAFFR. These molecules were considered specific for the immune system. Recently, however, they were also found in epithelial and mesenchymal noncancerous and cancerous tissues and cell lines. In this article, we report that hepatocellular carcinoma (HCC) cell lines HepG2 and Hep3B and HCC specimens express APRIL and BAFF and their receptors BCMA and BAFFR, but not TACI; APRIL/BCMA is enhanced in HCC, compared with normal liver tissue. In contrast to previous reports, APRIL binding to BCMA decreases cell proliferation by inducing G(2)/M cell cycle arrest, whereas BAFF has no effect on cell growth. HCC cells therefore represent a rare system in which these two ligands (APRIL and BAFF) exert a differential effect and may serve as a model for specific APRIL/BCMA actions. We show that the effect of APRIL is mediated via BCMA, which does not activate the classical NF-κB pathway, whereas it induces a novel signaling pathway, which involves JNK2 phosphorylation, FOXO3A activation, and GADD45 transcription. In addition, JNK2 mediates the phosphorylation of Akt, which is activated but does not participate in the antiproliferative effect of APRIL. Furthermore, transcriptome analysis revealed that APRIL modifies genes specifically related to cell cycle modulation, including MCM2/4/5/6, CDC6, PCNA, and POLE2. Our data, therefore, identify a novel APRIL/BCMA signaling pathway in HCC and suggest that APRIL could have a pleiotropic role in tumor biology.
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
de Nigris F, Rienzo M, Sessa M, Infante T, Cesario E, Ignarro LJ, Al-Omran M, Giordano A, Palinski W, Napoli C. Glycoxydation promotes vascular damage via MAPK-ERK/JNK pathways. J Cell Physiol 2012; 227:3639-47. [PMID: 22331607 DOI: 10.1002/jcp.24070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oxidation and glycation enhance foam cell formation via MAPK/JNK in euglycemic and diabetic subjects. Here, we investigated the effects of glycated and oxidized LDL (glc-oxLDL) on MAPK-ERK and JNK signaling pathways using human coronary smooth muscle cells. Glc-oxLDL induced a broad cascade of MAPK/JNK-dependent signaling transduction pathways and the AP-1 complex. In glc-oxLDL treated coronary arterioles, tumor necrosis factor (TNF) α increased JNK phosphorylation, whereas protein kinase inhibitor dimethylaminopurine (DMAP) prevented the TNF-induced increase in JNK phosphorylation. The role of MKK4 and JNK were then investigated in vivo, using apolipoprotein E knockout (ApoE(-/-)) mice. Peritoneal macrophages, isolated from spontaneously hyperlipidemic but euglycemic mice showed increases in both proteins and phosphorylated proteins. Compared to streptozotocin-treated diabetic C57BL6 and nondiabetic C57BL6 Wt mice, in streptozotocin-diabetic ApoE(-/-) mice, the increment of foam cell formation corresponded to an increment of phosphorylation of JNK1, JNK2, and MMK4. Thus, we provide a first line of evidence that MAPK-ERK/JNK pathways are involved in vascular damage induced by glycoxidation.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of General Pathology, U.O.C. Immunohematology, and Excellence Research Centre on Cardiovascular Disease, 1st School of Medicine, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Twumasi‐Boateng K, Wang TW, Tsai L, Lee K, Salehpour A, Bhat S, Tan M, Shapira M. An age-dependent reversal in the protective capacities of JNK signaling shortens Caenorhabditis elegans lifespan. Aging Cell 2012; 11:659-67. [PMID: 22554143 PMCID: PMC3440580 DOI: 10.1111/j.1474-9726.2012.00829.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stress-activated protein kinase (SAPK) pathways are evolutionarily conserved signaling modules that orchestrate protective responses to adverse environmental conditions. However, under certain conditions, their activation can be deleterious. Thus, activation of the c-Jun N-terminal kinase (JNK) SAPK pathway exacerbates a diverse set of pathologies, many of which are typical of old age. The contexts determining whether the outcome of JNK signaling is protective or detrimental are not fully understood. Here, we show that the age of an animal defines such a context. The Caenorhabditis elegans JNK homolog, KGB-1, provides protection from heavy metals and protein folding stress in developing animals. However, we found that with the onset of adulthood, KGB-1 activity becomes detrimental, reducing stress resistance and lifespan. Genetic analyses coupled with fluorescent imaging linked this phenotypic switch to age-dependent antagonistic modulation of DAF-16/FOXO: KGB-1 activation enhanced DAF-16 nuclear localization and transcriptional activity during development but decreased it in adults. Epistasis analyses showed that DAF-16 was necessary and sufficient to explain some of the kgb-1-dependent detrimental phenotypes, but not all. The identification of early adulthood as a point following which the contribution of KGB-1 activity reverses from beneficial to detrimental sheds new light on the involvement of JNK signaling in age-related pathologies. Furthermore, the age-dependent reversal has intriguing implications for our understanding of aging.
Collapse
Affiliation(s)
- Kwame Twumasi‐Boateng
- Graduate Group in Microbiology, University of California at Berkeley, CA 94720‐3102, USA
| | - Tim W. Wang
- Department of Integrative Biology, University of California at Berkeley, CA 94720‐3102, USA
| | - Linda Tsai
- Department of Integrative Biology, University of California at Berkeley, CA 94720‐3102, USA
| | - Kuang‐Hui Lee
- Department of Integrative Biology, University of California at Berkeley, CA 94720‐3102, USA
| | - Ali Salehpour
- Department of Integrative Biology, University of California at Berkeley, CA 94720‐3102, USA
| | - Sudarshan Bhat
- Department of Integrative Biology, University of California at Berkeley, CA 94720‐3102, USA
| | - Man‐Wah Tan
- Departments of Genetics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California at Berkeley, CA 94720‐3102, USA
| |
Collapse
|
31
|
Stulpinas A, Imbrasaitė A, Kalvelytė AV. Daunorubicin induces cell death via activation of apoptotic signalling pathway and inactivation of survival pathway in muscle-derived stem cells. Cell Biol Toxicol 2012; 28:103-14. [PMID: 22252735 DOI: 10.1007/s10565-011-9210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/26/2011] [Indexed: 02/02/2023]
Abstract
Daunorubicin (as well as other anthracyclines) is known to be toxic to heart cells and other cells in organism thus limiting its applicability in human cancer therapy. To investigate possible mechanisms of daunorubicin cytotoxicity, we used stem cell lines derived from adult rabbit skeletal muscle. Recently, we have shown that daunorubicin induces apoptotic cell death in our cell model system and distinctly influences the activity of MAP kinases. Here, we demonstrate that two widely accepted antagonistic signalling pathways namely proapoptotic JNK and prosurvival PI3K/AKT participate in apoptosis. Using the Western blot method, we observed the activation of JNK and phosphorylation of its direct target c-Jun along with inactivation of AKT and its direct target GSK in the course of programmed cell death. By means of small-molecule kinase inhibitors and transfection of cells with the genes of the components of these pathways, c-Jun and AKT, we confirm that JNK signalling pathway is proapoptotic, whereas AKT is antiapoptotic in daunorubicin-induced muscle cells. These findings could contribute to new approaches which will result in less toxicity and fewer side effects that are currently associated with the use of daunorubicin in cancer therapies.
Collapse
Affiliation(s)
- Aurimas Stulpinas
- Vilnius University Institute of Biochemistry, Mokslininkų 12, Vilnius, 08662, Lithuania.
| | | | | |
Collapse
|
32
|
Turner NA. Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiol 2011; 7:673-91. [DOI: 10.2217/fca.11.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|