1
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
2
|
Duan Z, Zhang Q, Liu M, Hu Z. Multifunctionality of matrix protein in the replication and pathogenesis of Newcastle disease virus: A review. Int J Biol Macromol 2023; 249:126089. [PMID: 37532184 DOI: 10.1016/j.ijbiomac.2023.126089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Moriyama T, Yoneda Y, Oka M, Yamada M. Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Sci Rep 2020; 10:18640. [PMID: 33122699 PMCID: PMC7596556 DOI: 10.1038/s41598-020-75631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oestrogen receptor-α (ERα) shuttles continuously between the nucleus and the cytoplasm, and functions as an oestrogen-dependent transcription factor in the nucleus and as an active mediator of signalling pathways, such as phosphatidylinositol 3-kinase (PI3K)/AKT, in the cytoplasm. However, little is known regarding the mechanism of ERα nucleocytoplasmic shuttling. In this study, we found that ERα is transported into the nucleus by importin-α/β1. Furthermore, we found that Transportin-2 (TNPO2) is involved in 17β-oestradiol (E2)-dependent cytoplasmic localisation of ERα. Interestingly, it was found that TNPO2 does not mediate nuclear export, but rather is involved in the cytoplasmic retention of ERα via the proline/tyrosine (PY) motifs. Moreover, we found that TNPO2 competitively binds to the basic nuclear localisation signal (NLS) of ERα with importin-α to inhibit importin-α/β-dependent ERα nuclear import. Finally, we confirmed that TNPO2 knockdown enhances the nuclear localisation of wild-type ERα and reduces PI3K/AKT phosphorylation in the presence of E2. These results reveal that TNPO2 regulates nucleocytoplasmic shuttling and cytoplasmic retention of ERα, so that ERα has precise functions depending on the stimulation.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshihiro Yoneda
- Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
4
|
Abstract
The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran forms where levels are highest near chromatin. This gradient plays a crucial role in regulating mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing spindle assembly factors. An emerging theme is that the Ran gradient also regulates the actomyosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For these events, active Ran could play an inhibitory role, where importin-binding may help promote or stabilize a conformation or interaction that favours the recruitment and function of cortical regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines the extent of importin-binding, the effects of which could vary for different proteins.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
5
|
Asaoka M, Hanyu-Nakamura K, Nakamura A, Kobayashi S. Maternal Nanos inhibits Importin-α2/Pendulin-dependent nuclear import to prevent somatic gene expression in the Drosophila germline. PLoS Genet 2019; 15:e1008090. [PMID: 31091233 PMCID: PMC6519790 DOI: 10.1371/journal.pgen.1008090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/13/2019] [Indexed: 01/15/2023] Open
Abstract
Repression of somatic gene expression in germline progenitors is one of the critical mechanisms involved in establishing the germ/soma dichotomy. In Drosophila, the maternal Nanos (Nos) and Polar granule component (Pgc) proteins are required for repression of somatic gene expression in the primordial germ cells, or pole cells. Pgc suppresses RNA polymerase II-dependent global transcription in pole cells, but it remains unclear how Nos represses somatic gene expression. Here, we show that Nos represses somatic gene expression by inhibiting translation of maternal importin-α2 (impα2) mRNA. Mis-expression of Impα2 caused aberrant nuclear import of a transcriptional activator, Ftz-F1, which in turn activated a somatic gene, fushi tarazu (ftz), in pole cells when Pgc-dependent transcriptional repression was impaired. Because ftz expression was not fully activated in pole cells in the absence of either Nos or Pgc, we propose that Nos-dependent repression of nuclear import of transcriptional activator(s) and Pgc-dependent suppression of global transcription act as a 'double-lock' mechanism to inhibit somatic gene expression in germline progenitors.
Collapse
Affiliation(s)
- Miho Asaoka
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Duan Z, Xu H, Ji X, Zhao J, Xu H, Hu Y, Deng S, Hu S, Liu X. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts. Virulence 2018. [PMID: 29532715 PMCID: PMC5955436 DOI: 10.1080/21505594.2018.1449507] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336–433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.
Collapse
Affiliation(s)
- Zhiqiang Duan
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Haixu Xu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xinqin Ji
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Jiafu Zhao
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Houqiang Xu
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Yan Hu
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shanshan Deng
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shunlin Hu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xiufan Liu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| |
Collapse
|
7
|
OKA M, YONEDA Y. Importin α: functions as a nuclear transport factor and beyond. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:259-274. [PMID: 30078827 PMCID: PMC6117492 DOI: 10.2183/pjab.94.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleocytoplasmic transport is an essential process in eukaryotes. The molecular mechanisms underlying nuclear transport that involve the nuclear transport receptor, small GTPase Ran, and the nuclear pore complex are highly conserved from yeast to humans. On the other hand, it has become clear that the nuclear transport system diverged during evolution to achieve various physiological functions in multicellular eukaryotes. In this review, we first summarize the molecular mechanisms of nuclear transport and how these were elucidated. Then, we focus on the diverse functions of importin α, which acts not merely an import factor but also as a multi-functional protein contributing to a variety of cellular functions in higher eukaryotes.
Collapse
Affiliation(s)
- Masahiro OKA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro YONEDA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Correspondence should be addressed: Y. Yoneda, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan (e-mail: )
| |
Collapse
|
8
|
Duan Z, Zhao J, Xu H, Xu H, Ji X, Chen X, Xiong J. Characterization of the nuclear import pathway for BLM protein. Arch Biochem Biophys 2017; 634:57-68. [PMID: 29017749 DOI: 10.1016/j.abb.2017.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/13/2023]
Abstract
Numerous studies have shown that nuclear localization of BLM protein, a member of the RecQ helicases, mediated by nuclear localization signal (NLS) is critical for DNA recombination, replication and transcription, but the mechanism by which BLM protein is imported into the nucleus remains unknown. In this study, the nuclear import pathway for BLM was investigated. We found that nuclear import of BLM was inhibited by two dominant-negative mutants of importin β1 and NTF2/E42K, which lacks the ability to bind Ran and RanGDP, respectively, but was not inhibited by the Ran/Q69L, which is deficient in GTP hydrolysis. Further studies revealed that nuclear import of BLM was reconstituted using importin β1, RanGDP and NTF2 in digitonin-permeabilized HeLa cells. Moreover, BLM had direct binding to importin β1 through its NLS domain with the 14-16 HEAT repeats of importin β1. Furthermore, importin β1, Ran or NTF2 depletion by siRNA disrupted the accumulation of BLM protein in the nucleus. These results showed that BLM enters the nucleus via the importin β1, RanGDP and NTF2 dependent pathway, demonstrating for the first time the nuclear trafficking mechanism of a DNA helicase.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Haixu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jianming Xiong
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Development of a pipeline for automated, high-throughput analysis of paraspeckle proteins reveals specific roles for importin α proteins. Sci Rep 2017; 7:43323. [PMID: 28240251 DOI: 10.1038/srep43323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022] Open
Abstract
We developed a large-scale, unbiased analysis method to measure how functional variations in importin (IMP) α2, IMPα4 and IMPα6 each influence PSPC1 and SFPQ nuclear accumulation and their localization to paraspeckles. This addresses the hypothesis that individual IMP protein activities determine cargo nuclear access to influence cell fate outcomes. We previously demonstrated that modulating IMPα2 levels alters paraspeckle protein 1 (PSPC1) nuclear accumulation and affects its localization into a subnuclear domain that affects RNA metabolism and cell survival, the paraspeckle. An automated, high throughput, image analysis pipeline with customisable outputs was created using Imaris software coupled with Python and R scripts; this allowed non-subjective identification of nuclear foci, nuclei and cells. HeLa cells transfected to express exogenous full-length and transport-deficient IMPs were examined using SFPQ and PSPC1 as paraspeckle markers. Thousands of cells and >100,000 nuclear foci were analysed in samples with modulated IMPα functionality. This analysis scale enabled discrimination of significant differences between samples where paraspeckles inherently display broad biological variability. The relative abundance of paraspeckle cargo protein(s) and individual IMPs each influenced nuclear foci numbers and size. This method provides a generalizable high throughput analysis platform for investigating how regulated nuclear protein transport controls cellular activities.
Collapse
|
10
|
Borowiec M, Gorzkiewicz M, Grzesik J, Walczak-Drzewiecka A, Salkowska A, Rodakowska E, Steczkiewicz K, Rychlewski L, Dastych J, Ginalski K. Towards Engineering Novel PE-Based Immunotoxins by Targeting Them to the Nucleus. Toxins (Basel) 2016; 8:E321. [PMID: 27834892 PMCID: PMC5127118 DOI: 10.3390/toxins8110321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
Exotoxin A (PE) from Pseudomonas aeruginosa is a bacterial ADP-ribosyltransferase, which can permanently inhibit translation in the attacked cells. Consequently, this toxin is frequently used in immunotoxins for targeted cancer therapies. In this study, we propose a novel modification to PE by incorporating the NLS sequence at its C-terminus, to make it a selective agent against fast-proliferating cancer cells, as a nucleus-accumulated toxin should be separated from its natural substrate (eEF2) in slowly dividing cells. Here, we report the cytotoxic activity and selected biochemical properties of newly designed PE mutein using two cellular models: A549 and HepG2. We also present a newly developed protocol for efficient purification of recombinant PE and its muteins with very high purity and activity. We found that furin cleavage is not critical for the activity of PE in the analyzed cell lines. Surprisingly, we observed increased toxicity of the toxin accumulated in the nucleus. This might be explained by unexpected nuclease activity of PE and its potential ability to cleave chromosomal DNA, which seems to be a putative alternative intoxication mechanism. Further experimental investigations should address this newly detected activity to identify catalytic residues and elucidate the molecular mechanism responsible for this action.
Collapse
Affiliation(s)
- Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Anna Salkowska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | | | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Leszek Rychlewski
- BioInfoBank Institute, Sw. Marcin 80/82 r.355, Poznan 61-809, Poland.
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| |
Collapse
|
11
|
Miyamoto Y, Yamada K, Yoneda Y. Importin α: a key molecule in nuclear transport and non-transport functions. J Biochem 2016; 160:69-75. [DOI: 10.1093/jb/mvw036] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
|
12
|
Loveland KL, Major AT, Butler R, Young JC, Jans DA, Miyamoto Y. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis. Asian J Androl 2016; 17:537-44. [PMID: 25994647 PMCID: PMC4492042 DOI: 10.4103/1008-682x.154310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.
Collapse
Affiliation(s)
- Kate L Loveland
- Department of Biochemistry and Molecular Biology;Department of Anatomy and Developmental Biology, Monash University; Hudson Institute of Medical Research, Monash Medical Centre; School of Clinical Sciences, Monash University, Clayton, VIC, Australia,
| | | | | | | | | | | |
Collapse
|
13
|
Yamada K, Miyamoto Y, Tsujii A, Moriyama T, Ikuno Y, Shiromizu T, Serada S, Fujimoto M, Tomonaga T, Naka T, Yoneda Y, Oka M. Cell surface localization of importin α1/KPNA2 affects cancer cell proliferation by regulating FGF1 signalling. Sci Rep 2016; 6:21410. [PMID: 26887791 PMCID: PMC4757827 DOI: 10.1038/srep21410] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
Importin α1 is involved in nuclear import as a receptor for proteins with a classical nuclear localization signal (cNLS). Here, we report that importin α1 is localized to the cell surface in several cancer cell lines and detected in their cultured medium. We also found that exogenously added importin α1 is associated with the cell membrane via interaction with heparan sulfate. Furthermore, we revealed that the cell surface importin α1 recognizes cNLS-containing substrates. More particularly, importin α1 bound directly to FGF1 and FGF2, secreted cNLS-containing growth factors, and addition of exogenous importin α1 enhanced the activation of ERK1/2, downstream targets of FGF1 signalling, in FGF1-stimulated cancer cells. Additionally, anti-importin α1 antibody treatment suppressed the importin α1-FGF1 complex formation and ERK1/2 activation, resulting in decreased cell growth. This study provides novel evidence that functional importin α1 is located at the cell surface, where it accelerates the proliferation of cancer cells.
Collapse
Affiliation(s)
- Kohji Yamada
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Akira Tsujii
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Department of Genetics, Graduate School of Medicine, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuji Moriyama
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yudai Ikuno
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takashi Shiromizu
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yoshihiro Yoneda
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
14
|
Tsujii A, Miyamoto Y, Moriyama T, Tsuchiya Y, Obuse C, Mizuguchi K, Oka M, Yoneda Y. Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence. J Biol Chem 2015; 290:29375-88. [PMID: 26491019 DOI: 10.1074/jbc.m115.681908] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence.
Collapse
Affiliation(s)
- Akira Tsujii
- From the Graduate School of Medicine and the Laboratories of Nuclear Transport Dynamics and
| | | | | | | | - Chikashi Obuse
- the Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | | | - Masahiro Oka
- the Laboratories of Nuclear Transport Dynamics and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871,
| | - Yoshihiro Yoneda
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, and
| |
Collapse
|
15
|
Muqbil I, Wu J, Aboukameel A, Mohammad RM, Azmi AS. Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition? Semin Cancer Biol 2014; 27:39-45. [PMID: 24954011 PMCID: PMC4165636 DOI: 10.1016/j.semcancer.2014.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) and the reverse process (MET) play central role in organ developmental biology. It is a fine tuned process that when disturbed leads to pathological conditions especially cancers with aggressive and metastatic behavior. Snail is an oncogene that has been well established to be a promoter of EMT through direct repression of epithelial morphology promoter E-cadherin. It can function in the nucleus, in the cytosol and as discovered recently, extracellularly through secretory vesicular structures. The intracellular transport of snail has for long been shown to be regulated by the nuclear pore complex. One of the Karyopherins, importin alpha, mediates snail import, while exportin 1 (Xpo1) also known as chromosome maintenance region 1 (CRM1) is its major nuclear exporter. A number of additional biological regulators are emerging that directly modulate Snail stability by altering its subcellular localization. These observations indicate that targeting the nuclear transport machinery could be an important and as of yet, unexplored avenue for therapeutic intervention against the EMT processes in cancer. In parallel, a number of novel agents that disrupt nuclear transport have recently been discovered and are being explored for their anti-cancer effects in the early clinical settings. Through this review we provide insights on the mechanisms regulating snail subcellular localization and how this impacts EMT. We discuss strategies on how the nuclear transport function can be harnessed to rein in EMT through modulation of snail signaling.
Collapse
Affiliation(s)
- Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, USA
| | - Jack Wu
- Department of Oncology, Karmanos Cancer Institute, USA
| | | | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, USA; Division of Research, Hamad Medical Corporation, Doha, Qatar
| | - Asfar S Azmi
- Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA.
| |
Collapse
|
16
|
Ikenberg K, Valtcheva N, Brandt S, Zhong Q, Wong CE, Noske A, Rechsteiner M, Rueschoff JH, Caduff R, Dellas A, Obermann E, Fink D, Fuchs T, Krek W, Moch H, Frew IJ, Wild PJ. KPNA2 is overexpressed in human and mouse endometrial cancers and promotes cellular proliferation. J Pathol 2014; 234:239-52. [PMID: 24930886 DOI: 10.1002/path.4390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022]
Abstract
Endometrial cancer is the most frequently occurring malignancy of the female genital tract in Western countries. Although in many cases surgically curable, about 30% of the tumours represent an aggressive and untreatable disease. In an attempt to establish a reliable prognostic marker for endometrial carcinomas disregarding their histological diversity, we investigated the expression of KPNA2, a mediator of nucleocytoplasmic transport, and other cell proliferation-associated proteins and their correlation with cancer progression. We analysed patient tissue microarrays (TMAs) assembled from 527 endometrial cancer tissue specimens and uterus samples from a Trp53 knockout mouse model of endometrial cancer. Our data show that KPNA2 expression was significantly up-regulated in human endometrial carcinomas and associated with higher tumour grade (p = 0.026), higher FIGO stage (p = 0.027), p53 overexpression (p < 0.001), activation of the PI3K/AKT pathway, and epithelial-mesenchymal transition. Increased nuclear KPNA2 immunoreactivity was identified as a novel predictor of overall survival, independent of well-established prognostic factors in Cox regression analyses (hazard ratio 1.7, 95% CI 1.13-2.56, p = 0.01). No significant association between KPNA2 expression and endometrial cancer subtype was detected. In the mouse model, KPNA2 showed increased expression levels from precancerous (EmgD, EIC) to far-advanced invasive lesions. We further investigated the cell proliferation capacity after siRNA-mediated KPNA2 knockdown in the human endometrial cancer cell line MFE-296. KPNA2 silencing led to decreased proliferation of the cancer cells, suggesting interplay of the protein with the cell cycle. Taken together, increased expression of KPNA2 is an independent prognostic marker for poor survival. The mechanism of enhanced nucleocytoplasmic transport by KPNA2 overexpression seems a common event in aggressive cancers since we have shown a significant correlation of KPNA2 expression and tumour aggressiveness in a large variety of other solid tumour entities. Introducing KPNA2 immunohistochemistry in routine diagnostics may allow for the identification of patients who need more aggressive treatment regimens.
Collapse
Affiliation(s)
- Kristian Ikenberg
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
18
|
Choi S, Yamashita E, Yasuhara N, Song J, Son SY, Won YH, Hong HR, Shin YS, Sekimoto T, Park IY, Yoneda Y, Lee SJ. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β. ACTA ACUST UNITED AC 2014; 70:1050-60. [PMID: 24699649 DOI: 10.1107/s1399004714000972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
Snail contributes to the epithelial-mesenchymal transition by suppressing E-cadherin in transcription processes. The Snail C2H2-type zinc-finger (ZF) domain functions both as a nuclear localization signal which binds to importin β directly and as a DNA-binding domain. Here, a 2.5 Å resolution structure of four ZF domains of Snail1 complexed with importin β is presented. The X-ray structure reveals that the four ZFs of Snail1 are required for tight binding to importin β in the nuclear import of Snail1. The shape of the ZFs in the X-ray structure is reminiscent of a round snail, where ZF1 represents the head, ZF2-ZF4 the shell, showing a novel interaction mode, and the five C-terminal residues the tail. Although there are many kinds of C2H2-type ZFs which have the same fold as Snail, nuclear import by direct recognition of importin β is observed in a limited number of C2H2-type ZF proteins such as Snail, Wt1, KLF1 and KLF8, which have the common feature of terminating in ZF domains with a short tail of amino acids.
Collapse
Affiliation(s)
- Saehae Choi
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Noriko Yasuhara
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jinsue Song
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Se-Young Son
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Young Han Won
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Hye Rim Hong
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoon Sik Shin
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
19
|
Choi S, Song J, Son SY, Park IY, Yamashita E, Lee SJ. Crystallization and preliminary X-ray diffraction analysis of human importin β-Snail zinc finger domain complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1049-51. [PMID: 23989161 DOI: 10.1107/s1744309113023038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/15/2013] [Indexed: 11/10/2022]
Abstract
Snail is a C2H2-type zinc finger transcriptional repressor that induces epithelial-mesenchymal transition by repression of E-cadherin expression levels during embryonic development and tumour progression. Snail is imported into the nucleus by importin β through direct binding with its four zinc finger domain. The complex between importin β and Snail four zinc finger domain was crystallized in order to understand the nuclear transport mechanism of Snail. The constituents of the complex were separately expressed and were then co-purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 228.2, b = 77.5, c = 72.0 Å, β = 100.9° and diffracted to 2.5 Å resolution.
Collapse
Affiliation(s)
- Saehae Choi
- College of Pharmacy, Chungbuk National University, 410 Seungbong, Heungduk, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Yedida GR, Nagini S, Mishra R. The importance of oncogenic transcription factors for oral cancer pathogenesis and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:179-88. [PMID: 23619350 DOI: 10.1016/j.oooo.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 01/03/2023]
Abstract
Oral squamous cell carcinoma is a major cause of morbidity and mortality worldwide. Current experimental evidence shows that most important risk factors for oral cancer include tobacco use and excessive alcohol consumption and less well-defined risks include viral infection and a diet deficient in antioxidants. The positive correlation between various risk/etiologic factors of oral cancer and the activation of various transcription factors (TFs) has been reported in the literature. Although initially, TFs were considered to be very difficult targets for use in clinical treatment, recent technological advances have provided the ability to control these factors of cancer progression. This review focuses on the role of oncogenic transcription factors in oral cancer, their modes of activation through various biological pathways, the promises and pitfalls in viewing them as potent oncotargets, the way they can be controlled based on the current understanding, and the future research to be done in this area.
Collapse
Affiliation(s)
- Govinda Raju Yedida
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | | | | |
Collapse
|
21
|
Sekimoto T, Yoneda Y. Intrinsic and extrinsic negative regulators of nuclear protein transport processes. Genes Cells 2012; 17:525-35. [PMID: 22672474 PMCID: PMC3444693 DOI: 10.1111/j.1365-2443.2012.01609.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/27/2012] [Indexed: 12/31/2022]
Abstract
The nuclear-cytoplasmic protein transport is a critical process in cellular events. The identification of transport signals (nuclear localization signal and nuclear export signal) and their receptors has facilitated our understanding of this expanding field. Nuclear transport must be appropriately regulated to deliver proteins through the nuclear pore when their functions are required in the nucleus, and to export them into the cytoplasm when they are not needed in the nucleus. Altered nuclear transport processes have been observed in stressed cells, which would change gene expressions. Some viruses interfere with nuclear transport in host cells to evade immune defense. Moreover, certain transport factors negatively regulate nuclear protein transport in cells. Understanding the regulatory mechanisms of nuclear-cytoplasmic trafficking not only provides important information about cellular processes, but also is of use for developing specific inhibitors for transport pathways.
Collapse
Affiliation(s)
- Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|