1
|
Zhao Y, Wu Z, Li J, Qi Y, Zhang X, Shen C. The key role of cytochrome P450s in the biosynthesis of plant derived natural products. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109695. [PMID: 40015195 DOI: 10.1016/j.plaphy.2025.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Cytochrome P450 (CYP450 or CYP450, abbreviated as CYP450) represents a large family of self-oxidizable heme proteins, belonging to the class of monooxygenases, and is named because of the specific absorption peak at 450 nm in its ferrous/CO-bound complex. Cytochrome P450 has a wide spectrum of substrates and a rich variety of catalytic reactions, plays an important role in drug metabolism, natural product biosynthesis, and biocatalysis industry. In the biosynthesis of plant natural products, it plays an important role, especially in the downstream synthesis pathway and structural modification after skeleton synthesis. There are abundant natural products from plants, including terpenes, alkaloids, flavonoids, steroidal saponins, etc., which have great development value in the medical field. In the biosynthetic pathways of these natural products, cytochrome P450 enzymes often play an important role. They can serve as rate-limiting enzymes in the biosynthetic pathways or as modifying enzymes for the structural diversity of compounds. So, a deeper understanding of cytochrome P450 enzymes in the natural product synthesis pathway will enhance the development of natural products and advance the study of their synthetic biology. This review offers an overview of the biosynthesis of key medicinal natural products, with a particular focus on the critical role of cytochrome P450 enzymes in key catalytic steps. It also highlights recent advancements in the research of natural product biosynthesis and synthetic biology.
Collapse
Affiliation(s)
- Yawen Zhao
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Zhenzhen Wu
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Jiayao Li
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Yaoxing Qi
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Xiaoxiao Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China; State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, China.
| |
Collapse
|
2
|
Wei W, Yang C, Su Z, Wang Y, Wang P, Yan X, Zhou Z. Engineering a Yeast Cell Factory to Sustainably Biosynthesize Parthenolide. ACS Synth Biol 2025; 14:729-739. [PMID: 40050240 DOI: 10.1021/acssynbio.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The sesquiterpene lactone parthenolide is a promising anticancer drug. Its biosynthesis via a microbial cell factory has been considered as a sustainable alternative to plant extraction. Herein, systematic metabolic engineering approaches, as well as the introduction of a novel noncanonical tricarboxylic acid (TCA) cycle, were employed to enhance the production of the key precursor germacrene A. By identifying two new dehydrogenases and controlling the expression of parthenolide synthase, we further achieved the elimination of byproducts and enhanced parthenolide production. A two-stage fermentation approach and in situ product extraction using macroreticular resin were further applied to relieve the nocuous effect of costunolide and parthenolide on the growth of yeast cell factories, ultimately achieving a titer of 549.7 mg/L for parthenolide and 972.7 mg/L for costunolide in a 10 L fermenter, which represents the highest reported titer obtained by microbial fermentation. The strategies should also contribute to the microbial cell factory-construction for other natural products exhibiting toxicity.
Collapse
Affiliation(s)
- Wenping Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen Su
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li C, Li Y, Wang J, Lu F, Zheng L, Yang L, Sun W, Ro DK, Qu X, Wu Y, Zhang Y. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17199. [PMID: 39642193 DOI: 10.1111/tpj.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Xanthanolides, also described as seco-guaianolides, are unique sesquiterpene lactones (STLs) with diverse bioactivities. Most of xanthanolides are 12,8-olides based on the position of their lactone ring. The biosynthetic pathway leading to xanthanolides has hitherto been elusive, especially how nature creates the xanthane skeleton is a long-standing question. This study reports the elucidation of a complete biosynthetic pathway to the important 12,8-xanthanolide 8-epi-xanthatin. The xanthane-type backbone is directly derived from the central precursor germacrene-type sesquiterpene, germacrene A acid, via oxidative rearrangement, catalyzed by an unusual cytochrome P450. Subsequently, a 12,8-lactone ring is formed within this xanthane-type backbone resulting in xanthanolides. The biosynthetic pathway for xanthanolides contrasts with the previously unified biosynthetic route for diverse 12,6-guaianolides, in which a 12,6-lactone ring formation precedes the transformation of a germacrene-type skeleton into a guaiane-type structure. The discovery of the full biosynthetic pathway of 8-epi-xanthantin opens new opportunities for producing xanthanolides in microbial organisms using synthetic biology strategies.
Collapse
Affiliation(s)
- Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanjun Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fengliu Lu
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lifen Zheng
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenwen Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Alberta, Canada
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Khurram I, Khan MU, Ibrahim S, Ghani MU, Amin I, Falzone L, Herrera-Bravo J, Setzer WN, Sharifi-Rad J, Calina D. Thapsigargin and its prodrug derivatives: exploring novel approaches for targeted cancer therapy through calcium signaling disruption. Med Oncol 2024; 42:7. [PMID: 39557802 DOI: 10.1007/s12032-024-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Thapsigargin, a sesquiterpene lactone derived from Thapsia garganica L., has demonstrated mixed potential as an anticancer agent due to its potent ability to disrupt calcium signaling and induce apoptosis. This review evaluates the chemopreventive and chemotherapeutic potential of thapsigargin, focusing on its molecular mechanisms and toxicity. An extensive literature review of studies published since 2015 was conducted using databases such as PubMed/MedLine and Science Direct. Findings indicate that thapsigargin's primary mechanism is the inhibition of sarco/endoplasmic reticulum calcium ATPase, leading to endoplasmic reticulum stress and cell death in various cancer types. Despite these effects, thapsigargin's non-specific cytotoxicity results in significant side effects, including organ damage and histamine-related reactions. Recent advances in targeted delivery, especially with the prodrug mipsagargin, initially suggested promise in minimizing these toxicities by selectively activating in cancer cells expressing prostate-specific membrane antigen (PSMA). However, the completion of clinical trials with no ongoing studies suggests that the viability of mipsagargin and other prodrugs remains uncertain, especially in light of the toxicities observed. While thapsigargin and its derivatives present a potential pathway in cancer treatment, their future role in oncology requires careful re-evaluation.
Collapse
Affiliation(s)
- Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Agatha O, Mutwil-Anderwald D, Tan JY, Mutwil M. Plant sesquiterpene lactones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230350. [PMID: 39343024 PMCID: PMC11449222 DOI: 10.1098/rstb.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024] Open
Abstract
Sesquiterpene lactones (STLs) are a prominent group of plant secondary metabolites predominantly found in the Asteraceae family and have multiple ecological roles and medicinal applications. This review describes the evolutionary and ecological significance of STLs, highlighting their roles in plant defence mechanisms against herbivory and as phytotoxins, alongside their function as environmental signalling molecules. We also cover the substantial role of STLs in medicine and their mode of action in health and disease. We discuss the biosynthetic pathways and the various modifications that make STLs one of the most diverse groups of metabolites. Finally, we discuss methods for identifying and predicting STL biosynthesis pathways. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Olivia Agatha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Daniela Mutwil-Anderwald
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| |
Collapse
|
6
|
Liao Y, Wu M, Fan J, Wan J, An X, Li X, Wei Y, Ouyang Z. Mining and characterization of a novel cytochrome P450 MaCYP71BG22 involved in the C4-stereoselective hydroxylation of 1-deoxynojirimycin biosynthesis in mulberry leaves. Int J Biol Macromol 2024; 282:136941. [PMID: 39490858 DOI: 10.1016/j.ijbiomac.2024.136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
1-Deoxynojirimycin (DNJ), a primary active component in mulberry leaves, has garnered significant attention due to its unique structure and notable pharmacological properties. Our previous investigations have elucidated the biosynthetic pathways of DNJ from lysine to 2-methylpiperidine. However, the hydroxylation process and its underlying mechanisms remain elusive. In this study, five CYP450s hydroxylase genes significantly correlated (P < 0.05) with DNJ content in mulberry leaves at various time were screened through transcriptome profile. MaCYP71BG22 was first cloned and functionally characterized. This gene was shown to specifically catalyze the stereoselective hydroxylation of (R)-2-methylpiperidine at the C4-position to produce (2R, 4R)-2-methylpiperidin-4-ol. In hairy roots of mulberry, overexpression of MaCYP71BG22 increased DNJ accumulation, while virus-induced gene silencing (VIGS) decreased its production. Furthermore, structural-function analysis pinpointed a critical residue, G460, in MaCYP71BG22, mutation of this residue to G460E enhanced the enzyme's catalytic efficiency. This study represents the first report of a CYP450 hydroxylase involved in the biosynthesis of piperidine alkaloids in mulberry leaves, and demonstrates that MaCYP71BG22 selectively catalyzes the C4-stereoselective hydroxylation of (R)-2-methylpiperidine in DNJ biosynthesis. These findings further elucidate the DNJ biosynthetic pathway and provide new insights into the stereo- and regio-selective hydroxylation abilities of CYP450s hydroxylase in DNJ biosynthesis.
Collapse
Affiliation(s)
- Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jiahe Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xin An
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Wu Y, Chen X, Hao F, Liu Y, Luo W, Zhu Y, Li L, Han F, Zhang Y, Jiang Y, Xiong X, Ro DK, Shang Y, Huang S, Gou J. Biosynthesis of bridged tricyclic sesquiterpenes in Inula lineariifolia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:658-673. [PMID: 39215638 DOI: 10.1111/tpj.17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Presilphiperfolane-type sesquiterpenes represent a unique group of atypical sesquiterpenoids characterized by their distinctive tricyclic structure. They have significant potential as lead compounds for pharmaceutical and agrochemical development. Herein, we utilized a transcriptomic approach to identify a terpene synthase (TPS) gene responsible for the biosynthesis of rare presilphiperfolane-type sesquiterpenes in Inula lineariifolia, designated as IlTPS1. Through phylogenetic analysis, we have identified the evolutionary conservation of key motifs, including RR(x)8W, DDxxD, and NSE/DTE in IlTPS1, which are shared with other tricyclic sesquiterpene synthases in the TPS-a subfamily of Asteraceae plants. Subsequent biochemical characterization of recombinant IlTPS1 revealed it to be a multiproduct enzyme responsible for the synthesis of various tricyclic sesquiterpene alcohols from farnesyl diphosphate (FPP), resulting in production of seven distinct sesquiterpenes. Mass spectrometry and nuclear magnetic resonance (NMR) spectrometry identified presilphiperfolan-8β-ol and presilphiperfol-7-ene as predominant products. Furthermore, biological activity assays revealed that the products from IlTPS1 exhibited a potent antifungal activity against Nigrospora oryzae. Our study represents a significant advancement as it not only functionally identifies the first step enzyme in presilphiperfolane biosynthesis but also establishes the heterologous bioproduction of these unique sesquiterpenes.
Collapse
Affiliation(s)
- Yingmei Wu
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Xueqing Chen
- Shenzhen Hujia Technology Co., Ltd, HBN Research Institute and Biological Laboratory, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu Liu
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaru Zhu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Fei Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yunluo Zhang
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ying Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xingyao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dae-Kyun Ro
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Junbo Gou
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Jiangxia Laboratory, Wuhan, 430070, China
| |
Collapse
|
8
|
Ngo I, Kumar R, Li L, Kim SW, Kwon M, Ro DK. Identification of clerodane diterpene modifying cytochrome P450 (CYP728D26) in Salvia divinorum - en route to psychotropic salvinorin A biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14569. [PMID: 39377159 DOI: 10.1111/ppl.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Salvia divinorum is a hallucinogenic plant native to the Oaxaca in Mexico. The active ingredient for psychotropic effects in this plant is salvinorin A, a potent and highly selective κ-opioid receptor agonist. Salvinorin A is distinct from other well-known opioids, such as morphine and codeine, in that it is a non-nitrogenous diterpenoid with no affinity for μ-opioid receptor, the prime receptor of alkaloidal opioids. A terpene opioid that selectively targets a new opioid receptor (κ-opioid receptor) can be instrumental in developing alternative analgesics. Elucidation of the salvinorin A biosynthetic pathway can help bio-manufacture diverse semi-synthetic derivatives of salvinorin A but, to date, only two enzymes in the Salvinorin A pathway have been identified. Here, we identify CYP728D26 that catalyzes a C18 oxygenation on crotonolide G, which bears a clerodane backbone. Biochemical identity of CYP728D26 was validated by in vivo reconstitution in yeast, 1H- and 13C-NMR analyses of the purified product, and kinetic analysis of CYP728D26 with a Km value of 13.9 μM. Beyond the single oxygenation on C18, collision-induced dissociation analysis suggested two additional oxygenations are catalyzed by CYP728D26 to form crotonoldie G acid, although this carboxylic acid form is a minor product. Its close homologue CYP728D25 exhibited a C1-hydroxylation on the clerodane backbone in a reconstituted yeast system. However, CYP728D25 showed no activity in in vitro assays. This result implies that catalytic activities observed from overexpression systems should be interpreted cautiously. This work identified a new CYP catalyst and advanced our knowledge of salvinorin A biosynthesis.
Collapse
Affiliation(s)
- Iris Ngo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | - Liang Li
- The Metabolomics Innovation Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Qian X, Sarsaiya S, Dong Y, Yu T, Chen J. Recent Advances and New Insights in Genome Analysis and Transcriptomic Approaches to Reveal Enzymes Associated with the Biosynthesis of Dendrobine-Type Sesquiterpenoid Alkaloids (DTSAs) from the Last Decade. Molecules 2024; 29:3787. [PMID: 39202866 PMCID: PMC11356883 DOI: 10.3390/molecules29163787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dendrobium species, which are perennial herbs widely distributed in tropical and subtropical regions, are notable for their therapeutic properties attributed to various bioactive compounds, including dendrobine-type sesquiterpenoid alkaloids (DTSAs). The objective of this review article is to provide a comprehensive overview of recent advances in the biosynthesis of DTSAs, including their extraction from Dendrobium species and endophytes, elucidation of associated genes through genomic and transcriptomic sequencing in both Dendrobium spp. and endophytes, exploration of the biosynthetic pathways of DTSAs, and drawing conclusions and outlining future perspectives in this field. Alkaloids, predominantly nitrogen-containing compounds found in medicinal orchids, include over 140 types discovered across more than 50 species. DTSAs, identified in 37 picrotoxane alkaloids, have a distinctive five-membered nitrogen heterocyclic ring. This review highlights endophytic fungi as alternative sources of DTSAs, emphasizing their potential in pharmaceutical applications when plant-derived compounds are scarce or complex. Genomic and transcriptomic sequencing of Dendrobium spp. and their endophytes has identified key genes involved in DTSAs biosynthesis, elucidating pathways such as the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways. Genes encoding enzymes, such as acetyl-CoA C-acetyltransferase and diphosphomevalonate decarboxylase, are positively associated with dendrobine production. Despite significant advancements, the complexity of terpenoid biosynthesis in different subcellular compartments remains a challenge. Future research should focus on leveraging high-quality genomic data and omics technologies to further understand and manipulate the biosynthetic pathways of DTSAs and enhance their medicinal use.
Collapse
Affiliation(s)
- Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Surendra Sarsaiya
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| | - Yuanyuan Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tuifan Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
10
|
Draga S, Gabelli G, Palumbo F, Barcaccia G. Genome-Wide Datasets of Chicories ( Cichorium intybus L.) for Marker-Assisted Crop Breeding Applications: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:11663. [PMID: 37511422 PMCID: PMC10380310 DOI: 10.3390/ijms241411663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.
Collapse
Affiliation(s)
| | | | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| |
Collapse
|
11
|
Zhang Z, Wu QY, Ge Y, Huang ZY, Hong R, Li A, Xu JH, Yu HL. Hydroxylases involved in terpenoid biosynthesis: a review. BIORESOUR BIOPROCESS 2023; 10:39. [PMID: 38647640 PMCID: PMC10992849 DOI: 10.1186/s40643-023-00656-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/10/2023] [Indexed: 04/25/2024] Open
Abstract
Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing-Yang Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ge
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aitao Li
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
De Bruyn C, Ruttink T, Lacchini E, Rombauts S, Haegeman A, De Keyser E, Van Poucke C, Desmet S, Jacobs TB, Eeckhaut T, Goossens A, Van Laere K. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in Cichorium intybus. FRONTIERS IN PLANT SCIENCE 2023; 14:1200253. [PMID: 37426959 PMCID: PMC10324620 DOI: 10.3389/fpls.2023.1200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Industrial chicory (Cichorium intybus var. sativum) and witloof (C. intybus var. foliosum) are crops with an important economic value, mainly cultivated for inulin production and as a leafy vegetable, respectively. Both crops are rich in nutritionally relevant specialized metabolites with beneficial effects for human health. However, their bitter taste, caused by the sesquiterpene lactones (SLs) produced in leaves and taproot, limits wider applications in the food industry. Changing the bitterness would thus create new opportunities with a great economic impact. Known genes encoding enzymes involved in the SL biosynthetic pathway are GERMACRENE A SYNTHASE (GAS), GERMACRENE A OXIDASE (GAO), COSTUNOLIDE SYNTHASE (COS) and KAUNIOLIDE SYNTHASE (KLS). In this study, we integrated genome and transcriptome mining to further unravel SL biosynthesis. We found that C. intybus SL biosynthesis is controlled by the phytohormone methyl jasmonate (MeJA). Gene family annotation and MeJA inducibility enabled the pinpointing of candidate genes related with the SL biosynthetic pathway. We specifically focused on members of subclade CYP71 of the cytochrome P450 family. We verified the biochemical activity of 14 C. intybus CYP71 enzymes transiently produced in Nicotiana benthamiana and identified several functional paralogs for each of the GAO, COS and KLS genes, pointing to redundancy in and robustness of the SL biosynthetic pathway. Gene functionality was further analyzed using CRISPR/Cas9 genome editing in C. intybus. Metabolite profiling of mutant C. intybus lines demonstrated a successful reduction in SL metabolite production. Together, this study increases our insights into the C. intybus SL biosynthetic pathway and paves the way for the engineering of C. intybus bitterness.
Collapse
Affiliation(s)
- Charlotte De Bruyn
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Christof Van Poucke
- Technology and Food Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Thomas B. Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| |
Collapse
|
13
|
Cankar K, Hakkert JC, Sevenier R, Papastolopoulou C, Schipper B, Baixinho JP, Fernández N, Matos MS, Serra AT, Santos CN, Vahabi K, Tissier A, Bundock P, Bosch D. Lactucin Synthase Inactivation Boosts the Accumulation of Anti-inflammatory 8-Deoxylactucin and Its Derivatives in Chicory ( Cichorium intybus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6061-6072. [PMID: 37036799 PMCID: PMC10119987 DOI: 10.1021/acs.jafc.2c08959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
For several sesquiterpene lactones (STLs) found in Asteraceae plants, very interesting biomedical activities have been demonstrated. Chicory roots accumulate the guaianolide STLs 8-deoxylactucin, lactucin, and lactucopicrin predominantly in oxalated forms in the latex. In this work, a supercritical fluid extract fraction of chicory STLs containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin was shown to have anti-inflammatory activity in an inflamed intestinal mucosa model. To increase the accumulation of these two compounds in chicory taproots, the lactucin synthase that takes 8-deoxylactucin as the substrate for the regiospecific hydroxylation to generate lactucin needs to be inactivated. Three candidate cytochrome P450 enzymes of the CYP71 clan were identified in chicory. Their targeted inactivation using the CRISPR/Cas9 approach identified CYP71DD33 to have lactucin synthase activity. The analysis of the terpene profile of the taproots of plants with edits in CYP71DD33 revealed a nearly complete elimination of the endogenous chicory STLs lactucin and lactucopicrin and their corresponding oxalates. Indeed, in the same lines, the interruption of biosynthesis resulted in a strong increase of 8-deoxylactucin and its derivatives. The enzyme activity of CYP71DD33 to convert 8-deoxylactucin to lactucin was additionally demonstrated in vitro using yeast microsome assays. The identified chicory lactucin synthase gene is predominantly expressed in the chicory latex, indicating that the late steps in the STL biosynthesis take place in the latex. This study contributes to further elucidation of the STL pathway in chicory and shows that root chicory can be positioned as a crop from which different health products can be extracted.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Johanna Christina Hakkert
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Robert Sevenier
- Keygene
N.V., Agro Business Park
90, 6708PW Wageningen, Netherlands
| | - Christina Papastolopoulou
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Bert Schipper
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - João P. Baixinho
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Naiara Fernández
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
| | - Melanie S. Matos
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Claudia Nunes Santos
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- iNOVA4Health,
NOVA Medical School Faculdade de Ciências Médicas, NMS|FCM,
Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Khabat Vahabi
- Department
of Cell and Metabolic Biology, Leibniz Institute
of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Alain Tissier
- Department
of Cell and Metabolic Biology, Leibniz Institute
of Plant Biochemistry, 06120 Halle (Saale), Germany
- Martin-Luther-Universität
Halle-Wittenberg, Institut für Pharmazie, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Paul Bundock
- Keygene
N.V., Agro Business Park
90, 6708PW Wageningen, Netherlands
| | - Dirk Bosch
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
14
|
Seth R, Devi A, Sharma B, Masand M, Singh G, Pal P, Holkar A, Sharma S, Sharma V, Negi S, Sharma RK. An Integrative Transcriptional Network Revealed Spatial Molecular Interplay Underlying Alantolactone and Inulin Biosynthesis in Inula racemosa Hook f. Int J Mol Sci 2022; 23:ijms231911213. [PMID: 36232516 PMCID: PMC9570477 DOI: 10.3390/ijms231911213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Inula racemosa Hook. f. (Pushkarmula), a perennial Himalayan herb known for its aromatic and phytopharmaceutical attributes, is not yet explored at genomic/transcriptomic scale. In this study, efforts were made to unveil the global transcriptional atlas underlying organ-specific specialized metabolite biosynthesis by integrating RNA-Seq analysis of 433 million sequenced reads with the phytochemical analysis of leaf, stem, and root tissues. Overall, 7242 of 83,772 assembled nonredundant unigenes were identified exhibiting spatial expression in leaf (3761), root (2748), and stem (733). Subsequently, integration of the predicted transcriptional interactome network of 2541 unigenes (71,841 edges) with gene ontology and KEGG pathway enrichment analysis revealed isoprenoid, terpenoid, diterpenoid, and gibberellin biosynthesis with antimicrobial activities in root tissue. Interestingly, the root-specific expression of germacrene-mediated alantolactone biosynthesis (GAS, GAO, G8H, IPP, DMAP, and KAO) and antimicrobial activities (BZR1, DEFL, LTP) well-supported with both quantitative expression profiling and phytochemical accumulation of alantolactones (726.08 μg/10 mg) and isoalantolactones (988.59 μg/10 mg), which suggests “roots” as the site of alantolactone biosynthesis. A significant interaction of leaf-specific carbohydrate metabolism with root-specific inulin biosynthesis indicates source (leaf) to sink (root) regulation of inulin. Our findings comprehensively demonstrate the source-sink transcriptional regulation of alantolactone and inulin biosynthesis, which can be further extended for upscaling the targeted specialized metabolites. Nevertheless, the genomic resource created in this study can also be utilized for development of genome-wide functionally relevant molecular markers to expedite the breeding strategies for genetic improvement of I. racemosa.
Collapse
Affiliation(s)
- Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Amna Devi
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Balraj Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mamta Masand
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Poonam Pal
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashlesha Holkar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shikha Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vishal Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Shivanti Negi
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: or
| |
Collapse
|
15
|
A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis. Nat Commun 2022; 13:5143. [PMID: 36050299 PMCID: PMC9436924 DOI: 10.1038/s41467-022-32879-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis. We show that five multifunctional cytochrome P450s with atypical catalytic activities generate the tert-butyl group and one of the lactone rings, characteristic of all G. biloba trilactone terpenoids. The reactions include scarless C-C bond cleavage as well as carbon skeleton rearrangement (NIH shift) occurring on a previously unsuspected intermediate. The cytochrome P450s belong to CYP families that diversifies in pre-seed plants and gymnosperms, but are not preserved in angiosperms. Our work uncovers the early ginkgolide pathway and offers a glance into the biosynthesis of terpenoids of the Mesozoic Era.
Collapse
|
16
|
Zhang B, Wang Z, Han X, Liu X, Wang Q, Zhang J, Zhao H, Tang J, Luo K, Zhai Z, Zhou J, Liu P, He W, Luo H, Yu S, Gao Q, Zhang L, Li D. The chromosome-scale assembly of endive (Cichorium endivia) genome provides insights into the sesquiterpenoid biosynthesis. Genomics 2022; 114:110400. [PMID: 35691507 DOI: 10.1016/j.ygeno.2022.110400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.
Collapse
Affiliation(s)
- Bin Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Zhiwei Wang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Xiangyang Han
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Qi Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jiao Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Hong Zhao
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Kangsheng Luo
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Zhaodong Zhai
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Jun Zhou
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Pangyuan Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Weiming He
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Shuancang Yu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China.
| |
Collapse
|
17
|
Germacrene A Synthases for Sesquiterpene Lactone Biosynthesis Are Expressed in Vascular Parenchyma Cells Neighboring Laticifers in Lettuce. PLANTS 2022; 11:plants11091192. [PMID: 35567193 PMCID: PMC9099558 DOI: 10.3390/plants11091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Sesquiterpene lactone (STL) and natural rubber (NR) are characteristic isoprenoids in lettuce (Lactuca sativa). Both STL and NR co-accumulate in laticifers, pipe-like structures located along the vasculature. NR-biosynthetic genes are exclusively expressed in laticifers, but cell-type specific expression of STL-biosynthetic genes has not been studied. Here, we examined the expression pattern of germacrene A synthase (LsGAS), which catalyzes the first step in STL biosynthesis in lettuce. Quantitative PCR and Illumina read mapping revealed that the transcripts of two GAS isoforms (LsGAS1/LsGAS2) are expressed two orders of magnitude (~100–200) higher in stems than laticifers. This result implies that the cellular site for LsGAS1/2 expression is not in laticifers. To gain more insights, promoters of LsGAS1/2 were cloned and fused to β-glucuronidase (GUS), followed by transformations of lettuce with these promoter-GUS constructs. In in situ GUS assays, the GUS expression driven by the LsGAS1/2 promoters was tightly associated with vascular bundles. High-resolution microsections showed that GUS signals are not present in laticifers but are detected in the vascular parenchyma cells neighboring the laticifers. These results suggest that expression of LsGAS1/2 occurs in the parenchyma cells neighboring laticifers, while the resulting STL metabolites accumulate in laticifers. It can be inferred that active metabolite-trafficking occurs from the parenchyma cells to laticifers in lettuce.
Collapse
|
18
|
Cankar K, Hakkert JC, Sevenier R, Campo E, Schipper B, Papastolopoulou C, Vahabi K, Tissier A, Bundock P, Bosch D. CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots. FRONTIERS IN PLANT SCIENCE 2022; 13:940003. [PMID: 36105709 PMCID: PMC9465254 DOI: 10.3389/fpls.2022.940003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 05/06/2023]
Abstract
Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Katarina Cankar,
| | | | | | - Eva Campo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Bert Schipper
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Nguyen TAM, McConnachie M, Nguyen TD, Dang TTT. Discovery and Characterization of Oxidative Enzymes Involved in Monoterpenoid Indole Alkaloid Biosynthesis. Methods Mol Biol 2022; 2505:141-164. [PMID: 35732943 DOI: 10.1007/978-1-0716-2349-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monoterpene indole alkaloid (MIA) constitutes a structurally diverse plant natural product group with remarkable pharmacological activities. Many MIAs have been routinely used as potent drugs for several diseases, including leukemia (vinblastine), lung cancer (camptothecin), and malaria (quinine). Nevertheless, MIAs are biosynthesized at extremely low abundance in plants and, in many cases, require additional chemical functionalizations before their therapeutic uses. As oxygenations and oxidative rearrangements are critical throughout MIAs' structural scaffolding and modifications, the discovery and engineering of oxidative enzymes play essential roles in understanding and boosting the supplies of MIAs. Recent advances in omics technologies and synthetic biology have provided unprecedented amount of biochemical data and tools, paving a wide pathway for discovering, characterizing, and engineering enzymes involved in MIA biosynthesis. Here, we discuss the latest progress in understanding the roles of oxidative enzymes in MIA metabolism and describe a bioinformatic and biochemical pipeline to identify, characterize, and make use of these plant biocatalysts.
Collapse
Affiliation(s)
- Tuan-Anh Minh Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Matthew McConnachie
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
20
|
Kaur L, Malhi DS, Cooper R, Kaur M, Sohal HS, Mutreja V, Sharma A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114525. [PMID: 34411657 DOI: 10.1016/j.jep.2021.114525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Parthenium hysterophorus L. is a noxious weed and a species of flowering plant in the Asteraceae family. It is regarded as the seventh most deadly weed in the world: harmful to both humans and livestock. It is widely known as Congress Grass or Feverfew. Despite its pitfalls, P. hysterophorus bestows medicinal effects. Although prolific in nature and difficult to control, many novel applications of this controversial herb have been discovered as an approach to manage the weed. AIM The current review aims to compile all the ethnobotanical, phytochemistry, biological activities and utilities, clinical studies and toxicity data available on P. hysterophorus and its major chemical constituent parthenin. MATERIALS AND METHODS Extensive literature surveyed Google search, Google scholar, Wiley online library, Elsevier, Springer, Science direct, American Chemical Society, Royal Society of Chemistry and Research Gate. RESULT According to the study, P. hysterophorus is utilized as a traditional medicine throughout Central America and the Caribbean. It can be used to treat skin infections, dermatitis, amoebic dysentery, and as an analgesic in the treatment of muscular rheumatism. The extracts obtained from P. hysterophorus have anti-inflammatory, antioxidant, larvicidal, anti-microbial, insecticidal, hypoglycaemic and anti-cancer activity. CONCLUSION The earlier investigations confirmed that P. hysterophorus has numerous traditional and biological applications. However, the scientific data are limited in clinical and toxicological studies. Therefore, further research is required on clinical and toxicological aspects to understand the complete potential and effects of P. hysterophorus.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Raymond Cooper
- Dept Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
21
|
Cankar K, Bundock P, Sevenier R, Häkkinen ST, Hakkert JC, Beekwilder J, van der Meer IM, de Both M, Bosch D. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2442-2453. [PMID: 34270859 PMCID: PMC8633505 DOI: 10.1111/pbi.13670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 05/06/2023]
Abstract
Chicory (Cichorium intybus var. sativum) is an industrial crop species cultivated for the production of a fructose polymer inulin, which is used as a low-calorie sweetener and prebiotic. Besides, inulin chicory taproots also accumulate sesquiterpene lactones (STLs). These are bitter tasting compounds, which need to be removed during inulin extraction, resulting in additional costs. In this work, we describe chicory lines where STL accumulation is almost completely eliminated. Genome editing using the CRISPR/Cas9 system was used to inactivate four genes that encode the enzyme that performs the first dedicated step in STL synthesis, germacrene A synthase (CiGAS). Chicory lines were obtained that carried null mutations in all four CiGAS genes. Lines lacking functional CiGAS alleles showed a normal phenotype upon greenhouse cultivation and show nearly complete elimination of the STL synthesis in the roots. It was shown that the reduction in STLs could be attributed to mutations in genetically linked copies of the CiGAS-short gene and not the CiGAS-long gene, which is relevant for breeding the trait into other cultivars. The inactivation of the STL biosynthesis pathway led to increase in phenolic compounds as well as accumulation of squalene in the chicory taproot, presumably due to increased availability of farnesyl pyrophosphate (FFP). These results demonstrate that STLs are not essential for chicory growth and that the inhibition of the STL biosynthesis pathway reduced the STL levels chicory which will facilitate inulin extraction.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | | | | | - Jules Beekwilder
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Dirk Bosch
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
22
|
Gong DY, Chen XY, Guo SX, Wang BC, Li B. Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes. Appl Microbiol Biotechnol 2021; 105:6597-6606. [PMID: 34463801 DOI: 10.1007/s00253-021-11534-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Sesquiterpenes are one of the most diverse groups of secondary metabolites that have mainly been observed in terpenoids. It is a natural terpene containing 15 carbon atoms in the molecule and three isoprene units with chain, ring, and other skeleton structures. Sesquiterpenes have been shown to display multiple biological activities such as anti-inflammatory, anti-feedant, anti-microbial, anti-tumor, anti-malarial, and immunomodulatory properties; therefore, their therapeutic effects are essential. In order to overcome the problem of low-yielding sesquiterpene content in natural plants, regulating their biosynthetic pathways has become the focus of many researchers. In plant and microbial systems, many genetic engineering strategies have been used to elucidate biosynthetic pathways and high-level production of sesquiterpenes. Here, we will introduce the research progress and prospects of the biosynthesis of artemisinin, costunolide, parthenolide, and dendrobine. Furthermore, we explore the biosynthesis of dendrobine by evaluating whether the biosynthetic strategies of these sesquiterpene compounds can be applied to the formation of dendrobine and its intermediate compounds. KEY POINTS: • The development of synthetic biology has promoted the study of terpenoid metabolism and provided an engineering platform for the production of high-value terpenoid products. • Some possible intermediate compounds of dendrobine were screened out and the possible pathway of dendrobine biosynthesis was speculated. • The possible methods of dendrobine biosynthesis were explored and speculated.
Collapse
Affiliation(s)
- Dao-Yong Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xing-Yue Chen
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Bo-Chu Wang
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
23
|
Nguyen TD, Dang TTT. Cytochrome P450 Enzymes as Key Drivers of Alkaloid Chemical Diversification in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:682181. [PMID: 34367208 PMCID: PMC8336426 DOI: 10.3389/fpls.2021.682181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/01/2021] [Indexed: 05/30/2023]
Abstract
Plants produce more than 20,000 nitrogen-containing heterocyclic metabolites called alkaloids. These chemicals serve numerous eco-physiological functions in the plants as well as medicines and psychedelic drugs for human for thousands of years, with the anti-cancer agent vinblastine and the painkiller morphine as the best-known examples. Cytochrome P450 monooxygenases (P450s) play a key role in generating the structural variety that underlies this functional diversity of alkaloids. Most alkaloid molecules are heavily oxygenated thanks to P450 enzymes' activities. Moreover, the formation and re-arrangement of alkaloid scaffolds such as ring formation, expansion, and breakage that contribute to their structural diversity and bioactivity are mainly catalyzed by P450s. The fast-expanding genomics and transcriptomics databases of plants have accelerated the investigation of alkaloid metabolism and many players behind the complexity and uniqueness of alkaloid biosynthetic pathways. Here we discuss recent discoveries of P450s involved in the chemical diversification of alkaloids and how these inform our approaches in understanding plant evolution and producing plant-derived drugs.
Collapse
|
24
|
Kitaoka N, Zhang J, Oyagbenro RK, Brown B, Wu Y, Yang B, Li Z, Peters RJ. Interdependent evolution of biosynthetic gene clusters for momilactone production in rice. THE PLANT CELL 2021; 33:290-305. [PMID: 33793769 PMCID: PMC8136919 DOI: 10.1093/plcell/koaa023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other "phytocassane" BGC. This CYP76M8 acts after the CYP99A2/3 from the "momilactone" BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the "momilactone" BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other "phytocassane" BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Juan Zhang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Richard K Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Benjamin Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Yisheng Wu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Bing Yang
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Zhaohu Li
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Authors for correspondence: ,
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- Authors for correspondence: ,
| |
Collapse
|
25
|
Guaianolide Sesquiterpene Lactones from Centaurothamnus maximus. Molecules 2021; 26:molecules26072055. [PMID: 33916714 PMCID: PMC8038342 DOI: 10.3390/molecules26072055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022] Open
Abstract
Centaurothamnus maximus (family Asteraceae), is a leafy shrub indigenous to the southwestern Arabian Peninsula. With a paucity of phytochemical data on this species, we set out to chemically characterize the plant. From the aerial parts, two newly identified guaianolides were isolated: 3β-hydroxy-4α(acetoxy)-4β(hydroxymethyl)-8α-(4-hydroxy methacrylate)-1αH,5αH, 6αH-gual-10(14),11(13)-dien-6,12-olide (1) and 15-descarboxy picrolide A (2). Seven previously reported compounds were also isolated: 3β, 4α, 8α-trihydroxy-4-(hydroxymethyl)-lαH, 5αH, 6βH, 7αH-guai-10(14),11(13)-dien-6,12-olide (3), chlorohyssopifolin B (4), cynaropikrin (5), hydroxyjanerin (6), chlorojanerin (7), isorhamnetin (8), and quercetagetin-3,6-dimethyl ether-4’-O-β-d-pyranoglucoside (9). Chemical structures were elucidated using spectroscopic techniques, including High Resolution Fast Atom Bombardment Mass Spectrometry (HR-FAB-MS), 1D NMR; 1H, 13C NMR, Distortionless Enhancement by Polarization Transfer (DEPT), and 2D NMR (1H-1H COSY, HMQC, HMBC) analyses. In addition, a biosynthetic pathway for compounds 1–9 is proposed. The chemotaxonomic significance of the reported sesquiterpenoids and flavonoids considering reports from other Centaurea species is examined.
Collapse
|
26
|
Baek S, Utomo JC, Lee JY, Dalal K, Yoon YJ, Ro DK. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system. Metab Eng 2021; 64:111-121. [PMID: 33549837 DOI: 10.1016/j.ymben.2021.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
Saccharomyces cerevisiae is a versatile microbial platform to build synthetic metabolic pathways for production of diverse chemicals. To expedite the construction of complex metabolic pathways by multiplex CRISPR-Cas9 genome-edit, eight desirable intergenic loci, located adjacent to highly expressed genes selected from top 100 expressers, were identified and fully characterized for three criteria after integrating green fluorescent protein (GFP) gene - CRISPR-mediated GFP integration efficiency, expression competency assessed by levels of GFP fluorescence, and assessing growth rates of GFP integrated strains. Five best performing intergenic loci were selected to build a multiplex CRISPR platform, and a synthetic 23-bp DNA comprised of 20-bp synthetic DNA with a protospacer adjacent motif (PAM) was integrated into the five loci using CRISPR-Cas9 in a sequential manner. This process resulted in five different yeast strains harbouring 1-5 synthetic gRNA-binding sites in their genomes. Using these pre-engineered yeast strains, simultaneous integrations of 2-, 3-, 4-, or 5-genes to the targeted loci were demonstrated with efficiencies from 85% to 98% using beet pigment betalain (3-gene pathway), hygromycin and geneticin resistance markers. Integrations of the multiple, foreign genes in the targeted loci with 100% precision were validated by genotyping. Finally, we further developed the strain to have 6th synthetic gRNA-binding site, and the resulting yeast strain was used to generate a yeast strain producing a sesquiterpene lactone, kauniolide by simultaneous 6-gene integrations. This study demonstrates the effectiveness of a single gRNA-mediated CRISPR platform to build complex metabolic pathways in yeast.
Collapse
Affiliation(s)
- Sihyun Baek
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | | | - Ji Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kunal Dalal
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada.
| |
Collapse
|
27
|
Shi L, He Y, Gong J, Yang Z. Pd-Catalyzed Decarboxylative Cycloaddition for the Synthesis of Highly Substituted δ-Lactones and Lactams. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linlin Shi
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yingdong He
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Barnes EK, Kwon M, Hodgins CL, Qu Y, Kim SW, Yeung EC, Ro DK. The promoter sequences of lettuce cis-prenyltransferase and its binding protein specify gene expression in laticifers. PLANTA 2021; 253:51. [PMID: 33507397 DOI: 10.1007/s00425-021-03566-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Promoters of lettuce cis-prenyltransferase 3 (LsCPT3) and CPT-binding protein 2 (LsCBP2) specify gene expression in laticifers, as supported by in situ β-glucuronidase stains and microsection analysis. Lettuce (Lactuca sativa) has articulated laticifers alongside vascular bundles. In the cytoplasm of laticifers, natural rubber (cis-1,4-polyisoprene) is synthesized by cis-prenyltransferase (LsCPT3) and CPT-binding protein (LsCBP2), both of which form an enzyme complex. Here we determined the gene structures of LsCPT3 and LsCBP2 and characterized their promoter activities using β-glucuronidase (GUS) reporter assays in stable transgenic lines of lettuce. LsCPT3 has a single 7.4-kb intron while LsCBP2 has seven introns including a 940-bp intron in the 5'-untranslated region (UTR). Serially truncated LsCPT3 promoters (2.3 kb, 1.6 kb, and 1.1 kb) and the LsCBP2 promoter with (1.7 kb) or without (0.8 kb) the 940-bp introns were fused to GUS to examine their promoter activities. In situ GUS stains of the transgenic plants revealed that the 1.1-kb LsCPT3 and 0.8-kb LsCBP2 promoter without the 5'-UTR intron are sufficient to express GUS exclusively in laticifers. Fluorometric assays showed that the LsCBP2 promoter was several-fold stronger than the CaMV35S promoter and was ~ 400 times stronger than the LsCPT3 promoter in latex. Histochemical analyses confirmed that both promoters express GUS exclusively in laticifers, recognized by characteristic fused multicellular structures. We concluded that both the LsCPT3 and LsCBP2 promoters specify gene expression in laticifers, and the LsCBP2 promoter displays stronger expression than the CaMV35S promoter in laticifers. For the LsCPT3 promoter, it appears that unknown cis-elements outside of the currently examined LsCPT3 promoter are required to enhance LsCPT3 expression.
Collapse
Affiliation(s)
- Elysabeth K Barnes
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Connor L Hodgins
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Yang Qu
- Department of Chemistry, University of New Brunswick Fredericton, Fredericton, E3B 5A3, Canada
| | - Seon-Won Kim
- Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
29
|
Liu J, Hua J, Qu B, Guo X, Wang Y, Shao M, Luo S. Insecticidal Terpenes From the Essential Oils of Artemisia nakaii and Their Inhibitory Effects on Acetylcholinesterase. FRONTIERS IN PLANT SCIENCE 2021; 12:720816. [PMID: 34456959 PMCID: PMC8397410 DOI: 10.3389/fpls.2021.720816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Essential oils (EOs) are often the source of insecticidal substances of high efficiency and low toxicity. From gas chromatograph-mass spectrometer, column chromatography, and nuclear magnetic resonance spectra analyses, twenty terpenes were identified from the EOs of Artemisia nakaii. These comprised mostly monoterpenes (49.01%) and sesquiterpenes (50.76%). The terpenes at the highest concentrations in the EOs of A. nakaii were feropodin (200.46 ± 1.42 μg/ml), (+)-camphor (154.93 ± 9.72 μg/ml), β-selinene (57.73 ± 2.48 μg/ml), and 1,8-cineole (17.99 ± 1.06 μg/ml), calculated using area normalization and external standards. The EOs were tested for biological activity and showed strong fumigant toxicity and significant antifeedant activity against the larvae of Spodoptera litura. Furthermore, the monoterpenes 1,8-cineole and (+)-camphor displayed significant fumigant activity against S. litura, with LC50 values of 7.00 ± 0.85 and 18.16 ± 2.31 μl/L, respectively. Antifeedant activity of the sesquiterpenes feropodin and β-selinene was obvious, with EC50 values of 12.23 ± 2.60 and 10.46 ± 0.27 μg/cm2, respectively. The EOs and β-selinene were also found to inhibit acetylcholinesterase, with IC50 values of 37.75 ± 3.59 and 6.88 ± 0.48 μg/ml, respectively. These results suggest that monoterpenes and sesquiterpenes from the EOs of A. nakaii could potentially be applied as a botanical pesticides in the control of S. litura.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
| | - Xuanyue Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yangyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Meini Shao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Meini Shao,
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
- Shihong Luo, , orcid.org/0000-0003-3500-3466
| |
Collapse
|
30
|
Arciniegas A, Pérez-Castorena AL, Villaseñor JL, Romo de Vivar A. Cadinenes and other metabolites from Verbesina sphaerocephala A. Gray. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Zhan C, Lei L, Liu Z, Zhou S, Yang C, Zhu X, Guo H, Zhang F, Peng M, Zhang M, Li Y, Yang Z, Sun Y, Shi Y, Li K, Liu L, Shen S, Wang X, Shao J, Jing X, Wang Z, Li Y, Czechowski T, Hasegawa M, Graham I, Tohge T, Qu L, Liu X, Fernie AR, Chen LL, Yuan M, Luo J. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. NATURE PLANTS 2020; 6:1447-1454. [PMID: 33299150 DOI: 10.1038/s41477-020-00816-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/04/2020] [Indexed: 05/24/2023]
Abstract
Diterpenoids are the major group of antimicrobial phytoalexins in rice1,2. Here, we report the discovery of a rice diterpenoid gene cluster on chromosome 7 (DGC7) encoding the entire biosynthetic pathway to 5,10-diketo-casbene, a member of the monocyclic casbene-derived diterpenoids. We revealed that DGC7 is regulated directly by JMJ705 through methyl jasmonate-mediated epigenetic control3. Functional characterization of pathway genes revealed OsCYP71Z21 to encode a casbene C10 oxidase, sought after for the biosynthesis of an array of medicinally important diterpenoids. We further show that DGC7 arose relatively recently in the Oryza genus, and that it was partly formed in Oryza rufipogon and positively selected for in japonica during domestication. Casbene-synthesizing enzymes that are functionally equivalent to OsTPS28 are present in several species of Euphorbiaceae but gene tree analysis shows that these and other casbene-modifying enzymes have evolved independently. As such, combining casbene-modifying enzymes from these different families of plants may prove effective in producing a diverse array of bioactive diterpenoid natural products.
Collapse
Affiliation(s)
- Chuansong Zhan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Long Lei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zixin Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shen Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xitong Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hao Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Feng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zixin Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yangyang Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yuheng Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Kang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xuyang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jiawen Shao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Tomasz Czechowski
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | | | - Ian Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Takayuki Tohge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianqing Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
32
|
Kaur D, Alkhder D, Corre C, Alberti F. Engineering Isoprenoid Quinone Production in Yeast. ACS Synth Biol 2020; 9:2239-2245. [PMID: 32786347 DOI: 10.1021/acssynbio.0c00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoprenoid quinones are bioactive molecules that include an isoprenoid chain and a quinone head. They are traditionally found to be involved in primary metabolism, where they act as electron transporters, but specialized isoprenoid quinones are also produced by all domains of life. Here, we report the engineering of a baker's yeast strain, Saccharomyces cerevisiae EPYFA3, for the production of isoprenoid quinones. Our yeast strain was developed through overexpression of the shikimate pathway in a well-established recipient strain (S. cerevisiae EPY300) where the mevalonate pathway is overexpressed. As a proof of concept, our new host strain was used to overproduce the endogenous isoprenoid quinone coenzyme Q6, resulting in a nearly 3-fold production increase. EPYFA3 represents a valuable platform for the heterologous production of high value isoprenoid quinones. EPYFA3 will also facilitate the elucidation of isoprenoid quinone biosynthetic pathways.
Collapse
Affiliation(s)
- Divjot Kaur
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Duha Alkhder
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Christophe Corre
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Fabrizio Alberti
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
33
|
Mandal SK, Debnath U, Kumar A, Thomas S, Mandal SC, Choudhury MD, Palit P. Natural Sesquiterpene Lactones in the Prevention and Treatment of Inflammatory Disorders and cancer: A Systematic Study of this Emerging Therapeutic Approach based on Chemical and Pharmacological Aspect. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200421144007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background and Introduction:
Sesquiterpene lactones are a class of secondary metabolite
that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive
secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae
family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so
far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological
activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional
disorders. Moreover, these moiety based phytocompounds have been highlighted with a new
dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize
achieved by the Artemisinin researchers.
Objective:
These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural
backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and
anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been
increased. This study will review the prospect of sesquiterpene lactones against inflammation and
cancer.
Methods:
Hence, we emphasized on the different features of this moiety by incorporating its structural
diversity on biological activities to explore structure-activity relationships (SAR) against inflammation
and cancer.
Results:
How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby
these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of
anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy
will also be revealed in the present review in the milieu of pharmacophore activity relation
and pharmacodynamics study as well.
Conclusion:
So, these metabolites are paramount in phytopharmacological aspects. The present discussion
on the future prospect of this moiety based on the reported literature could be a guide for
anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur- 713206, India
| | - Utsab Debnath
- School of Pharmaceutical Technology, Adamas University, Kolkata 700126, India
| | - Amresh Kumar
- Department of Life Science and Bioinformatics, Biotech Hub, Assam University, Silchar, Assam-788011, India
| | - Sabu Thomas
- Mahatma Gandhi University, Kottayam-686560, Kerala, India
| | - Subhash Chandra Mandal
- Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Research Laboratory, Jadavpur University, Kolkata 700032, India
| | - Manabendra Dutta Choudhury
- Department of Life Science and Bioinformatics, Biotech Hub, Assam University, Silchar, Assam-788011, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Division of Pharmacognosy, Assam University (A Central University), Silchar-788011, India
| |
Collapse
|
34
|
Frey M, Klaiber I, Conrad J, Spring O. CYP71BL9, the missing link in costunolide synthesis of sunflower. PHYTOCHEMISTRY 2020; 177:112430. [PMID: 32516579 DOI: 10.1016/j.phytochem.2020.112430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Despite intensive research in recent years, the biosynthetic route to costunolide in sunflower so far remained obscured. Additional P450 sequences from public sunflower transcriptomic database were screened to search for candidate enzymes which are able to introduce the 6α-hydroxy-group required for the esterification with the carboxy group of germacarane A acid, the final step in costunolide formation. CYP71BL9, a new P450 enzyme from sunflower was shown to catalyze this hydroxylation, hence being identified as HaCOS. Phylogentically, HaCOS is closer related to HaG8H than to any other known costunolide synthase in Asteraceae.The enzyme was successfully employed to reconstruct the sunflower biosynthesis of costunolide in transformed tobacco. Contrary, in yeast, only minor amounts of sesquiterpene lactone was produced, while 5-hydroxyfarnesylic acid was formed instead. HaCOS in combination with HaG8H produced 8β-hydroxycostunolide (eupatolide) in transformed plants, thus indicating that sunflower possesses two independent modes of eupatolide synthesis via HaCOS and via HaES. The lack of HaCOS expression and of costunolide in trichomes suggests that the enzyme triggers the costunolied synthesis of the inner tissues of sunflower and might be linked to growth regulation processes.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Biology, Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Iris Klaiber
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Emil-Wolff-Str. 12, 70599, Stuttgart, Germany
| | - Jürgen Conrad
- Institute of Chemistry, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Otmar Spring
- Institute of Biology, Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
35
|
Chemical Defense of Yacón (Smallanthus sonchifolius) Leaves against Phytophagous Insects: Insect Antifeedants from Yacón Leaf Trichomes. PLANTS 2020; 9:plants9070848. [PMID: 32640580 PMCID: PMC7412168 DOI: 10.3390/plants9070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 11/23/2022]
Abstract
Yacón is a perennial crop with high insect resistance. Its leaves have many glandular trichomes, which may be related to pest resistance. In order to collect the constituents of glandular trichomes, leaves were rinsed using dichloromethane (DCM) to obtain the rinsate, and the plant residues were subsequently extracted by DCM to obtain a DCM extract containing the internal constituents of yacón leaves. Biologic evaluations revealed that insect antifeedant activity was stronger for the rinsate than for the DCM extract against the common cutworm. The major constituents of rinsate were isolated by silica gel flash chromatography and were identified as sesquiterpene lactones (SLs), uvedalin (1) and enhydrin (2) and uvedalin aldehyde (3), collectively known as melampolides. Although SLs 1 and 2 exhibited remarkably strong insect antifeedant activity, SL 3 and reduced corresponding derivatives (4 and 5) of 1 and 2 exhibited moderate insect antifeedant activity. Additionally, the two analogs, parthenolide (6) and erioflorin (7) showed moderate insect antifeedant activity. The results indicate that the substituent patterns of SLs may be related to the insect antifeedant activities. The insect antifeedant activities of SLs 1 and 2 were similar to that of the positive control azadirachtin A (8), and thus these natural products may function in chemical defense against herbivores.
Collapse
|
36
|
Spring O, Schmauder K, Lackus ND, Schreiner J, Meier C, Wellhausen J, Smith LV, Frey M. Spatial and developmental synthesis of endogenous sesquiterpene lactones supports function in growth regulation of sunflower. PLANTA 2020; 252:2. [PMID: 32504343 PMCID: PMC7275010 DOI: 10.1007/s00425-020-03409-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Tissue-specific occurrence and formation of endogenous sesquiterpene lactones has been assessed and suggests physiological function as antagonists of auxin-induced plant growth in sunflower. Sunflower, Helianthus annuus, accumulate high concentrations of bioactive sesquiterpene lactones (STL) in glandular trichomes, but in addition, structurally different STL occur in only trace amounts in the inner tissues. The spatial and temporal production of these endogenous STL during early phases of plant development is widely unknown and their physiological function as putative natural growth regulators is yet speculative. By means of HPLC and MS analysis it was shown that costunolide, dehydrocostuslactone, 8-epixanthatin and tomentosin are already present in dry seeds and can be extracted in low amounts from cotyledons, hypocotyls and roots of seedlings during the first days after germination. Semi-quantitative and RT-qPCR experiments with genes of the key enzymes of two independent routes of the endogenous STL biosynthesis confirmed the early and individual expression in these organs and revealed a gradual down regulation during the first 72-96 h after germination. Light irradiation of the plants led to a fast, but transient increase of STL in parts of the hypocotyl which correlated with growth retardation of the stem. One-sided external application of costunolide on hypocotyls conferred reduced growth of the treated side, thus resulting in the curving of the stem towards the side of the application. This indicates the inhibiting effects of STL on plant growth. The putative function of endogenous STL in sunflower as antagonists of auxin in growth processes is discussed.
Collapse
Affiliation(s)
- Otmar Spring
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Katharina Schmauder
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Nathalie D Lackus
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jasmin Schreiner
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Carolin Meier
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jan Wellhausen
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Lisa V Smith
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Maximilian Frey
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
37
|
Mele MA, Kang HM, Lee YT, Islam MZ. Grape terpenoids: flavor importance, genetic regulation, and future potential. Crit Rev Food Sci Nutr 2020; 61:1429-1447. [PMID: 32401037 DOI: 10.1080/10408398.2020.1760203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Terpenes significantly affect the flavor and quality of grapes and wine. This review summarizes recent research on terpenoids with regard to grape wine. Although, the grapevine terpene synthase gene family is the largest identified, genetic modifications involving terpenes to improve wine flavor have received little attention. Key enzyme modulation alters metabolite production. Over the last decade, the heterologous manipulation of grape glycosidase has been used to alter terpenoids, and cytochrome P450s may affect terpene synthesis. Metabolic and genetic engineering can further modify terpenoid metabolism, while using transgenic grapevines (trait transfer to the plant) could yield more flavorful wine. We also discuss traits involved in wine aroma quality, and the strategies that can be used to improve grapevine breeding technology.
Collapse
Affiliation(s)
- Mahmuda Akter Mele
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Ho-Min Kang
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Tack Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Mohammad Zahirul Islam
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
38
|
Thakur V, Bains S, Pathania S, Sharma S, Kaur R, Singh K. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant-Saussurea lappa. Int J Biol Macromol 2020; 150:52-67. [DOI: 10.1016/j.ijbiomac.2020.01.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
39
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
40
|
Frey M. Traps and Pitfalls-Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways. Molecules 2020; 25:E1935. [PMID: 32331245 PMCID: PMC7221646 DOI: 10.3390/molecules25081935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
The characterization of plant enzymes by expression in prokaryotic and eukaryotic (yeast and plants) heterologous hosts has widely been used in recent decades to elucidate metabolic pathways in plant secondary metabolism. Yeast and plant systems provide the cellular environment of a eukaryotic cell and the subcellular compartmentalization necessary to facilitate enzyme function. The expression of candidate genes in these cell systems and the identification of the resulting products guide the way for the identification of enzymes with new functions. However, in many cases, the detected compounds are not the direct enzyme products but are caused by unspecific subsequent reactions. Even if the mechanisms for these unspecific reactions are in many cases widely reported, there is a lack of overview of potential reactions that may occur to provide a guideline for researchers working on the characterization of new enzymes. Here, an across-the-board summary of rearrangement reactions of sesquiterpenes in metabolic pathway engineering is presented. The different kinds of unspecific reactions as well as their chemical and cellular background are explained and strategies how to spot and how to avoid these unspecific reactions are given. Also, a systematic approach of classification of unspecific reactions is introduced. It is hoped that this mini-review will stimulate a discussion on how to systematically classify unspecific reactions in metabolic engineering and to expand this approach to other classes of plant secondary metabolites.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Biology, Dept. of Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| |
Collapse
|
41
|
Liu B, Yan J, Li W, Yin L, Li P, Yu H, Xing L, Cai M, Wang H, Zhao M, Zheng J, Sun F, Wang Z, Jiang Z, Ou Q, Li S, Qu L, Zhang Q, Zheng Y, Qiao X, Xi Y, Zhang Y, Jiang F, Huang C, Liu C, Ren Y, Wang S, Liu H, Guo J, Wang H, Dong H, Peng C, Qian W, Fan W, Wan F. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat Commun 2020; 11:340. [PMID: 31953413 PMCID: PMC6969026 DOI: 10.1038/s41467-019-13926-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 11/08/2022] Open
Abstract
Mikania micrantha is one of the top 100 worst invasive species that can cause serious damage to natural ecosystems and substantial economic losses. Here, we present its 1.79 Gb chromosome-scale reference genome. Half of the genome is composed of long terminal repeat retrotransposons, 80% of which have been derived from a significant expansion in the past one million years. We identify a whole genome duplication event and recent segmental duplications, which may be responsible for its rapid environmental adaptation. Additionally, we show that M. micrantha achieves higher photosynthetic capacity by CO2 absorption at night to supplement the carbon fixation during the day, as well as enhanced stem photosynthesis efficiency. Furthermore, the metabolites of M. micrantha can increase the availability of nitrogen by enriching the microbes that participate in nitrogen cycling pathways. These findings collectively provide insights into the rapid growth and invasive adaptation.
Collapse
Affiliation(s)
- Bo Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weihua Li
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lijuan Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Key Laboratory of Protein Function and Regulation in Agricultural Organisms of Guangdong province, College of Life Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hanxia Yu
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Longsheng Xing
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Minling Cai
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Hengchao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengxin Zhao
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jin Zheng
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Feng Sun
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhenzhen Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoyang Jiang
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qiaojing Ou
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Shubin Li
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lu Qu
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qilei Zhang
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yaping Zheng
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xi Qiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yu Xi
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yan Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cong Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Conghui Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuwei Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Sen Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hangwei Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jianyang Guo
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haihong Wang
- Key Laboratory of Protein Function and Regulation in Agricultural Organisms of Guangdong province, College of Life Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Dong
- Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Changlian Peng
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Wanqiang Qian
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wei Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Fanghao Wan
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
42
|
Chen P, Chen J, Sun M, Yan H, Feng G, Wu B, Zhang X, Wang X, Huang L. Comparative transcriptome study of switchgrass ( Panicum virgatum L.) homologous autopolyploid and its parental amphidiploid responding to consistent drought stress. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:170. [PMID: 33072185 PMCID: PMC7559793 DOI: 10.1186/s13068-020-01810-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/06/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Newly formed polyploids may experience short-term adaptative changes in their genome that may enhance the resistance of plants to stress. Considering the increasingly serious effects of drought on biofuel plants, whole genome duplication (WGD) may be an efficient way to proceed with drought resistant breeding. However, the molecular mechanism of drought response before/after WGD remains largely unclear. RESULT We found that autoploid switchgrass (Panicum virgatum L.) 8X Alamo had higher drought tolerance than its parent amphidiploid 4X Alamo using physiological tests. RNA and microRNA sequencing at different time points during drought were then conducted on 8X Alamo and 4X Alamo switchgrass. The specific differentially expressed transcripts (DETs) that related to drought stress (DS) in 8X Alamo were enriched in ribonucleoside and ribonucleotide binding, while the drought-related DETs in 4X Alamo were enriched in structural molecule activity. Ploidy-related DETs were primarily associated with signal transduction mechanisms. Weighted gene co-expression network analysis (WGCNA) detected three significant DS-related modules, and their DETs were primarily enriched in biosynthesis process and photosynthesis. A total of 26 differentially expressed microRNAs (DEmiRs) were detected, and among them, sbi-microRNA 399b was only expressed in 8X Alamo. The targets of microRNAs that were responded to polyploidization and drought stress all contained cytochrome P450 and superoxide dismutase genes. CONCLUSIONS This study explored the drought response of 8X and 4X Alamo switchgrass on both physiological and transcriptional levels, and provided experimental and sequencing data basis for a short-term adaptability study and drought-resistant biofuel plant breeding.
Collapse
Affiliation(s)
- Peilin Chen
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jing Chen
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Min Sun
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Guangyan Feng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bingchao Wu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaoshan Wang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
43
|
Nguyen TD, Kwon M, Kim SU, Fischer C, Ro DK. Catalytic Plasticity of Germacrene A Oxidase Underlies Sesquiterpene Lactone Diversification. PLANT PHYSIOLOGY 2019; 181:945-960. [PMID: 31534022 PMCID: PMC6836840 DOI: 10.1104/pp.19.00629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/05/2019] [Indexed: 05/31/2023]
Abstract
Adaptive evolution of enzymes benefits from catalytic promiscuity. Sesquiterpene lactones (STLs) have diverged extensively in the Asteraceae, and studies of the enzymes for two representative STLs, costunolide and artemisinin, could provide an insight into the adaptive evolution of enzymes. Costunolide appeared early in Asteraceae evolution and is widespread, whereas artemisinin is a unique STL appearing in a single Asteraceae species, Artemisia annua Therefore, costunolide is a ubiquitous STL, while artemisinin is a specialized one. In costunolide biosynthesis, germacrene A oxidase (GAO) synthesizes germacrene A acid from germacrene A. Similarly, in artemisinin biosynthesis, amorphadiene oxidase (AMO) synthesizes artemisinic acid from amorphadiene. GAO promiscuity is suggested to drive the diversification of STLs. To examine the degree of GAO promiscuity, we expressed six sesquiterpene synthases from cotton (Gossypium arboretum), goldenrod (Solidago canadensis), valerian (Valeriana officinalis), agarwood (Aquilaria crassna), tobacco (Nicotiana tabacum), and orange (Citrus sinensis) in yeast to produce seven distinct sesquiterpene substrates (germacrene D, 5-epi-aristolochene, valencene, δ-cadinene, α- and δ-guaienes, and valerenadiene). GAO or AMO was coexpressed in these yeasts to evaluate the promiscuities of GAO and AMO. Remarkably, all sesquiterpenes tested were oxidized to sesquiterpene acids by GAO, but negligible activities were found from AMO. Hence, GAO apparently has catalytic potential to evolve into different enzymes for synthesizing distinct STLs, while the recently specialized AMO demonstrates rigid substrate specificity. Mutant GAOs implanted with active site residues of AMO showed substantially reduced stability, but their per enzyme activities to produce artemisinic acid increased by 9-fold. Collectively, these results suggest promiscuous GAOs can be developed as novel catalysts for synthesizing unique sesquiterpene derivatives.
Collapse
Affiliation(s)
- Trinh-Don Nguyen
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Moonhyuk Kwon
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo-Un Kim
- Department of Agricultural Biotechnology and Institute of Agricultural Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Dae-Kyun Ro
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
44
|
Bogdanović M, Cankar K, Dragićević M, Bouwmeester H, Beekwilder J, Simonović A, Todorović S. Silencing of germacrene A synthase genes reduces guaianolide oxalate content in Cichorium intybus L. GM CROPS & FOOD 2019; 11:54-66. [PMID: 31668117 PMCID: PMC7064209 DOI: 10.1080/21645698.2019.1681868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Chicory (Cichorium intybus L.) is a medicinal and industrial plant from the Asteraceae family that produces a variety of sesquiterpene lactones (STLs), most importantly bitter guaianolides: lactucin, lactucopicrin and 8-deoxylactucin as well as their modified forms such as oxalates. These compounds have medicinal properties; however, they also hamper the extraction of inulin - a very important food industry product from chicory roots. The first step in guaianolide biosynthesis is catalyzed by germacrene A synthase (GAS) which in chicory exists in two isoforms - GAS long (encoded by CiGASlo) and GAS short (encoded by CiGASsh). AmiRNA silencing was used to obtain plants with reduced GAS gene expression and level of downstream metabolites, guaianolide-15-oxalates, as the major STLs in chicory. This approach could be beneficial for engineering new chicory varieties with varying STL content, and especially varieties with reduced bitter compounds more suitable for inulin production.
Collapse
Affiliation(s)
- Milica Bogdanović
- Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
| | | | - Milan Dragićević
- Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
| | - Harro Bouwmeester
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ana Simonović
- Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
| | - Slađana Todorović
- Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
| |
Collapse
|
45
|
Frey M, Klaiber I, Conrad J, Bersch A, Pateraki I, Ro DK, Spring O. Characterization of CYP71AX36 from Sunflower (Helianthus annuus L., Asteraceae). Sci Rep 2019; 9:14295. [PMID: 31586110 PMCID: PMC6778120 DOI: 10.1038/s41598-019-50520-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022] Open
Abstract
Sesquiterpene lactones (STL) are a subclass of isoprenoids with many known bioactivities frequently found in the Asteraceae family. In recent years, remarkable progress has been made regarding the biochemistry of STL, and today the biosynthetic pathway of the core backbones of many STLs has been elucidated. Consequently, the focus has shifted to the discovery of the decorating enzymes that can modify the core skeleton with functional hydroxy groups. Using in vivo pathway reconstruction assays in heterologous organisms such as Saccharomyces cerevisiae and Nicotiana benthamiana, we have analyzed several cytochrome P450 enzyme genes of the CYP71AX subfamily from Helianthus annuus clustered in close proximity to one another on the sunflower genome. We show that one member of this subfamily, CYP71AX36, can catalyze the conversion of costunolide to 14-hydroxycostunolide. The catalytic activity of CYP71AX36 may be of use for the chemoenzymatic production of antileukemic 14-hydroxycostunolide derivatives and other STLs of pharmaceutical interest. We also describe the full 2D-NMR assignment of 14-hydroxycostunolide and provide all 13C chemical shifts of the carbon skeleton for the first time.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Iris Klaiber
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Emil-Wolff-Str. 12, 70599, Stuttgart, Germany
| | - Jürgen Conrad
- Institute of Chemistry, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Aylin Bersch
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Irini Pateraki
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
46
|
Affiliation(s)
| | | | - Marcus A. Glomb
- Institut für Chemie – LebensmittelchemieMartin‐Luther‐Universität Halle‐Wittenberg Kurt‐Mothes‐Str. 2 D‐06120 Halle (Saale)
| |
Collapse
|
47
|
Karunanithi PS, Dhanota P, Addison JB, Tong S, Fiehn O, Zerbe P. Functional characterization of the cytochrome P450 monooxygenase CYP71AU87 indicates a role in marrubiin biosynthesis in the medicinal plant Marrubium vulgare. BMC PLANT BIOLOGY 2019; 19:114. [PMID: 30909879 PMCID: PMC6434833 DOI: 10.1186/s12870-019-1702-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/06/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Horehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds. RESULTS Mining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare. CONCLUSIONS In a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - Puja Dhanota
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - J. Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182 USA
| | - Shen Tong
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| |
Collapse
|
48
|
Li W, Xu R, Yan X, Liang D, Zhang L, Qin X, Caiyin Q, Zhao G, Xiao W, Hu Z, Qiao J. De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin V in Celastrus angulatus maxim. BMC Genomics 2019; 20:7. [PMID: 30611193 PMCID: PMC6321707 DOI: 10.1186/s12864-018-5397-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Celastrus angulatus Maxim is a kind of crucial and traditional insecticidal plant widely distributed in the mountains of southwest China. Celangulin V is the efficient insecticidal sesquiterpenoid of C. angulatus and widely used in pest control in China, but the low yield and discontinuous supply impeded its further popularization and application. Fortunately, the development of synthetic biology provided an opportunity for sustainable supply of Celangulin V, for which understanding its biosynthetic pathway is indispensable. Results In this study, six cDNA libraries were prepared from leaf and root of C. angulatus before global transcriptome analyses using the BGISEQ-500 platform. A total of 104,950 unigenes were finally obtained with an average length of 1200 bp in six transcriptome databases of C. angulatus, in which 51,817 unigenes classified into 25 KOG classifications, 39,866 unigenes categorized into 55 GO functional groups, and 48,810 unigenes assigned to 135 KEGG pathways, 145 of which were putative biosynthetic genes of sesquiterpenoid and triterpenoid. 16 unigenes were speculated to be related to Celangulin V biosynthesis. De novo assembled sequences were verified by Quantitative Real-Time PCR (qRT-PCR) analysis. Conclusions This study is the first report on transcriptome analysis of C. angulatus, and 16 unigenes probably involved in the biosynthesis of Celangulin V were finally collected. The transcriptome data will make great contributions to research for this specific insecticidal plant and the further gene mining for biosynthesis of Celangulin V and other sesquiterpene polyol esters. Electronic supplementary material The online version of this article (10.1186/s12864-018-5397-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Ranran Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Lei Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xiaoyu Qin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Wenhai Xiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Zhaonong Hu
- College of Plant Protection, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.,Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
49
|
Testone G, Mele G, di Giacomo E, Tenore GC, Gonnella M, Nicolodi C, Frugis G, Iannelli MA, Arnesi G, Schiappa A, Biancari T, Giannino D. Transcriptome driven characterization of curly- and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway. HORTICULTURE RESEARCH 2019; 6:1. [PMID: 30603088 PMCID: PMC6312536 DOI: 10.1038/s41438-018-0066-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 05/03/2023]
Abstract
Endives (Cichorium endivia L.) are popular vegetables, diversified into curly/frisée- and smooth/broad-leafed (escaroles) cultivar types (cultigroups), and consumed as fresh and bagged salads. They are rich in sesquiterpene lactones (STL) that exert proven function on bitter taste and human health. The assembly of a reference transcriptome of 77,022 unigenes and RNA-sequencing experiments were carried out to characterize the differences between endives and escaroles at the gene structural and expression levels. A set of 3177 SNPs distinguished smooth from curly cultivars, and an SNP-supported phylogenetic tree separated the cultigroups into two distinct clades, consistently with the botanical varieties of origin (crispum and latifolium, respectively). A pool of 699 genes maintained differential expression pattern (core-DEGs) in pairwise comparisons between curly vs smooth cultivars grown in the same environment. Accurate annotation allowed the identification of 26 genes in the sesquiterpenoid biosynthesis pathway, which included several g ermacrene A s ynthase, g ermacrene A o xidase and co stunolide s ynthase members (GAS/GAO/COS module), required for the synthesis of costunolide, a key precursor of lactucopicrin- and lactucin-like sesquiterpene lactones. The core-DEGs contained a GAS gene (contig83192) that was positively correlated with STL levels and recurrently more expressed in curly than smooth endives, suggesting a cultigroup-specific behavior. The significant positive correlation of GAS/GAO/COS transcription and STL abundance (2.4-fold higher in frisée endives) suggested that sesquiterpenoid pathway control occurs at the transcriptional level. Based on correlation analyses, five transcription factors (MYB, MYB-related and WRKY) were inferred to act on contig83192/GAS and specific STL, suggesting the occurrence of two distinct routes in STL biosynthesis.
Collapse
Affiliation(s)
- Giulio Testone
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanni Mele
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Elisabetta di Giacomo
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Napoli, NA Italy
| | - Maria Gonnella
- Institute of Sciences of Food Production, CNR, Bari, Italy
| | - Chiara Nicolodi
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | | | | | | | - Donato Giannino
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
50
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|