1
|
Scaletti Hutchinson E, Martínez-Carranza M, Fu B, Mäler L, Stenmark P. Structure and membrane interactions of Arabidopsis thaliana DGD2, a glycosyltransferase in the chloroplast membrane. J Biol Chem 2025; 301:108431. [PMID: 40120685 PMCID: PMC12022483 DOI: 10.1016/j.jbc.2025.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Galactolipids are characteristic lipids of the photosynthesis membranes of higher plants and cyanobacteria. Due to their close relationship to the stability of the photosystem protein complexes, the biogenesis of galactolipids has been intensively studied on the genetic and molecular levels. There are two major types of galactolipids in chloroplastic membranes: monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG). Under phosphate-limiting conditions, the amount of DGDG increases dramatically to allow for phosphate salvage from phospholipids. In Arabidopsis thaliana, the membrane-associated glycosyltransferase digalactosyldiacylglycerol synthase 2 (atDGD2) is highly responsive to phosphate starvation and is significantly upregulated during such conditions. The lipid galactosylation reactions are also fundamentally interesting as they require a catalyst that is capable of bringing a hydrophilic and lipophilic substrate together at the solution-membrane phase border. Here, we present the X-ray crystal structure of atDGD2, which is the first reported DGDG synthase structure. AtDGD2 is most structurally similar to functionally unrelated GT-B enzymes. Interestingly, in spite of significant donor substrate binding differences, we identified four amino acids (Gly22, His151, Lys243, and Glu321, atDGD2 numbering) which were entirely conserved between the structurally similar enzymes. We also investigated the membrane interaction kinetics and membrane anchoring mechanism of atDGD2. This demonstrated that atDGD2 is membrane-bound but also showed that membrane binding is highly dynamic. Furthermore, our structural information in context of previous biophysical studies highlights regions of the enzyme exhibiting a high degree of structural plasticity, which we propose to be important for allowing atDGD2 to quickly adapt its activity based on the membrane lipid environment.
Collapse
Affiliation(s)
| | | | - Biao Fu
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
2
|
Yuan Y, Zeng W. An Overview of Multifaceted Applications and the Future Prospects of Glyceroglycolipids in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39373652 DOI: 10.1021/acs.jafc.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glyceroglycolipids (GGLs) are a class of lipid molecules that contain a glycerol backbone and one or more carbohydrate moieties, giving them amphipathic properties with both hydrophilic and hydrophobic regions. This amphipathic nature is fundamental for composing cell membrane lipid bilayers. These compounds are primarily distributed on the inner chloroplast membranes of plants and exhibit a unique structure with numerous biological activities. Moreover, GGLs play a pivotal role in photosynthesis and energy conversion in plants and effectively respond to environmental stressors. This Review discusses the distribution, synthesis pathways, and functions of GGLs in plants and describes the recent updates on various methods for extracting, isolating, and identifying GGLs. Finally, this Review discusses the biological activities of plant GGLs, including their anti-inflammatory, antiviral, and anticancer properties, and highlights their potential applications in the fields of pharmaceuticals, food, and cosmetics. This Review provides insights into GGLs, offering research support for the application of these natural molecules in the realm of holistic health.
Collapse
|
3
|
Striesow J, Welle M, Busch LM, Bekeschus S, Wende K, Stöhr C. Hypoxia increases triacylglycerol levels and unsaturation in tomato roots. BMC PLANT BIOLOGY 2024; 24:909. [PMID: 39350052 PMCID: PMC11441241 DOI: 10.1186/s12870-024-05578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Plants are designed to endure stress, but increasingly extreme weather events are testing the limits. Events like flooding result in submergence of plant organs, triggering an energy crisis due to hypoxia and threaten plant growth and productivity. Lipids are relevant as building blocks and energy vault and are substantially intertwined with primary metabolism, making them an ideal readout for plant stress. RESULTS By high resolution mass spectrometry, a distinct, hypoxia-related lipid composition of Solanum lycopersicum root tissue was observed. Out of 491 lipid species, 11 were exclusively detected in this condition. Among the lipid classes observed, glycerolipids and glycerophospholipids dominated by far (78%). Differences between the lipidomic profiles of both analyzed conditions were significantly driven by changes in the abundance of triacylglycerols (TGs) whereas sitosterol esters, digalactosyldiacylglycerols, and phosphatidylcholine play a significantly negligible role in separation. Alongside, an increased level of polyunsaturation was observed in the fatty acid chains, with 18:2 and 18:3 residues showing a significant increase. Of note, hexadecatetraenoic acid (16:4) was identified in hypoxia condition samples. Changes in gene expression of enzymes related to lipid metabolism corroborate the above findings. CONCLUSION To our knowledge, this is the first report on a hypoxia-induced increase in TG content in tomato root tissue, closing a knowledge gap in TG abiotic stress response. The results suggest that the increase in TGs and TG polyunsaturation degree are common features of hypoxic response in plant roots.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Marcel Welle
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany.
| | - Larissa Milena Busch
- Department of Functional Genomics, Greifswald University Medical Center, Felix-Hausdorff- Str. 8, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Christine Stöhr
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany
| |
Collapse
|
4
|
Yang SY, Lin WY, Hsiao YM, Chiou TJ. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. THE PLANT CELL 2024; 36:1504-1523. [PMID: 38163641 PMCID: PMC11062440 DOI: 10.1093/plcell/koad326] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Yi Lin
- Department of Agronomy, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Min Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
5
|
Li J, Kong D, Song T, Hu Z, Li Q, Xiao B, Kessler F, Zhang Z, Xie G. OsFBN7-OsKAS I module promotes formation of plastoglobules clusters in rice chloroplasts. THE NEW PHYTOLOGIST 2023. [PMID: 37366020 DOI: 10.1111/nph.19081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plastoglobules (PGs) contiguous with the outer leaflets of thylakoid membranes regulate lipid metabolism, plastid developmental transitions, and responses to environmental stimuli. However, the function of OsFBN7, a PG-core fibrillin gene in rice, has not been elucidated. Using molecular genetics and physiobiochemical approaches, we observed that OsFBN7 overexpression promoted PG clustering in rice chloroplasts. OsFBN7 interacted with two KAS I enzymes, namely OsKAS Ia and OsKAS Ib, in rice chloroplasts. Lipidomic analysis of chloroplast subcompartments, including PGs in the OsFBN7 overexpression lines, confirmed that levels of diacylglycerol (DAG), a chloroplast lipid precursor and monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the main chloroplast membrane lipids, were increased in PGs and chloroplasts. Furthermore, OsFBN7 enhanced the abundances of OsKAS Ia/Ib in planta and their stability under oxidative and heat stresses. In addition, RNA sequencing and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses showed that the expression of the DAG synthetase gene PAP1 and MGDG synthase gene MDG2 was upregulated by OsFBN7. In conclusion, this study proposes a new model in which OsFBN7 binds to OsKAS Ia/Ib in chloroplast and enhances their abundance and stability, thereby regulating the chloroplast and PG membrane lipids involved in the formation of PG clusters.
Collapse
Affiliation(s)
- Jiajia Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongyan Kong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhu Hu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Benze Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchatel, Neuchatel, 2000, Switzerland
| | - Zhengfeng Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Gao S, Guo R, Liu Z, Hu Y, Guo J, Sun M, Shi L. Integration of the transcriptome and metabolome reveals the mechanism of resistance to low phosphorus in wild soybean seedling leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:406-417. [PMID: 36493589 DOI: 10.1016/j.plaphy.2022.11.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plant growth, development, yield and quality are limited by barren soil. Soil phosphorus deficiency is one of the common factors causing soil barrenness. Plants have evolved morphological, physiological and molecular adaptations to resist to phosphorus deficiency. Wild soybean, a wild relative of cultivated soybean, has an obvious genetic relationship with cultivated soybean and has many beneficial characteristics such as strong low phosphorus resistance. Therefore, in this study, the integration analysis of transcriptome and metabolome of wild and cultivated soybean seedlings leaves were applied under phosphorus deficiency to reveal the mechanism of resistance to low phosphorus stress in wild soybean leaves, especially the key role of membrane phospholipid reuse and protection. Under phosphorus deficiency, wild soybean resisted low phosphorus stress by enhancing phosphorus reuse and strengthening membrane protection mechanisms, that is, by enhancing phospholipid metabolism, degrading membrane phospholipids, releasing phosphorus, increasing phosphorus reuse, and enhancing galactolipid biosynthesis. This, in turn, produced digalactosyl diacylglycerol to replace missing phospholipids for membrane maintenance and enhanced glutathione metabolism to protect the membrane system from damage. At the same time, phosphorus deficiency increased the levels of the intermediate metabolites glycine and ornithine, while significantly regulating the expression of transcription factors WRKY75 and MYB86. The enhancement of these metabolic pathways and the significant regulation of gene expression play an important role in improving the low phosphorus tolerance of wild soybean. This study will provide a useful theoretical basis for breeding soybean with low phosphorus tolerance.
Collapse
Affiliation(s)
- Shujuan Gao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ziyu Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Yunan Hu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Jixun Guo
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Mingzhou Sun
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| |
Collapse
|
7
|
Sun Y, Qin Q, Song K, Sun L, Jiang T, Yang S, Li Z, Xu G, Sun S, Xue Y. Does Sulfoquinovosyl Diacylglycerol Synthase OsSQD1 Affect the Composition of Lipids in Rice Phosphate-Deprived Root? Int J Mol Sci 2022; 24:ijms24010114. [PMID: 36613553 PMCID: PMC9820689 DOI: 10.3390/ijms24010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lipids are the essential components of the cell intracellular and plasma membranes. Sulfoquinovosyldiacylglycerol (SQDG) is a glycolipid; glycolipids can replace phospholipids in maintaining phosphate (Pi) homeostasis in plants which are undergoing Pi starvation. Sulfoquinovosyl diacylglycerol synthase 1 (OsSQD1) is a critical enzyme in the first step of catalyzation in the formation of SQDG in rice. In this study, the expression pattern of different zones in roots of OsSQD1 in response to different Pi conditions is examined, and it is found that OsSQD1 is highly expressed in lateral roots under Pi-sufficient and -deficient conditions. The root phenotype observation of different OsSQD1 transgenic lines suggests that the knockout/down of OsSQD1 inhibits the formation and growth of lateral roots under different Pi conditions. Additionally, the lipid concentrations in OsSQD1 transgenic line roots indicate that OsSQD1 knockout/down decreases the concentration of phospholipids and glycolipids in Pi-starved roots. The OsSQD1 mutation also changes the composition of different lipid species with different acyl chain lengths, mainly under Pi-deprived conditions. The relative transcript expression of genes relating to glycolipid synthesis and phospholipid degradation is estimated to help study the mechanism by which OsSQD1 exerts an influence on the alteration of lipid composition and concentration in Pi-starved roots. Moreover, in Pi-starved roots, the knockout of OsSQD1 decreases the unsaturated fatty acid content of phospholipids and glycolipids. To summarize, the present study demonstrates that OsSQD1 plays a key role in the maintenance of phospholipid and glycolipid composition in Pi-deprived rice roots, which may influence root growth and development under Pi-deprived conditions.
Collapse
Affiliation(s)
- Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qin Qin
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Lijuan Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Tingting Jiang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiyan Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Zhouwen Li
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Guohua Xu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (S.S.); (Y.X.)
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Correspondence: (S.S.); (Y.X.)
| |
Collapse
|
8
|
Advances in Plant Lipid Metabolism Responses to Phosphate Scarcity. PLANTS 2022; 11:plants11172238. [PMID: 36079619 PMCID: PMC9460063 DOI: 10.3390/plants11172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Low phosphate (Pi) availability in soils severely limits crop growth and production. Plants have evolved to have numerous physiological and molecular adaptive mechanisms to cope with Pi starvation. The release of Pi from membrane phospholipids is considered to improve plant phosphorus (P) utilization efficiency in response to Pi starvation and accompanies membrane lipid remodeling. In this review, we summarize recent discoveries related to this topic and the molecular basis of membrane phospholipid alteration and triacylglycerol metabolism in response to Pi depletion in plants at different subcellular levels. These findings will help to further elucidate the molecular mechanisms underlying plant adaptation to Pi starvation and thus help to develop crop cultivars with high P utilization efficiency.
Collapse
|
9
|
Wang Z, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. PLANT PHYSIOLOGY 2021; 187:2043-2055. [PMID: 35235674 PMCID: PMC8644344 DOI: 10.1093/plphys/kiab343] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Recent research on the regulation of cellular phosphate (Pi) homeostasis in eukaryotes has collectively made substantial advances in elucidating inositol pyrophosphates (PP-InsP) as Pi signaling molecules that are perceived by the SPX (Syg1, Pho81, and Xpr1) domains residing in multiple proteins involved in Pi transport and signaling. The PP-InsP-SPX signaling module is evolutionarily conserved across eukaryotes and has been elaborately adopted in plant Pi transport and signaling systems. In this review, we have integrated these advances with prior established knowledge of Pi and PP-InsP metabolism, intracellular Pi sensing, and transcriptional responses according to the dynamics of cellular Pi status in plants. Anticipated challenges and pending questions as well as prospects are also discussed.
Collapse
Affiliation(s)
- Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Lyu J, Gao R, Guo Z. Galactosyldiacylglycerols: From a Photosynthesis-Associated Apparatus to Structure-Defined In Vitro Assembling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8910-8928. [PMID: 33793221 DOI: 10.1021/acs.jafc.1c00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Being ubiquitously present in plants, microalgae, and cyanobacteria and as the major constituents of thylakoid membranes, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) make up approximately 52 and 26%, respectively, of chloroplast lipids. Thylakoid membranes harbor the photosynthetic complexes and numerous essential biochemical pathways where MGDG and DGDG play a central role in facilitating photosynthesis light reaction, maintaining chloroplast morphology, and responding to abiotic stresses. Furthermore, these galactolipids are also bioactive compounds with antitumor, antimicrobial, antiviral, immunosuppressive, and anti-inflammatory activities and important nutritional value. These characteristics are strictly dependent upon their fatty acyl chain length, olefinic nature, and stereoconfiguration. However, their application potentials are practically untapped, largely as a result of the fact that their availability in large quantity and high purity (structured galactolipids) is challenging. In addition to laborious extraction from natural sources, in vitro assembling of these molecules could be a promising alternative. Thus, this review updates the latest advances in elucidating biosynthesis paths of MGDG and DGDG and related enzyme systems, which present invaluable inspiration to design approaches for a retrosynthesis of galactolipids. More critically, this work summarizes recent developments in the biological and enzymatic syntheses of galactolipids, especially the strategic scenarios for the construction of in vitro enzymatic and/or chemoenzymatic synthesis routes. Protein engineering of enzymes involved in the synthesis of MGDG and DGDG to improve their properties is highlighted, and the applications of galactolipids in foods and medicine are also discussed.
Collapse
Affiliation(s)
- Jiabao Lyu
- Department of Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Zheng Guo
- Department of Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Yu L, Zhou C, Fan J, Shanklin J, Xu C. Mechanisms and functions of membrane lipid remodeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:37-53. [PMID: 33853198 DOI: 10.1111/tpj.15273] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
Abstract
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chao Zhou
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
12
|
Schillaci M, Kehelpannala C, Martinez-Seidel F, Smith PMC, Arsova B, Watt M, Roessner U. The Metabolic Response of Brachypodium Roots to the Interaction with Beneficial Bacteria Is Affected by the Plant Nutritional Status. Metabolites 2021; 11:metabo11060358. [PMID: 34205012 PMCID: PMC8228974 DOI: 10.3390/metabo11060358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The potential of plant growth promoting (PGP) bacteria in improving the performance of plants in suboptimal environments is increasingly acknowledged, but little information is available on the mechanisms underlying this interaction, particularly when plants are subjected to a combination of stresses. In this study, we investigated the effects of the inoculation with the PGP bacteria Azospirillum brasilense (Azospirillum) on the metabolism of the model cereal Brachypodium distachyon (Brachypodium) grown at low temperatures and supplied with insufficient phosphorus. Investigating polar metabolite and lipid fluctuations during early plant development, we found that the bacteria initially elicited a defense response in Brachypodium roots, while at later stages Azospirillum reduced the stress caused by phosphorus deficiency and improved root development of inoculated plants, particularly by stimulating the growth of branch roots. We propose that the interaction of the plant with Azospirillum was influenced by its nutritional status: bacteria were sensed as pathogens while plants were still phosphorus sufficient, but the interaction became increasingly beneficial for the plants as their phosphorus levels decreased. Our results provide new insights on the dynamics of the cereal-PGP bacteria interaction, and contribute to our understanding of the role of beneficial microorganisms in the growth of cereal crops in suboptimal environments.
Collapse
Affiliation(s)
- Martino Schillaci
- School of BioSciences, University of Melbourne, Parkville 3010, Australia; (C.K.); (M.W.); (U.R.)
- Correspondence:
| | - Cheka Kehelpannala
- School of BioSciences, University of Melbourne, Parkville 3010, Australia; (C.K.); (M.W.); (U.R.)
| | - Federico Martinez-Seidel
- School of BioSciences, University of Melbourne, Parkville 3010, Australia; (C.K.); (M.W.); (U.R.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Penelope M. C. Smith
- Department of Animal, Plant, and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora 3086, Australia;
| | - Borjana Arsova
- Institute for Bio & Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany;
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville 3010, Australia; (C.K.); (M.W.); (U.R.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville 3010, Australia; (C.K.); (M.W.); (U.R.)
| |
Collapse
|
13
|
Yang B, Li M, Phillips A, Li L, Ali U, Li Q, Lu S, Hong Y, Wang X, Guo L. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. THE PLANT CELL 2021; 33:766-780. [PMID: 33955494 PMCID: PMC8136900 DOI: 10.1093/plcell/koaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maoyin Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Anne Phillips
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Author for correspondence: (L.G) and (X.W.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Author for correspondence: (L.G) and (X.W.)
| |
Collapse
|
14
|
Cook R, Lupette J, Benning C. The Role of Chloroplast Membrane Lipid Metabolism in Plant Environmental Responses. Cells 2021; 10:cells10030706. [PMID: 33806748 PMCID: PMC8005216 DOI: 10.3390/cells10030706] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Plants are nonmotile life forms that are constantly exposed to changing environmental conditions during the course of their life cycle. Fluctuations in environmental conditions can be drastic during both day–night and seasonal cycles, as well as in the long term as the climate changes. Plants are naturally adapted to face these environmental challenges, and it has become increasingly apparent that membranes and their lipid composition are an important component of this adaptive response. Plants can remodel their membranes to change the abundance of different lipid classes, and they can release fatty acids that give rise to signaling compounds in response to environmental cues. Chloroplasts harbor the photosynthetic apparatus of plants embedded into one of the most extensive membrane systems found in nature. In part one of this review, we focus on changes in chloroplast membrane lipid class composition in response to environmental changes, and in part two, we will detail chloroplast lipid-derived signals.
Collapse
Affiliation(s)
- Ron Cook
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
15
|
Dissanayaka DMSB, Ghahremani M, Siebers M, Wasaki J, Plaxton WC. Recent insights into the metabolic adaptations of phosphorus-deprived plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:199-223. [PMID: 33211873 DOI: 10.1093/jxb/eraa482] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Mina Ghahremani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Meike Siebers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Knaack W, Hölzl G, Gisch N. Structural Analysis of Glycosylglycerolipids Using NMR Spectroscopy. Methods Mol Biol 2021; 2295:249-272. [PMID: 34047981 DOI: 10.1007/978-1-0716-1362-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glycosylglycerolipids are essential components of plant and bacterial membranes. These lipids exert central roles in physiological processes such as photosynthesis in plants or to maintain membrane stability in bacteria. They are composed of a glycerol backbone esterified with two fatty acids at the sn-1 and sn-2 positions, and carbohydrate moieties connected via a glycosidic bond at the sn-3 position. Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technique to determine the nature of the bound carbohydrates as well as their anomeric configurations. Here we describe the analysis of intact glycosylglycerolipids by NMR spectroscopy to determine structural details of their sugar head groups without the need of chemical derivatization.
Collapse
Affiliation(s)
- Wiebke Knaack
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
17
|
Sergeeva A, Mettler‐Altmann T, Liu H, Mai H, Bauer P. Glycerolipid profile differences between perennial and annual stem zones in the perennial model plant Arabis alpina. PLANT DIRECT 2021; 5:e00302. [PMID: 33506166 PMCID: PMC7814627 DOI: 10.1002/pld3.302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The perennial life style is a successful ecological strategy, and Arabis alpina is a recently developed model Brassicaceae species for studying it. One aspect, poorly investigated until today, concerns the differing patterns of allocation, storage, and metabolism of nutrients between perennials and annuals and the yet unknown signals that regulate this process. A. alpina has a complex lateral stem architecture with a proximal vegetative perennial (PZ) and a distal annual flowering zone (AZ) inside the same stems. Lipid bodies (LBs) with triacylglycerols (TAGs) accumulate in the PZ. To identify potential processes of lipid metabolism linked with the perennial lifestyle, we analyzed lipid species in the PZ versus AZ. Glycerolipid fractions, including neutral lipids with mainly TAGs, phospholipids, and glycolipids, were present at higher levels in the PZ as compared to AZ or roots. Concomitantly, contents of specific long-chain and very long-chain fatty acids increased during formation of the PZ. Corresponding gene expression data, gene ontology term enrichment, and correlation analysis with lipid species pinpoint glycerolipid-related genes to be active during the development of the PZ. Possibilities that lipid metabolism genes may be targets of regulatory mechanisms specifying PZ differentiation in A. alpina are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
- Cluster of Excellence on Plant Science (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Tabea Mettler‐Altmann
- Cluster of Excellence on Plant Science (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
- Institute of Plant BiochemistryHeinrich Heine UniversityDüsseldorfGermany
| | - Hongjiu Liu
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
| | - Hans‐Jörg Mai
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
| | - Petra Bauer
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
- Cluster of Excellence on Plant Science (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
18
|
Apdila ET, Inoue S, Shimojima M, Awai K. Complete Replacement of the Galactolipid Biosynthesis Pathway with a Plant-Type Pathway in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2020; 61:1661-1668. [PMID: 32645152 DOI: 10.1093/pcp/pcaa090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major components of thylakoid membranes and well-conserved from cyanobacteria to chloroplasts. However, cyanobacteria and chloroplasts synthesize these galactolipids using different pathways and enzymes, but they are believed to share a common ancestor. This fact implies that there was a replacement of the cyanobacterial galactolipid biosynthesis pathway during the evolution of a chloroplast. In this study, we first replaced the cyanobacterial MGDG biosynthesis pathway in a model cyanobacterium, Synechococcus elongatus PCC 7942, with the corresponding plant-type pathway. No obvious phenotype was observed under the optimum growth condition, and the content of membrane lipids was not largely altered in the transformants. We next replaced the cyanobacterial DGDG biosynthesis pathway with the corresponding plant-type pathway using the strain described above and isolated the strain harboring the replaced plant-type pathway instead of the whole galactolipid biosynthesis pathway. This transformant, SeGPT, can grow photoautotrophically, indicating that cyanobacterial galactolipid biosynthesis pathways can be functionally complemented by the corresponding plant-type pathways and that the lipid products MGDG and DGDG, and not biosynthesis pathways, are important. While SeGPT does not show strong growth retardation, the strain has low cellular chlorophyll content but it retained a similar oxygen evolution rate per chlorophyll content compared with the wild type. An increase in total membrane lipid content was observed in SeGPT, which was caused by a significant increase in DGDG content. SeGPT accumulated carotenoids from the xanthophyll groups. These results suggest that cyanobacteria have the capacity to accept other pathways to synthesize essential components of thylakoid membranes.
Collapse
Affiliation(s)
- Egi Tritya Apdila
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Shukumi Inoue
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529 Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 Japan
- Research Institute of Electronics, Shizuoka University, Johoku-ku, Hamamatsu, 432-8561 Japan
| |
Collapse
|
19
|
Pfaff J, Denton AK, Usadel B, Pfaff C. Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158763. [DOI: 10.1016/j.bbalip.2020.158763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
|
20
|
Sahaka M, Amara S, Wattanakul J, Gedi MA, Aldai N, Parsiegla G, Lecomte J, Christeller JT, Gray D, Gontero B, Villeneuve P, Carrière F. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food Funct 2020; 11:6710-6744. [PMID: 32687132 DOI: 10.1039/d0fo01040e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galactolipids, mainly monogalactosyl diglycerides and digalactosyl diglycerides are the main lipids found in the membranes of plants, algae and photosynthetic microorganisms like microalgae and cyanobacteria. As such, they are the main lipids present at the surface of earth. They may represent up to 80% of the fatty acid stocks, including a large proportion of polyunsaturated fatty acids mainly α-linolenic acid (ALA). Nevertheless, the interest in these lipids for nutrition and other applications remains overlooked, probably because they are dispersed in the biomass and are not as easy to extract as vegetable oils from oleaginous fruit and oil seeds. Another reason is that galactolipids only represent a small fraction of the acylglycerolipids present in modern human diet. In herbivores such as horses, fish and folivorous insects, galactolipids may however represent the main source of dietary fatty acids due to their dietary habits and digestion physiology. The development of galactolipase assays has led to the identification and characterization of the enzymes involved in the digestion of galactolipids in the gastrointestinal tract, as well as by microorganisms. Pancreatic lipase-related protein 2 (PLRP2) has been identified as an important factor of galactolipid digestion in humans, together with pancreatic carboxyl ester hydrolase (CEH). The levels of PLRP2 are particularly high in monogastric herbivores thus highlighting the peculiar role of PLRP2 in the digestion of plant lipids. Similarly, pancreatic lipase homologs are found to be expressed in the midgut of folivorous insects, in which a high galactolipase activity can be measured. In fish, however, CEH is the main galactolipase involved. This review discusses the origins and fatty acid composition of galactolipids and the physiological contribution of galactolipid digestion in various species. This overlooked aspect of lipid digestion ensures not only the intake of ALA from its main natural source, but also the main lipid source of energy for growth of some herbivorous species.
Collapse
Affiliation(s)
- Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Sawsan Amara
- Lipolytech, Zone Luminy Biotech, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - John T Christeller
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - David Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
21
|
Glyceroglycolipid Metabolism Regulations under Phosphate Starvation Revealed by Transcriptome Analysis in Synechococcus elongatus PCC 7942. Mar Drugs 2020; 18:md18070360. [PMID: 32668657 PMCID: PMC7401256 DOI: 10.3390/md18070360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Glyceroglycolipids, abundant in cyanobacteria's photosynthetic membranes, present bioactivities and pharmacological activities, and can be widely used in the pharmaceutical industry. Environmental factors could alter the contents and compositions of cyanobacteria glyceroglycolipids, but the regulation mechanism remains unclear. Therefore, the glyceroglycolipids contents and the transcriptome in Synechococcus elongatus PCC 7942 were analyzed under phosphate starvation. Under phosphate starvation, the decrease of monogalactosyl diacylglycerol (MGDG) and increases of digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) led to a decrease in the MGDG/DGDG ratio, from 4:1 to 5:3, after 12 days of cultivation. However, UDP-sulfoquinovose synthase gene sqdB, and the SQDG synthase gene sqdX, were down-regulated, and the decreased MGDG/DGDG ratio was later increased back to 2:1 after 15 days of cultivation, suggesting the regulation of glyceroglycolipids on day 12 was based on the MGDG/DGDG ratio maintaining glyceroglycolipid homeostasis. There are 12 differentially expressed transcriptional regulators that could be potential candidates related to glyceroglycolipid regulation, according to the transcriptome analysis. The transcriptome analysis also suggested post-transcriptional or post-translational regulations in glyceroglycolipid synthesis. This study provides further insights into glyceroglycolipid metabolism, as well as the scientific basis for glyceroglycolipid synthesis optimization and cyanobacteria glyceroglycolipids utilization via metabolic engineering.
Collapse
|
22
|
Fu B, Brown C, Mäler L. Expression and Purification of DGD2, a Chloroplast Outer Membrane-Associated Glycosyltransferase for Galactolipid Synthesis. Biochemistry 2020; 59:999-1009. [PMID: 32067450 DOI: 10.1021/acs.biochem.0c00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galactolipids are characteristic lipids of the photosynthetic membranes. They are highly enriched in the chloroplast and are present in photosystem structures. There are two major types of galactolipids, i.e., monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG) in chloroplastic membranes, which amount to ∼50 and ∼20 mol % of the total chloroplast lipids, respectively. Under phosphate-limiting conditions, the amount of DGDG increases dramatically for rescuing phosphate from phospholipids. In Arabidopsis thaliana, the gene digalactosyldiacylglycerol synthase 2 (DGD2) encodes a membrane-associated glycosyltransferase. The gene expression is highly responsive to phosphate starvation and is significantly upregulated in this case. To understand the molecular mechanism of DGD2, we established a protocol for DGD2 expression and purification in an Escherichia coli-based system. The work involved optimization of the expression condition and the purification protocol and a careful selection of buffer additives. It was found that a removal of around 70 C-terminal residues was necessary to produce a homogeneous monomeric protein sample with high purity, which was highly active. The purified sample was characterized by an activity assay for enzyme kinetics in which a range of membrane mimetics with different lipid compositions were used. The results demonstrate that DGD2 activity is stimulated by the presence of negatively charged lipids, which highlight the importance of the membrane environment in modulating the enzyme's activity. The study also paves way for future biophysical and structural studies of the enzyme.
Collapse
Affiliation(s)
- Biao Fu
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Christian Brown
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| |
Collapse
|
23
|
Mazur R, Mostowska A, Szach J, Gieczewska K, Wójtowicz J, Bednarska K, Garstka M, Kowalewska Ł. Galactolipid deficiency disturbs spatial arrangement of the thylakoid network in Arabidopsis thaliana plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4689-4704. [PMID: 31087066 DOI: 10.1093/jxb/erz219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The chloroplast thylakoid network is a dynamic structure which, through possible rearrangements, plays a crucial role in regulation of photosynthesis. Although the importance of the main components of the thylakoid membrane matrix, galactolipids, in the formation of the network of internal plastid membrane was found before, the structural role of monogalactosyldiacylglycerol (MGDG) and digalactosylidacylglycerol (DGDG) is still largely unknown. We elucidated detailed structural modifications of the thylakoid membrane system in Arabidopsis thaliana MGDG- and DGDG-deficient mutants. An altered MGDG/DGDG ratio was structurally reflected by formation of smaller grana, local changes in grana stacking repeat distance, and significant changes in the spatial organization of the thylakoid network compared with wild-type plants. The decrease of the MGDG level impaired the formation of the typical helical grana structure and resulted in a 'helical-dichotomic' arrangement. DGDG deficiency did not affect spatial grana organization but changed the shape of the thylakoid membrane network in situ from lens like into a flattened shape. Such structural disturbances were accompanied by altered composition of carotenoid and chlorophyll-protein complexes, which eventually led to the decreased photosynthetic efficiency of MGDG- and DGDG-deficient plants.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Joanna Szach
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Katarzyna Bednarska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| |
Collapse
|
24
|
Murakawa M, Ohta H, Shimojima M. Lipid remodeling under acidic conditions and its interplay with low Pi stress in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 101:81-93. [PMID: 31201686 PMCID: PMC6695348 DOI: 10.1007/s11103-019-00891-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Here we show that accumulation of galactose-containing lipids in plastid membranes in shoots and the other membranes in roots maintains Arabidopsis growth under acidic stress and acidic phosphate deficiency. Soil acidification and phosphate deficiency are closely related to each other in natural environments. In addition to the toxicity of high proton concentrations, acid soil can lead to imbalances of ion availability and nutritional deficiencies, including inorganic phosphate (Pi). Among plants, activation of non-phosphorus-containing galactolipid, digalactosyldiacylglycerol (DGDG), synthesis concomitant with phospholipid degradation, namely membrane lipid remodeling, is crucial for coping with Pi starvation. However, regulation mechanisms of membrane lipid composition during acidic stress have not been clarified. Here, we investigated lipid metabolism in Arabidopsis thaliana grown under acidic stress with or without Pi. Under Pi-sufficient acidic conditions, DGDG was increased in shoot membranes, and some Pi starvation-responsive genes that are involved in lipid remodeling were upregulated without reducing Pi content in leaves. In contrast, under acidic Pi deficiency, membrane lipid remodeling in roots was partially repressed at a lower external pH. Nevertheless, phenotypic comparison between wild type and the double mutant of MGD2/3, which are responsible for DGDG accumulation during Pi starvation, indicated that the complete absence of lipid remodeling in roots resulted in a loss of tolerance to Pi deficiency rather specifically under acidic conditions. This result suggested important physiological roles of galactolipid-enriched membranes under acidic Pi deficiency.
Collapse
Affiliation(s)
- Masato Murakawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
25
|
Si Z, Yang Q, Liang R, Chen L, Chen D, Li Y. Digalactosyldiacylglycerol Synthase Gene MtDGD1 Plays an Essential Role in Nodule Development and Nitrogen Fixation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1196-1209. [PMID: 30986120 DOI: 10.1094/mpmi-11-18-0322-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.
Collapse
Affiliation(s)
- Zaiyong Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qianqian Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rongrong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
26
|
Basnet R, Hussain N, Shu Q. OsDGD2β is the Sole Digalactosyldiacylglycerol Synthase Gene Highly Expressed in Anther, and its Mutation Confers Male Sterility in Rice. RICE (NEW YORK, N.Y.) 2019; 12:66. [PMID: 31414258 PMCID: PMC6694320 DOI: 10.1186/s12284-019-0320-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/29/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Digalactosyldiacylglycerol (DGDG) is one of the major lipids found predominantly in the photosynthetic membrane of cyanobacteria, eukaryotic algae and higher plants. DGDG, along with MGDG (Monogalactosyldiacylglycerol), forms the matrix in thylakoid membrane of chloroplast, providing the site for photochemical and electron transport reactions of oxygenic photosynthesis. RESULTS In silico analysis reveals that rice (Oryza sativa L.) genome has 5 genes encoding DGDG synthase, which are differentially expressed in different tissues, and OsDGD2β was identified to be the sole DGDG synthase gene expressed in anther. We then developed osdgd2β mutants by using the CRISPR/Cas9 system and elucidate its role, especially in the development of anther and pollen. The loss of function of OsDGD2β resulted in male sterility in rice characterized by pale yellow and shrunken anther, devoid of starch granules in pollen, and delayed degeneration of tapetal cells. The total fatty acid and DGDG content in the anther was reduced by 18.66% and 22.72% in osdgd2β, affirming the importance of DGDG in the development of anther. The mutants had no notable differences in the vegetative phenotype, as corroborated by relative gene expression of DGDG synthase genes in leaves, chlorophyll measurements, and analysis of photosynthetic parameters, implying the specificity of OsDGD2β in anther. CONCLUSION Overall, we showed the importance of DGDG in pollen development and loss of function of OsDGD2β results in male sterility. Here, we have also proposed the use of OsDGD2β in hybrid rice breeding using the nuclear male sterility system.
Collapse
Affiliation(s)
- Rasbin Basnet
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
- Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, 434025 Hubei China
| | - Nazim Hussain
- Zhejiang Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
- Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, 434025 Hubei China
- Zhejiang Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
27
|
Li L, Lavell A, Meng X, Berkowitz O, Selinski J, van de Meene A, Carrie C, Benning C, Whelan J, De Clercq I, Wang Y. Arabidopsis DGD1 SUPPRESSOR1 Is a Subunit of the Mitochondrial Contact Site and Cristae Organizing System and Affects Mitochondrial Biogenesis. THE PLANT CELL 2019; 31:1856-1878. [PMID: 31118221 PMCID: PMC6713299 DOI: 10.1105/tpc.18.00885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 05/04/2023]
Abstract
Mitochondrial and plastid biogenesis requires the biosynthesis and assembly of proteins, nucleic acids, and lipids. In Arabidopsis (Arabidopsis thaliana), the mitochondrial outer membrane protein DGD1 SUPPRESSOR1 (DGS1) is part of a large multi-subunit protein complex that contains the mitochondrial contact site and cristae organizing system 60-kD subunit, the translocase of outer mitochondrial membrane 40-kD subunit (TOM40), the TOM20s, and the Rieske FeS protein. A point mutation in DGS1, dgs1-1, altered the stability and protease accessibility of this complex. This altered mitochondrial biogenesis, mitochondrial size, lipid content and composition, protein import, and respiratory capacity. Whole plant physiology was affected in the dgs1-1 mutant as evidenced by tolerance to imposed drought stress and altered transcriptional responses of markers of mitochondrial retrograde signaling. Putative orthologs of Arabidopsis DGS1 are conserved in eukaryotes, including the Nuclear Control of ATP Synthase2 (NCA2) protein in yeast (Saccharomyces cerevisiae), but lost in Metazoa. The genes encoding DGS1 and NCA2 are part of a similar coexpression network including genes encoding proteins involved in mitochondrial fission, morphology, and lipid homeostasis. Thus, DGS1 links mitochondrial protein and lipid import with cellular lipid homeostasis and whole plant stress responses.
Collapse
Affiliation(s)
- Lu Li
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Anastasiya Lavell
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xiangxiang Meng
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | | | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Großhadernerstrasse 2-4, Planegg-Martinsried, 82152, Germany
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
28
|
Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog Lipid Res 2019; 75:100990. [DOI: 10.1016/j.plipres.2019.100990] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
|
29
|
Abstract
Chloroplasts contain high amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and low levels of the anionic lipids sulfoquinovosyldiacylglycerol (SQDG), phosphatidylglycerol (PG), and glucuronosyldiacylglycerol (GlcADG). The mostly extraplastidial lipid phosphatidylcholine is found only in the outer envelope. Chloroplasts are the major site for fatty acid synthesis. In Arabidopsis, a certain proportion of glycerolipids is entirely synthesized in the chloroplast (prokaryotic lipids). Fatty acids are also exported to the endoplasmic reticulum and incorporated into lipids that are redistributed to the chloroplast (eukaryotic lipids). MGDG, DGDG, SQDG, and PG establish the thylakoid membranes and are integral constituents of the photosynthetic complexes. Phosphate deprivation induces phospholipid degradation accompanied by the increase in DGDG, SQDG, and GlcADG. During freezing and drought stress, envelope membranes are stabilized by the conversion of MGDG into oligogalactolipids. Senescence and chlorotic stress lead to lipid and chlorophyll degradation and the deposition of acyl and phytyl moieties as fatty acid phytyl esters.
Collapse
Affiliation(s)
- Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| |
Collapse
|
30
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
32
|
Dissanayaka DMSB, Plaxton WC, Lambers H, Siebers M, Marambe B, Wasaki J. Molecular mechanisms underpinning phosphorus-use efficiency in rice. PLANT, CELL & ENVIRONMENT 2018; 41:1483-1496. [PMID: 29520969 DOI: 10.1111/pce.13191] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 05/18/2023]
Abstract
Orthophosphate (H2 PO4- , Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture. We urgently need alternative and more sustainable approaches to decrease agriculture's dependence on Pi fertilizers. These include manipulating crops by (a) enhancing the ability of their roots to acquire limiting Pi from the soil (i.e. increased P-acquisition efficiency) and/or (b) increasing the total biomass/yield produced per molecule of Pi acquired from the soil (i.e. increased P-use efficiency). Improved P-use efficiency may be achieved by producing high-yielding plants with lower P concentrations or by improving the remobilization of acquired P within the plant so as to maximize growth and biomass allocation to developing organs. Membrane lipid remodelling coupled with hydrolysis of RNA and smaller P-esters in senescing organs fuels P remobilization in rice, the world's most important cereal crop.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-, Hiroshima, 739-8521, Japan
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - William C Plaxton
- Department of Biology and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Meike Siebers
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Buddhi Marambe
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-, Hiroshima, 739-8521, Japan
| |
Collapse
|
33
|
Rocha J, Nitenberg M, Girard-Egrot A, Jouhet J, Maréchal E, Block MA, Breton C. Do Galactolipid Synthases Play a Key Role in the Biogenesis of Chloroplast Membranes of Higher Plants? FRONTIERS IN PLANT SCIENCE 2018; 9:126. [PMID: 29472943 PMCID: PMC5809773 DOI: 10.3389/fpls.2018.00126] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 05/17/2023]
Abstract
A unique feature of chloroplasts is their high content of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute up to 80% of their lipids. These galactolipids are synthesized in the chloroplast envelope membrane through the concerted action of galactosyltransferases, the so-called 'MGDG synthases (MGDs)' and 'DGDG synthases (DGDs),' which use uridine diphosphate (UDP)-galactose as donor. In Arabidopsis leaves, under standard conditions, the enzymes MGD1 and DGD1 provide the bulk of galactolipids, necessary for the massive expansion of thylakoid membranes. Under phosphate limited conditions, plants activate another pathway involving MGD2/MGD3 and DGD2 to provide additional DGDG that is exported to extraplastidial membranes where they partly replace phospholipids, a phosphate-saving mechanism in plants. A third enzyme system, which relies on the UDP-Gal-independent GGGT (also called SFR2 for SENSITIVE TO FREEZING 2), can be activated in response to a freezing stress. The biosynthesis of galactolipids by these multiple enzyme sets must be tightly regulated to meet the cellular demand in response to changing environmental conditions. The cooperation between MGD and DGD enzymes with a possible substrate channeling from diacylglycerol to MGDG and DGDG is supported by biochemical and biophysical studies and mutant analyses reviewed herein. The fine-tuning of MGDG to DGDG ratio, which allows the reversible transition from the hexagonal II to lamellar α phase of the lipid bilayer, could be a key factor in thylakoid biogenesis.
Collapse
Affiliation(s)
- Joana Rocha
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
| | - Milène Nitenberg
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
| | | | - Juliette Jouhet
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Eric Maréchal
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Maryse A. Block
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Christelle Breton
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
- *Correspondence: Christelle Breton,
| |
Collapse
|
34
|
Angkawijaya AE, Nakamura Y. Arabidopsis PECP1 and PS2 are phosphate starvation-inducible phosphocholine phosphatases. Biochem Biophys Res Commun 2017; 494:397-401. [DOI: 10.1016/j.bbrc.2017.09.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
35
|
Lipid turnover between membrane lipids and neutral lipids via inhibition of diacylglyceryl N,N,N-trimethylhomoserine synthesis in Chlamydomonas reinhardtii. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Angkawijaya AE, Nguyen VC, Nakamura Y. Enhanced root growth in phosphate-starved Arabidopsis by stimulating de novo phospholipid biosynthesis through the overexpression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2). PLANT, CELL & ENVIRONMENT 2017; 40:1807-1818. [PMID: 28548242 DOI: 10.1111/pce.12988] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/28/2017] [Indexed: 05/04/2023]
Abstract
Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non-phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid-to-galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum-localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2-overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation.
Collapse
Affiliation(s)
- Artik Elisa Angkawijaya
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Van Cam Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
37
|
Lim GH, Singhal R, Kachroo A, Kachroo P. Fatty Acid- and Lipid-Mediated Signaling in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:505-536. [PMID: 28777926 DOI: 10.1146/annurev-phyto-080516-035406] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fatty acids and lipids, which are major and essential constituents of all plant cells, not only provide structural integrity and energy for various metabolic processes but can also function as signal transduction mediators. Lipids and fatty acids can act as both intracellular and extracellular signals. In addition, cyclic and acyclic products generated during fatty acid metabolism can also function as important chemical signals. This review summarizes the biosynthesis of fatty acids and lipids and their involvement in pathogen defense.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Richa Singhal
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| |
Collapse
|
38
|
Hsueh YC, Ehmann C, Flinner N, Ladig R, Schleiff E. The plastid outer membrane localized LPTD1 is important for glycerolipid remodelling under phosphate starvation. PLANT, CELL & ENVIRONMENT 2017; 40:1643-1657. [PMID: 28433003 DOI: 10.1111/pce.12973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Glycerolipid synthesis in plants is coordinated between plastids and the endoplasmic reticulum (ER). A central step within the glycerolipid synthesis is the transport of phosphatidic acid from ER to chloroplasts. The chloroplast outer envelope protein TGD4 belongs to the LptD family conserved in bacteria and plants and selectively binds and may transport phosphatidic acid. We describe a second LptD-family protein in A. thaliana (atLPTD1; At2g44640) characterized by a barrel domain with an amino-acid signature typical for cyanobacterial LptDs. It forms a cation selective channel in vitro with a diameter of about 9 Å. atLPTD1 levels are induced under phosphate starvation. Plants expressing an RNAi construct against atLPTD1 show a growth phenotype under normal conditions. Expressing the RNAi against atLPTD1 in the tgd4-1 background renders the plants more sensitive to light stress or phosphate limitation than the individual mutants. Moreover, lipid analysis revealed that digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol levels remain constant in the RNAi mutants under phosphate starvation, while these two lipids are enhanced in wild-type. Based on our results, we propose a function of atLPTD1 in the transport of lipids from ER to chloroplast under phosphate starvation, which is combinatory with the function of TGD4.
Collapse
Affiliation(s)
- Yi-Ching Hsueh
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Department of Physics, Syracuse University, 201 Physics Bldg., Syracuse, New York, NY, 13244-1130, USA
| | - Christian Ehmann
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Nadine Flinner
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438, Frankfurt am Main, Germany
| | - Roman Ladig
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Buchman Institute of Molecular Life Sciences, Goethe University, Max von Laue Str. 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Yoshitake Y, Sato R, Madoka Y, Ikeda K, Murakawa M, Suruga K, Sugiura D, Noguchi K, Ohta H, Shimojima M. Arabidopsis Phosphatidic Acid Phosphohydrolases Are Essential for Growth under Nitrogen-Depleted Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1847. [PMID: 29163579 PMCID: PMC5671605 DOI: 10.3389/fpls.2017.01847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 05/04/2023]
Abstract
The Arabidopsis homologs of mammalian lipin, PAH1 and PAH2, are cytosolic phosphatidic acid phosphohydrolases that are involved in phospholipid biosynthesis and are essential for growth under phosphate starvation. Here, pah1 pah2 double-knockout mutants were found to be hypersensitive to nitrogen (N) starvation, whereas transgenic plants overexpressing PAH1 or PAH2 in the pah1 pah2 mutant background showed a similar growth phenotype as compared with wild type (WT) under N starvation. The chlorophyll content of pah1 pah2 was significantly lower than that of WT, whereas the chlorophyll content and photosynthetic activity of the transgenic plants were significantly higher than those of WT under N-depleted conditions. Membrane glycerolipid composition of the pah1 pah2 mutants showed a significant decrease in the mole percent of chloroplast lipids to other phospholipids, whereas membrane lipid composition did not differ between transgenic plants and WT plants. Pulse-chase labeling experiments using plants grown under N-depleted conditions showed that, in pah1 pah2 plants, the labeling percent of chloroplast lipids such as phosphatidylglycerol and monogalactosyldiacylglycerol in the total glycerolipids was significantly lower than in WT. Moreover, N starvation-induced degradation of chloroplast structure was enhanced in pah1 pah2 mutants, and the membrane structure was recovered by complementation with PAH1. Thus, PAH is involved in maintaining chloroplast membrane structure and is required for growth under N-depleted conditions.
Collapse
Affiliation(s)
- Yushi Yoshitake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryoichi Sato
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuka Madoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Keiko Ikeda
- Biomaterial Analysis Center, Technical Department, Tokyo Institute of Technology, Yokohama, Japan
| | - Masato Murakawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ko Suruga
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Daisuke Sugiura
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Mie Shimojima,
| |
Collapse
|
40
|
Botella C, Jouhet J, Block MA. Importance of phosphatidylcholine on the chloroplast surface. Prog Lipid Res 2017; 65:12-23. [DOI: 10.1016/j.plipres.2016.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
|
41
|
Okazaki Y, Takano K, Saito K. Lipidomic analysis of soybean leaves revealed tissue-dependent difference in lipid remodeling under phosphorus-limited growth conditions. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:57-63. [PMID: 31275009 PMCID: PMC6543699 DOI: 10.5511/plantbiotechnology.17.0113a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/13/2017] [Indexed: 05/05/2023]
Abstract
Lipid remodeling in soybean under phosphorus (P)-limitation stress was investigated via lipidomic analysis. Principle component analysis of lipidome data from plants with 4 unfolded trifoliate leaves revealed that each leaf responded to P-limitation stress differently. Upon P limitation, a substantial decrease in phospholipids was observed particularly in the 1st and 2nd trifoliate leaves, while 3rd, and especially 4th, trifoliate leaves showed lipid profiles similar to those from control plants grown under P sufficiency. Under P-limited conditions, non-phosphorus glycoglycerolipid, glucuronosyldiacylglycerol (GlcADG), significantly increased in the 1st and 2nd trifoliate leaves. The levels of some other non-phosphorus glycoglycerolipids, including monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol (SQDG), were elevated under P-limited growth conditions, while there were only slight changes in the total levels of these lipid classes upon P limitation. These results indicate that the lipid metabolic pathway in tissues of soybean plants does not uniformly respond to P-limitation stress, where lipid remodeling is very active in older leaves and phosphate appears to be preferentially remobilized to the younger tissues under P-limited conditions.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohamam, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- E-mail: Tel: +81-45-503-9442 Fax: +81-45-503-9489
| | - Kouji Takano
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohamam, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohamam, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
42
|
Szpryngiel S, Mäler L. Insights into the Membrane Interacting Properties of the C-Terminal Domain of the Monotopic Glycosyltransferase DGD2 in Arabidopsis thaliana. Biochemistry 2016; 55:6776-6786. [PMID: 27951648 DOI: 10.1021/acs.biochem.6b00559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosyltransferases (GTs) are responsible for regulating the membrane composition of plants. The synthesis of one of the main lipids in the membrane, the galactolipid digalactosyldiacylglycerol, is regulated by the enzyme digalactosyldiacylglycerol synthase 2 (atDGD2) under starving conditions, such as phosphate shortage. The enzyme belongs to the GT-B fold, characterized by two β/α/β Rossmann domains that are connected by a flexible linker. atDGD2 has previously been shown to attach to lipid membranes by the N-terminal domain via interactions with negatively charged lipids. The role of the C-terminal domain in the membrane interaction is, however, not known. Here we have used a combination of in silico prediction methods and biophysical experimental techniques to shed light on the membrane interacting properties of the C-terminal domain. Our results demonstrate that there is an amphipathic sequence, corresponding to residues V240-E258, that interacts with lipids in a charge-dependent way. A second sequence was identified as being potentially important, with a high charge density, but no amphipathic character. The features of the plant atDGD2 observed here are similar in prokaryotic glycosyltransferases. On the basis of our results, and by analogy to other glycosyltransferases, we propose that atDGD2 interacts with the membrane through the N-terminus and with parts of the C-terminus acting as a switch, allowing for a dynamic interaction with the membrane.
Collapse
Affiliation(s)
- Scarlett Szpryngiel
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden
| |
Collapse
|
43
|
Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2016; 113:10714-9. [PMID: 27601658 DOI: 10.1073/pnas.1609184113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes.
Collapse
|
44
|
Kobayashi K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. JOURNAL OF PLANT RESEARCH 2016; 129:565-580. [PMID: 27114097 PMCID: PMC5897459 DOI: 10.1007/s10265-016-0827-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/13/2016] [Indexed: 05/19/2023]
Abstract
The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
45
|
Hori K, Nobusawa T, Watanabe T, Madoka Y, Suzuki H, Shibata D, Shimojima M, Ohta H. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1294-1308. [PMID: 27108062 DOI: 10.1016/j.bbalip.2016.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 01/25/2023]
Abstract
In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Koichi Hori
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Takashi Nobusawa
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Tei Watanabe
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa 226-8501, Japan
| | - Yuka Madoka
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mie Shimojima
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hiroyuki Ohta
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan; Tokyo Institute of Technology, Earth-Life Science Institute, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
46
|
Maida E, Awai K. Digalactosyldiacylglycerol is essential in Synechococcus elongatus PCC 7942, but its function does not depend on its biosynthetic pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1309-1314. [PMID: 26979760 DOI: 10.1016/j.bbalip.2016.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
Digalactosyldiacylglycerol (DGDG) is a major component of thylakoid membranes, occupying approximately 20% of the membrane system. This lipid composition is conserved from cyanobacteria to the chloroplasts of terrestrial plants, suggesting that DGDG is important for the function of photosynthetic membranes. Here we isolated the gene for DGDG synthase in the cyanobacterium Synechococcus elongatus PCC 7942 (7942dgdA) and found that this gene is essential for this species. 7942dgdA could be knocked out only when genes for cyanobacterial or plant DGDG synthases were expressed, indicating that the important factor was not the specific synthetic pathway but the lipid product. Lack of DGDG could not be compensated by the other membrane lipids in S. elongatus PCC 7942 or by glucosylgalactosyldiacylglycerol synthesized by the β-GlcT gene of Chloroflexus aurantiacus. These results reveal that DGDG has an indispensable role in S. elongatus PCC 7942 and that the second galactose molecule is key. Conservation and distribution of the galactolipid synthetic pathway among oxygenic phototrophs is discussed. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Eri Maida
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
47
|
Abstract
Cyanobacteria carry out oxygenic photosynthesis and share many features with chloroplasts, including thylakoid membranes, which are mainly composed of membrane lipids and protein complexes that mediate photosynthetic electron transport. Although the functions of the various thylakoid protein complexes have been well characterized, the details underlying the biogenesis of thylakoid membranes remain unclear. Galactolipids are the major constituents of the thylakoid membrane system, and all the genes involved in galactolipid biosynthesis were recently identified. In this chapter, I summarize recent advances in our understanding of the factors involved in thylakoid development, including regulatory proteins and enzymes that mediate lipid biosynthesis.
Collapse
Affiliation(s)
- Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
48
|
Abstract
Thylakoid membranes in cyanobacterial cells and chloroplasts of algae and higher plants are the sites of oxygenic photosynthesis. The lipid composition of the thylakoid membrane is unique and highly conserved among oxygenic photosynthetic organisms. Major lipids in thylakoid membranes are glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and the phospholipid, phosphatidylglycerol. The identification of almost all genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that these lipids play important roles not only in the formation of the lipid bilayers of thylakoid membranes but also in the folding and assembly of the protein subunits in photosynthetic complexes. In addition to the studies with the mutants, recent X-ray crystallography studies of photosynthetic complexes in thylakoid membranes have also provided critical information on the association of lipids with photosynthetic complexes and their activities. In this chapter, we summarize our current understanding about the structural and functional involvement of thylakoid lipids in oxygenic photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kaichiro Endo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
49
|
Abstract
Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).
Collapse
Affiliation(s)
- Barbara Kalisch
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany.
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| |
Collapse
|
50
|
Nakamura Y. Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 2015; 60:17-29. [DOI: 10.1016/j.plipres.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
|