1
|
Gusain S, Mishra CB, Yadav K, Sharma M, Saluja D, Tiwari M. Development of carbazole-based molecules for inhibition of mutant hSOD1 protein aggregation in Amyotrophic Lateral Sclerosis. Bioorg Med Chem 2025; 120:118091. [PMID: 39914221 DOI: 10.1016/j.bmc.2025.118091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by the loss of upper and lower motor neurons. Cu/Zn superoxide dismutase (SOD1) is one of the genes associated with the familial form of the disease (fALS). The mechanism of neuron degeneration by SOD1 is not clear, it is hypothesised that there is a toxic gain of function in the protein which leads to the downstream effects. In the present study, carbazole-based molecules have been rationally designed and synthesised as potential inhibitors of mutant hSOD1 protein aggregation. SG-9 and SG-10 prevented the aggregation of all three purified mutant hSOD1 proteins. Transmission electron microscopy and dynamic light scattering experiments also revealed that co-incubation of SG-9 and SG-10 with mutant hSOD1 protein resulted in smaller and slender fibril forming. Molecules SG-9 and SG-10 did not display toxicity and prevented Neuro-2a cells expressing hSOD1 G85R protein from its associated cytotoxicity. SG-9 and SG-10 were also able to prevent the transfected cells from apoptosis and were also able to reduce ROS levels associated with hSOD1 G85R protein aggregation significantly. Therefore, novel carbazole derivatives SG-9 and SG-10 proved to be effective inhibitors of mutant hSOD1 protein aggregation and can be further utilised as lead molecules for the amelioration of mutant hSOD1 aggregation-associated ALS.
Collapse
Affiliation(s)
- Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007 India
| | - Chandra Bhushan Mishra
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007 India; Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kajal Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007 India
| | - Meenakshi Sharma
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007 India
| | - Daman Saluja
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007 India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007 India.
| |
Collapse
|
2
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2025; 82:111-129. [PMID: 39056295 PMCID: PMC11762371 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Günther R, Pal A, Williams C, Zimyanin VL, Liehr M, von Neubeck C, Krause M, Parab MG, Petri S, Kalmbach N, Marklund SL, Sterneckert J, Munch Andersen P, Wegner F, Gilthorpe JD, Hermann A. Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS. Cells 2022; 11:cells11071246. [PMID: 35406813 PMCID: PMC8997900 DOI: 10.3390/cells11071246] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Little is known about the early pathogenic events by which mutant superoxide dismutase 1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a major barrier to the development and evaluation of efficient therapies. Although protein aggregation is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneurons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the clinical relevance of SOD1 overexpression models remains questionable. We used a human induced pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs. Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition, it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphology with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1 iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs, whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro, our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches for SOD1-ALS.
Collapse
Affiliation(s)
- René Günther
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| | - Arun Pal
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Vitaly L. Zimyanin
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Maria Liehr
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (C.v.N.); (M.K.)
- OncoRay—National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Clinic for Particle Therapy, West German Proton Therapy Centre Essen (WPE) gGmbH, University Medical Centre of Essen, 45147 Essen, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (C.v.N.); (M.K.)
- OncoRay—National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mrudula G. Parab
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Stefan L. Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90187 Umeå, Sweden;
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technical University Dresden, 01307 Dresden, Germany;
| | | | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Jonathan D. Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Andreas Hermann
- Translational Neurodegeneration Section, “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-4949541
| |
Collapse
|
4
|
Nojima Y. Characterization of Heat Shock Protein 60 as an Interacting Partner of Superoxide Dismutase 2 in the Silkworm, Bombyx mori, and Its Response to the Molting Hormone, 20-Hydroxyecdysone. Antioxidants (Basel) 2021; 10:antiox10091385. [PMID: 34573018 PMCID: PMC8468717 DOI: 10.3390/antiox10091385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress promotes pupation in some holometabolous insects. The levels of superoxide, a reactive oxygen species (ROS), are increased and superoxide dismutase 1 (BmSod1) and superoxide dismutase 2 (BmSod2) are decreased during metamorphic events in silkworm (Bombyx mori). These observations strongly suggest that pupation is initiated by oxidative stress via the down-regulation of BmSod1 and BmSod2. However, the molecular mechanisms underlying ROS production during metamorphic events in silkworm remain unknown. To investigate these molecular mechanisms, the peripheral proteins of BmSod1 and BmSod2 were identified and characterized using dry and wet approaches in this study. Based on the results, silkworm heat shock protein 60 (BmHsp60) was identified as an interacting partner of BmSod2, which belongs to the Fe/MnSOD family. Furthermore, the present study results showed that BmHsp60 mRNA expression levels were increased in response to oxidative stress caused by ultraviolet radiation and that BmHsp60 protein levels (but not mRNA levels) were decreased during metamorphic events, which are regulated by the molting hormone 20-hydroxyecdysone. These findings improve our understanding of the mechanisms by which holometabolous insects control ROS during metamorphosis.
Collapse
Affiliation(s)
- Yosui Nojima
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Molecular and pharmacological chaperones for SOD1. Biochem Soc Trans 2021; 48:1795-1806. [PMID: 32794552 PMCID: PMC7458393 DOI: 10.1042/bst20200318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.
Collapse
|
6
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Hervás R, Oroz J. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. Int J Mol Sci 2020; 21:ijms21239186. [PMID: 33276458 PMCID: PMC7730194 DOI: 10.3390/ijms21239186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent alterations in the proteostasis network are crucial in the progress of prevalent neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, or amyotrophic lateral sclerosis, which are characterized by the presence of insoluble protein deposits in degenerating neurons. Because molecular chaperones deter misfolded protein aggregation, regulate functional phase separation, and even dissolve noxious aggregates, they are considered major sentinels impeding the molecular processes that lead to cell damage in the course of these diseases. Indeed, members of the chaperome, such as molecular chaperones and co-chaperones, are increasingly recognized as therapeutic targets for the development of treatments against degenerative proteinopathies. Chaperones must recognize diverse toxic clients of different orders (soluble proteins, biomolecular condensates, organized protein aggregates). It is therefore critical to understand the basis of the selective chaperone recognition to discern the mechanisms of action of chaperones in protein conformational diseases. This review aimed to define the selective interplay between chaperones and toxic client proteins and the basis for the protective role of these interactions. The presence and availability of chaperone recognition motifs in soluble proteins and in insoluble aggregates, both functional and pathogenic, are discussed. Finally, the formation of aberrant (pro-toxic) chaperone complexes will also be disclosed.
Collapse
Affiliation(s)
- Rubén Hervás
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA;
| | - Javier Oroz
- Rocasolano Institute for Physical Chemistry, Spanish National Research Council (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
- Correspondence: ; Tel.: +34-915619400
| |
Collapse
|
8
|
Leyton-Jaimes MF, Ivert P, Hoeber J, Han Y, Feiler A, Zhou C, Pankratova S, Shoshan-Barmatz V, Israelson A, Kozlova EN. Empty mesoporous silica particles significantly delay disease progression and extend survival in a mouse model of ALS. Sci Rep 2020; 10:20675. [PMID: 33244084 PMCID: PMC7691331 DOI: 10.1038/s41598-020-77578-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating incurable neurological disorder characterized by motor neuron (MN) death and muscle dysfunction leading to mean survival time after diagnosis of only 2-5 years. A potential ALS treatment is to delay the loss of MNs and disease progression by the delivery of trophic factors. Previously, we demonstrated that implanted mesoporous silica nanoparticles (MSPs) loaded with trophic factor peptide mimetics support survival and induce differentiation of co-implanted embryonic stem cell (ESC)-derived MNs. Here, we investigate whether MSP loaded with peptide mimetics of ciliary neurotrophic factor (Cintrofin), glial-derived neurotrophic factor (Gliafin), and vascular endothelial growth factor (Vefin1) injected into the cervical spinal cord of mutant SOD1 mice affect disease progression and extend survival. We also transplanted boundary cap neural crest stem cells (bNCSCs) which have been shown previously to have a positive effect on MN survival in vitro and in vivo. We show that mimetic-loaded MSPs and bNCSCs significantly delay disease progression and increase survival of mutant SOD1 mice, and also that empty particles significantly improve the condition of ALS mice. Our results suggest that intraspinal delivery of MSPs is a potential therapeutic approach for the treatment of ALS.
Collapse
Affiliation(s)
- Marcel F Leyton-Jaimes
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Patrik Ivert
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden
| | - Jan Hoeber
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08, Uppsala, Sweden
| | - Yilin Han
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden
| | - Adam Feiler
- Nanologica AB, Forskargatan 20G, 151 36, Södertälje, Sweden.,Chemistry Department, KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Chunfang Zhou
- Chemistry Department, KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Stanislava Pankratova
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark.,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, The National Institute for Biotechnology in the Negev Ltd, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| | - Elena N Kozlova
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
9
|
Semmler S, Gagné M, Garg P, Pickles SR, Baudouin C, Hamon-Keromen E, Destroismaisons L, Khalfallah Y, Chaineau M, Caron E, Bayne AN, Trempe JF, Cashman NR, Star AT, Haqqani AS, Durcan TM, Meiering EM, Robertson J, Grandvaux N, Plotkin SS, McBride HM, Vande Velde C. TNF receptor-associated factor 6 interacts with ALS-linked misfolded superoxide dismutase 1 and promotes aggregation. J Biol Chem 2020; 295:3808-3825. [PMID: 32029478 DOI: 10.1074/jbc.ra119.011215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.
Collapse
Affiliation(s)
- Sabrina Semmler
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Myriam Gagné
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Pranav Garg
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sarah R Pickles
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Charlotte Baudouin
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Emeline Hamon-Keromen
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Université Pierre et Marie Curie, 75005 Paris, France
| | - Laurie Destroismaisons
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Yousra Khalfallah
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elise Caron
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Andrew N Bayne
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Neil R Cashman
- Department of Medicine (Neurology), University of British Columbia and Vancouver Coastal Health Research Institute, Brain Research Centre, Vancouver, British Columbia V6T 2B5, Canada
| | - Alexandra T Star
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
10
|
Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:53-68. [PMID: 32297211 DOI: 10.1007/978-3-030-40204-4_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein homeostasis (Proteostasis) is essential for correct and efficient protein function within the living cell. Among the critical components of the Proteostasis Network (PN) are molecular chaperones that serve widely in protein biogenesis under physiological conditions, and prevent protein misfolding and aggregation enhanced by conditions of cellular stress. For Alzheimer's, Parkinson's, Huntington's diseases and ALS, multiple classes of molecular chaperones interact with the highly aggregation-prone proteins amyloid-β, tau, α-synuclein, huntingtin and SOD1 to influence the course of proteotoxicity associated with these neurodegenerative diseases. Accordingly, overexpression of molecular chaperones and induction of the heat shock response have been shown to be protective in a wide range of animal models of these diseases. In contrast, for cancer cells the upregulation of chaperones has the undesirable effect of promoting cellular survival and tumor growth by stabilizing mutant oncoproteins. In both situations, physiological levels of molecular chaperones eventually become functionally compromised by the persistence of misfolded substrates, leading to a decline in global protein homeostasis and the dysregulation of diverse cellular pathways. The phenomenon of chaperone competition may underlie the broad pathology observed in aging and neurodegenerative diseases, and restoration of physiological protein homeostasis may be a suitable therapeutic avenue for neurodegeneration as well as for cancer.
Collapse
|
11
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
12
|
Clarke BE, Gil RS, Yip J, Kalmar B, Greensmith L. Regional differences in the inflammatory and heat shock response in glia: implications for ALS. Cell Stress Chaperones 2019; 24:857-870. [PMID: 31168740 PMCID: PMC6717175 DOI: 10.1007/s12192-019-01005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022] Open
Abstract
Preferential neuronal vulnerability is characteristic of several neurodegenerative diseases including the motor neuron disease amyotrophic lateral sclerosis (ALS). It is well established that glia play a critical role in ALS, but it is unknown whether regional differences in the ability of glia to support motor neurons contribute to the specific pattern of neuronal degeneration. In this study, using primary mixed glial cultures from different mouse CNS regions (spinal cord and cortex), we examined whether regional differences exist in key glial pathways that contribute to, or protect against, motor neuron degeneration. Specifically, we examined the NF-κB-mediated inflammatory pathway and the cytoprotective heat shock response (HSR). Glial cultures were treated with pro-inflammatory stimuli, tumour necrosis factor-ɑ/lipopolysaccharide or heat stressed to stimulate the inflammatory and HSR respectively. We found that spinal cord glia expressed more iNOS and produced more NO compared to cortical glia in response to inflammatory stimuli. Intriguingly, we found that expression of ALS-causing SOD1G93A did not elevate the levels of NO in spinal cord glia. However, activation of the stress-responsive HSR was attenuated in SOD1G93A cultures, with a reduced Hsp70 induction in response to stressful stimuli. Exposure of spinal cord glia to heat shock in combination with inflammatory stimuli reduced the activation of the inflammatory response. The results of this study suggest that impaired heat shock response in SOD1G93A glia may contribute to the exacerbated inflammatory reactions observed in ALS mice. Graphical abstract Mixed primary glial cultures were established from cortical and spinal cord regions of wild-type mice and mice expressing ALS-causing mutant human SOD1 and the inflammatory and heat shock responses were investigated in these cultures. In the absence of stress, all cultures appeared to have similar cellular composition, levels of inflammatory mediators and similar expression level of heat shock proteins. When stimulated, spinal cord glia were more reactive and activated the inflammatory pathway more readily than cortical glia; this response was similar in wild-type and SOD1G93A glial cultures. Although the heat shock response was similar in spinal cord and cortical glial, in SOD1G93A expressing glia from both the spinal cord and cortex, the induction of heat shock response was diminished. This impaired heat shock response in SOD1G93A glia may therefore contribute to the exacerbated inflammatory reactions observed in ALS mice.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, London, WC1N 3BG, UK
| | - Rebecca San Gil
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Jing Yip
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Bernadett Kalmar
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Linda Greensmith
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, London, WC1N 3BG, UK
| |
Collapse
|
13
|
Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H 2O 2 via cysteine-dependent redox short-circuit. Sci Rep 2019; 9:10826. [PMID: 31346243 PMCID: PMC6658568 DOI: 10.1038/s41598-019-47326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The Cu/Zn−superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme’s active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1WT (holo-SOD1WT) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1G93A, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of H2O2 through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
Collapse
|
14
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
15
|
Huai J, Zhang Z. Structural Properties and Interaction Partners of Familial ALS-Associated SOD1 Mutants. Front Neurol 2019; 10:527. [PMID: 31164862 PMCID: PMC6536575 DOI: 10.3389/fneur.2019.00527] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron degenerative disease in adults and has also been proven to be a type of conformational disease associated with protein misfolding and dysfunction. To date, more than 150 distinct genes have been found to be associated with ALS, among which Superoxide Dismutase 1 (SOD1) is the first and the most extensively studied gene. It has been well-established that SOD1 mutants-mediated toxicity is caused by a gain-of-function rather than the loss of the detoxifying activity of SOD1. Compared with the clear autosomal dominant inheritance of SOD1 mutants in ALS, the potential toxic mechanisms of SOD1 mutants in motor neurons remain incompletely understood. A large body of evidence has shown that SOD1 mutants may adopt a complex profile of conformations and interact with a wide range of client proteins. Here, in this review, we summarize the fundamental conformational properties and the gained interaction partners of the soluble forms of the SOD1 mutants which have been published in the past decades. Our goal is to find clues to the possible internal links between structural and functional anomalies of SOD1 mutants, as well as the relationships between their exposed epitopes and interaction partners, in order to help reveal and determine potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jisen Huai
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. iScience 2018; 11:294-304. [PMID: 30639851 PMCID: PMC6327879 DOI: 10.1016/j.isci.2018.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by motor neuron cell death. However, not all motor neurons are equally susceptible. Most of what we know about the surviving motor neurons comes from gene expression profiling; less is known about their functional traits. We found that resistant motor neurons cultured from SOD1 ALS mouse models have enhanced axonal outgrowth and dendritic branching. They also have an increase in the number and size of actin-based structures like growth cones and filopodia. These phenotypes occur in cells cultured from presymptomatic mice and mutant SOD1 models that do not develop ALS but not in embryonic motor neurons. Enhanced outgrowth and upregulation of filopodia can be induced in wild-type adult cells by expressing mutant SOD1. These results demonstrate that mutant SOD1 can enhance the regenerative capability of ALS-resistant motor neurons. Capitalizing on this mechanism could lead to new therapeutic strategies. Motor neurons from end-stage SOD1 ALS mice have enhanced neurite outgrowth/branching Increased outgrowth occurs only in adult neurons and is independent of ALS symptoms SOD1G93A adult motor neurons have larger growth cones and more axonal filopodia Acute SOD1G93A expression upregulates outgrowth in wild-type adult motor neurons
Collapse
|
17
|
Maier M, Welt T, Wirth F, Montrasio F, Preisig D, McAfoose J, Vieira FG, Kulic L, Späni C, Stehle T, Perrin S, Weber M, Hock C, Nitsch RM, Grimm J. A human-derived antibody targets misfolded SOD1 and ameliorates motor symptoms in mouse models of amyotrophic lateral sclerosis. Sci Transl Med 2018; 10:10/470/eaah3924. [DOI: 10.1126/scitranslmed.aah3924] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2017] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding superoxide dismutase 1 (SOD1) lead to misfolding and aggregation of SOD1 and cause familial amyotrophic lateral sclerosis (FALS). However, the implications of wild-type SOD1 misfolding in sporadic forms of ALS (SALS) remain unclear. By screening human memory B cells from a large cohort of healthy elderly subjects, we generated a recombinant human monoclonal antibody (α-miSOD1) that selectively bound to misfolded SOD1, but not to physiological SOD1 dimers. On postmortem spinal cord sections from 121 patients with ALS, α-miSOD1 antibody identified misfolded SOD1 in a majority of cases, regardless of their SOD1 genotype. In contrast, the α-miSOD1 antibody did not bind to its epitope in most of the 41 postmortem spinal cord sections from non-neurological control (NNC) patients. In transgenic mice overexpressing disease-causing human SOD1G37R or SOD1G93A mutations, treatment with the α-miSOD1 antibody delayed the onset of motor symptoms, extended survival by up to 2 months, and reduced aggregation of misfolded SOD1 and motor neuron degeneration. These effects were obtained whether α-miSOD1 antibody treatment was administered by direct brain infusion or peripheral administration. These results support the further development of α-miSOD1 antibody as a candidate treatment for ALS involving misfolding of SOD1.
Collapse
|
18
|
Coyne AN, Lorenzini I, Chou CC, Torvund M, Rogers RS, Starr A, Zaepfel BL, Levy J, Johannesmeyer J, Schwartz JC, Nishimune H, Zinsmaier K, Rossoll W, Sattler R, Zarnescu DC. Post-transcriptional Inhibition of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple Models of ALS. Cell Rep 2018; 21:110-125. [PMID: 28978466 DOI: 10.1016/j.celrep.2017.09.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a synaptopathy accompanied by the presence of cytoplasmic aggregates containing TDP-43, an RNA-binding protein linked to ∼97% of ALS cases. Using a Drosophila model of ALS, we show that TDP-43 overexpression (OE) in motor neurons results in decreased expression of the Hsc70-4 chaperone at the neuromuscular junction (NMJ). Mechanistically, mutant TDP-43 sequesters hsc70-4 mRNA and impairs its translation. Expression of the Hsc70-4 ortholog, HSPA8, is also reduced in primary motor neurons and NMJs of mice expressing mutant TDP-43. Electrophysiology, imaging, and genetic interaction experiments reveal TDP-43-dependent defects in synaptic vesicle endocytosis. These deficits can be partially restored by OE of Hsc70-4, cysteine-string protein (Csp), or dynamin. This suggests that TDP-43 toxicity results in part from impaired activity of the synaptic CSP/Hsc70 chaperone complex impacting dynamin function. Finally, Hsc70-4/HSPA8 expression is also post-transcriptionally reduced in fly and human induced pluripotent stem cell (iPSC) C9orf72 models, suggesting a common disease pathomechanism.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Ileana Lorenzini
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Ching-Chieh Chou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meaghan Torvund
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Alexander Starr
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Benjamin L Zaepfel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Jennifer Levy
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Jeffrey Johannesmeyer
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Konrad Zinsmaier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Department of Neurology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
19
|
Banerjee V, Oren O, Ben-Zeev E, Taube R, Engel S, Papo N. A computational combinatorial approach identifies a protein inhibitor of superoxide dismutase 1 misfolding, aggregation, and cytotoxicity. J Biol Chem 2017; 292:15777-15788. [PMID: 28768772 DOI: 10.1074/jbc.m117.789610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/21/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular agents that specifically bind and neutralize misfolded and toxic superoxide dismutase 1 (SOD1) mutant proteins may find application in attenuating the disease progression of familial amyotrophic lateral sclerosis. However, high structural similarities between the wild-type and mutant SOD1 proteins limit the utility of this approach. Here we addressed this challenge by converting a promiscuous natural human IgG-binding domain, the hyperthermophilic variant of protein G (HTB1), into a highly specific aggregation inhibitor (designated HTB1M) of two familial amyotrophic lateral sclerosis-linked SOD1 mutants, SOD1G93A and SOD1G85R We utilized a computational algorithm for mapping protein surfaces predisposed to HTB1 intermolecular interactions to construct a focused HTB1 library, complemented with an experimental platform based on yeast surface display for affinity and specificity screening. HTB1M displayed high binding specificity toward SOD1 mutants, inhibited their amyloid aggregation in vitro, prevented the accumulation of misfolded proteins in living cells, and reduced the cytotoxicity of SOD1G93A expressed in motor neuron-like cells. Competition assays and molecular docking simulations suggested that HTB1M binds to SOD1 via both its α-helical and β-sheet domains at the native dimer interface that becomes exposed upon mutated SOD1 misfolding and monomerization. Our results demonstrate the utility of computational mapping of the protein-protein interaction potential for designing focused protein libraries to be used in directed evolution. They also provide new insight into the mechanism of conversion of broad-spectrum immunoglobulin-binding proteins, such as HTB1, into target-specific proteins, thereby paving the way for the development of new selective drugs targeting the amyloidogenic proteins implicated in a variety of human diseases.
Collapse
Affiliation(s)
- Victor Banerjee
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ofek Oren
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,the Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Efrat Ben-Zeev
- the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Ran Taube
- the Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Stanislav Engel
- the Department of Clinical Biochemistry and Pharmacology and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel,
| |
Collapse
|
20
|
MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models. J Neurosci 2017; 37:5574-5586. [PMID: 28416596 DOI: 10.1523/jneurosci.3582-16.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents.SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents.
Collapse
|
21
|
Jesse CM, Bushuven E, Tripathi P, Chandrasekar A, Simon CM, Drepper C, Yamoah A, Dreser A, Katona I, Johann S, Beyer C, Wagner S, Grond M, Nikolin S, Anink J, Troost D, Sendtner M, Goswami A, Weis J. ALS-Associated Endoplasmic Reticulum Proteins in Denervated Skeletal Muscle: Implications for Motor Neuron Disease Pathology. Brain Pathol 2017; 27:781-794. [PMID: 27790792 DOI: 10.1111/bpa.12453] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022] Open
Abstract
Alpha-motoneurons and muscle fibres are structurally and functionally interdependent. Both cell types particularly rely on endoplasmic reticulum (ER/SR) functions. Mutations of the ER proteins VAPB, SigR1 and HSP27 lead to hereditary motor neuron diseases (MNDs). Here, we determined the expression profile and localization of these ER proteins/chaperons by immunohistochemistry and immunoblotting in biopsy and autopsy muscle tissue of patients with amyotrophic lateral sclerosis (ALS) and other neurogenic muscular atrophies (NMAs) and compared these patterns to mouse models of neurogenic muscular atrophy. Postsynaptic neuromuscular junction staining for VAPB was intense in normal human and mouse muscle and decreased in denervated Nmd2J mouse muscle fibres. In contrast, VAPB levels together with other chaperones and autophagy markers were increased in extrasynaptic regions of denervated muscle fibres of patients with MNDs and other NMAs, especially at sites of focal myofibrillar disintegration (targets). These findings did not differ between NMAs due to ALS and other causes. G93A-SOD1 mouse muscle fibres showed a similar pattern of protein level increases in denervated muscle fibres. In addition, they showed globular VAPB-immunoreactive structures together with misfolded SOD1 protein accumulations, suggesting a primary myopathic change. Our findings indicate that altered expression and localization of these ER proteins and autophagy markers are part of the dynamic response of muscle fibres to denervation. The ER is particularly prominent and vulnerable in both muscle fibres and alpha-motoneurons. Thus, ER pathology could contribute to the selective build-up of degenerative changes in the neuromuscular axis in MNDs.
Collapse
Affiliation(s)
- C M Jesse
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany.,Department of Neurosurgery, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - E Bushuven
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - P Tripathi
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - A Chandrasekar
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany.,Department of Neurology, Ulm University, Helmholtzstr 8/2, Ulm, 89081, Germany
| | - C M Simon
- Institute of Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany.,Columbia University Medical Center, Center for Motor Neuron Biology and Disease, 630 West 168th Street, New York, NY, 10032
| | - C Drepper
- Institute of Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Würzburg, Füchsleinstr. 15, Würzburg, 97080, Germany
| | - A Yamoah
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - A Dreser
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - I Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - S Johann
- Institute of Neuroanatomy, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - C Beyer
- Institute of Neuroanatomy, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - S Wagner
- Department of Neurology, District Hospital Siegen, Siegen, 57076, Germany
| | - M Grond
- Department of Neurology, District Hospital Siegen, Siegen, 57076, Germany
| | - S Nikolin
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - J Anink
- Academic Medical Centre, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - D Troost
- Academic Medical Centre, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - M Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany
| | - A Goswami
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - J Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
22
|
Banerjee V, Shani T, Katzman B, Vyazmensky M, Papo N, Israelson A, Engel S. Superoxide Dismutase 1 (SOD1)-Derived Peptide Inhibits Amyloid Aggregation of Familial Amyotrophic Lateral Sclerosis SOD1 Mutants. ACS Chem Neurosci 2016; 7:1595-1606. [PMID: 27540759 DOI: 10.1021/acschemneuro.6b00227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to the death of the upper and lower motor neurons. Superoxide dismutase 1 (SOD1) is an ALS pathogenic protein, whose misfolding results in the formation of amyloid aggregates. The mechanism underlying SOD1 pathogenesis in ALS remains obscure, but one possible mechanism involves gain-of-interaction, in which the misfolded soluble SOD1 forms abnormal protein-protein interactions (PPIs) with various cellular proteins, including with other SOD1 molecules, thereby interfering with their function. The structural basis of this gain-of-interaction mechanism is unknown. Here, we characterized the backbone dynamics landscape of misfolded SOD1 to pinpoint surface areas predisposed to aberrant PPIs. This analysis enabled us to formulate a working hypothesis for the mechanism of the gain-of-function of misfolded SOD1, according to which an abnormal PPI potential results from the increased mobility of the SOD1 surface backbone. Guided by the backbone dynamics landscape, we have identified a SOD1-derived peptide that can bind SOD1 proteins and divert the typical amyloid aggregation of ALS-related SOD1 mutants toward a potentially less toxic amorphous aggregation pathway.
Collapse
Affiliation(s)
- Victor Banerjee
- Department
of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Tom Shani
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Bella Katzman
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Maria Vyazmensky
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Department
of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Adrian Israelson
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Stanislav Engel
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
23
|
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 2016; 137:489-505. [DOI: 10.1111/jnc.13575] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Justin J. Yerbury
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Lezanne Ooi
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Andrew Dillin
- Department of Molecular and Cell Biology; Li Ka Shing Center for Biomedical and Health Sciences; The University of California; California USA
- Howard Hughes Medical Institute; The University of California; Berkeley California USA
| | - Darren N. Saunders
- School of Medical Sciences; Faculty of Medicine; University of New South Wales; Randwick New South Wales Australia
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Darlinghurst New South Wales Australia
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Philip M. Beart
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Parkville Victoria Australia
| | - Neil R. Cashman
- Department of Medicine (Neurology); University of British Columbia and Vancouver Coastal Health Research Institute; Brain Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Mark R. Wilson
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Heath Ecroyd
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| |
Collapse
|
24
|
Iannaccone A, Giorgianni F, New DD, Hollingsworth TJ, Umfress A, Alhatem AH, Neeli I, Lenchik NI, Jennings BJ, Calzada JI, Satterfield S, Mathews D, Diaz RI, Harris T, Johnson KC, Charles S, Kritchevsky SB, Gerling IC, Beranova-Giorgianni S, Radic MZ, Health ABC study. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0145323. [PMID: 26717306 PMCID: PMC4696815 DOI: 10.1371/journal.pone.0145323] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We investigated sera from elderly subjects with and without age-related macular degeneration (AMD) for presence of autoantibodies (AAbs) against human macular antigens and characterized their identity. METHODS Sera were collected from participants in the Age-Related Maculopathy Ancillary (ARMA) Study, a cross-sectional investigation ancillary to the Health ABC Study, enriched with participants from the general population. The resulting sample (mean age: 79.2±3.9 years old) included subjects with early to advanced AMD (n = 131) and controls (n = 231). Sera were tested by Western blots for immunoreactive bands against human donor macular tissue homogenates. Immunoreactive bands were identified and graded, and odds ratios (OR) calculated. Based on these findings, sera were immunoprecipitated, and subjected to 2D gel electrophoresis (GE). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the targets recognized by circulating AAbs seen on 2D-GE, followed by ELISAs with recombinant proteins to confirm LC-MS/MS results, and quantify autoreactivities. RESULTS In AMD, 11 immunoreactive bands were significantly more frequent and 13 were significantly stronger than in controls. Nine of the more frequent bands also showed stronger reactivity. OR estimates ranged between 4.06 and 1.93, and all clearly excluded the null value. Following immunoprecipitation, 2D-GE and LC-MS/MS, five of the possible autoreactivity targets were conclusively identified: two members of the heat shock protein 70 (HSP70) family, HSPA8 and HSPA9; another member of the HSP family, HSPB4, also known as alpha-crystallin A chain (CRYAA); Annexin A5 (ANXA5); and Protein S100-A9, also known as calgranulin B that, when complexed with S100A8, forms calprotectin. ELISA testing with recombinant proteins confirmed, on average, significantly higher reactivities against all targets in AMD samples compared to controls. CONCLUSIONS Consistent with other evidence supporting the role of inflammation and the immune system in AMD pathogenesis, AAbs were identified in AMD sera, including early-stage disease. Identified targets may be mechanistically linked to AMD pathogenesis because the identified proteins are implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. In particular, a role in autophagy activation is shared by all five autoantigens, raising the possibility that the detected AAbs may play a role in AMD via autophagy compromise and downstream activation of the inflammasome. Thus, we propose that the detected AAbs provide further insight into AMD pathogenesis and have the potential to contribute to disease biogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - David D. New
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - T. J. Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Allison Umfress
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Albert H. Alhatem
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Indira Neeli
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Nataliya I. Lenchik
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Barbara J. Jennings
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jorge I. Calzada
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Dennis Mathews
- Eye Specialty Group, Memphis, TN, United States of America
- Southern College of Optometry, Memphis, TN, United States of America
| | - Rocio I. Diaz
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Tamara Harris
- National Institute on Aging, NIH, Bethesda, MD, United States of America
| | - Karen C. Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Steve Charles
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Stephen B. Kritchevsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Sticht Center on Aging, Wake Forest University, Winston-Salem, NC, United States of America
| | - Ivan C. Gerling
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Marko Z. Radic
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | | |
Collapse
|
25
|
Roos A, Kollipara L, Buchkremer S, Labisch T, Brauers E, Gatz C, Lentz C, Gerardo-Nava J, Weis J, Zahedi RP. Cellular Signature of SIL1 Depletion: Disease Pathogenesis due to Alterations in Protein Composition Beyond the ER Machinery. Mol Neurobiol 2015; 53:5527-41. [PMID: 26468156 DOI: 10.1007/s12035-015-9456-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
SIL1 acts as nucleotide exchange factor for the endoplasmic reticulum chaperone BiP. Mutations of SIL1 cause Marinesco-Sjögren syndrome (MSS), a neurodegenerative disorder. Moreover, a particular function of SIL1 for etiopathology of amyotrophic lateral sclerosis (ALS) was highlighted, thus declaring the functional SIL1-BiP complex as a modifier for neurodegenerative disorders. Thereby, depletion of SIL1 was associated with an earlier manifestation and in strengthened disease progression in ALS. Owing to the absence of appropriate in vitro models, the precise cellular pathophysiological mechanisms leading to neurodegeneration in MSS and triggering the same in further disorders like ALS are still elusive. We found that SIL1 depletion in human embryonic kidney 293 (HEK293) cells led to structural changes of the endoplasmic reticulum (ER) including the nuclear envelope and mitochondrial degeneration that closely mimic pathological alterations in MSS and ALS. Functional studies revealed disturbed protein transport, cytotoxicity with reduced proliferation and viability, accompanied by activation of cellular defense mechanisms including the unfolded protein response, ER-associated degradation pathway, proteolysis, and expression of apoptotic and survival factors. Our data moreover indicated that proteins involved in cytoskeletal organization, vesicular transport, mitochondrial function, and neurological processes contribute to SIL1 pathophysiology. Altered protein expression upon SIL1 depletion in vitro could be confirmed in Sil1-deficient motoneurones for paradigmatic proteins belonging to different functional classes. Our results demonstrate that SIL1-depleted HEK293 cells are an appropriate model to identify proteins modulated by SIL1 expression level and contributing to neurodegeneration in MSS and further disorders like ALS. Thereby, our combined results point out that proteins beyond such involved ER-related protein processing are affected by SIL1 depletion.
Collapse
Affiliation(s)
- Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Labisch
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Gatz
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Chris Lentz
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - José Gerardo-Nava
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
26
|
Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping. Proc Natl Acad Sci U S A 2015; 112:4489-94. [PMID: 25802384 DOI: 10.1073/pnas.1419228112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite considerable progress in uncovering the molecular details of protein aggregation in vitro, the cause and mechanism of protein-aggregation disease remain poorly understood. One reason is that the amount of pathological aggregates in neural tissue is exceedingly low, precluding examination by conventional approaches. We present here a method for determination of the structure and quantity of aggregates in small tissue samples, circumventing the above problem. The method is based on binary epitope mapping using anti-peptide antibodies. We assessed the usefulness and versatility of the method in mice modeling the neurodegenerative disease amyotrophic lateral sclerosis, which accumulate intracellular aggregates of superoxide dismutase-1. Two strains of aggregates were identified with different structural architectures, molecular properties, and growth kinetics. Both were different from superoxide dismutase-1 aggregates generated in vitro under a variety of conditions. The strains, which seem kinetically under fragmentation control, are associated with different disease progressions, complying with and adding detail to the growing evidence that seeding, infectivity, and strain dependence are unifying principles of neurodegenerative disease.
Collapse
|
27
|
Macrophage migration inhibitory factor as a chaperone inhibiting accumulation of misfolded SOD1. Neuron 2015; 86:218-32. [PMID: 25801706 DOI: 10.1016/j.neuron.2015.02.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/07/2015] [Accepted: 02/13/2015] [Indexed: 12/13/2022]
Abstract
Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by loss of motor neurons and accompanied by accumulation of misfolded SOD1 onto the cytoplasmic faces of intracellular organelles, including mitochondria and the endoplasmic reticulum (ER). Using inhibition of misfolded SOD1 deposition onto mitochondria as an assay, a chaperone activity abundant in nonneuronal tissues is now purified and identified to be the multifunctional macrophage migration inhibitory factor (MIF), whose activities include an ATP-independent protein folding chaperone. Purified MIF is shown to directly inhibit mutant SOD1 misfolding. Elevating MIF in neuronal cells suppresses accumulation of misfolded SOD1 and its association with mitochondria and the ER and extends survival of mutant SOD1-expressing motor neurons. Accumulated MIF protein is identified to be low in motor neurons, implicating correspondingly low chaperone activity as a component of vulnerability to mutant SOD1 misfolding and supporting therapies to enhance intracellular MIF chaperone activity.
Collapse
|
28
|
Analysis of mutant SOD1 electrophoretic mobility by Blue Native gel electrophoresis; evidence for soluble multimeric assemblies. PLoS One 2014; 9:e104583. [PMID: 25121776 PMCID: PMC4133237 DOI: 10.1371/journal.pone.0104583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause familial forms of amyotrophic lateral sclerosis (fALS). Disease causing mutations have diverse consequences on the activity and half-life of the protein, ranging from complete inactivity and short half-life to full activity and long-half-life. Uniformly, disease causing mutations induce the protein to misfold and aggregate and such aggregation tendencies are readily visualized by over-expression of the proteins in cultured cells. In the present study we have investigated the potential of using immunoblotting of proteins separated by Blue-Native gel electrophoresis (BNGE) as a means to identify soluble multimeric forms of mutant protein. We find that over-expressed wild-type human SOD1 (hSOD1) is generally not prone to form soluble high molecular weight entities that can be separated by BNGE. For ALS mutant SOD1, we observe that for all mutants examined (A4V, G37R, G85R, G93A, and L126Z), immunoblots of BN-gels separating protein solubilized by digitonin demonstrated varied amounts of high molecular weight immunoreactive entities. These entities lacked reactivity to ubiquitin and were partially dissociated by reducing agents. With the exception of the G93A mutant, these entities were not reactive to the C4F6 conformational antibody. Collectively, these data demonstrate that BNGE can be used to assess the formation of soluble multimeric assemblies of mutant SOD1.
Collapse
|
29
|
Lin PY, Simon SM, Koh WK, Folorunso O, Umbaugh CS, Pierce A. Heat shock factor 1 over-expression protects against exposure of hydrophobic residues on mutant SOD1 and early mortality in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2013; 8:43. [PMID: 24256636 PMCID: PMC3907013 DOI: 10.1186/1750-1326-8-43] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in the Cu/Zn superoxide dismutase gene (SOD1) are responsible for 20% of familial forms of amyotrophic lateral sclerosis (ALS), and mutant SOD1 has been shown to have increased surface hydrophobicity in vitro. Mutant SOD1 may adopt a complex array of conformations with varying toxicity in vivo. We have used a novel florescence-based proteomic assay using 4,4’-bis-1-anilinonaphthalene-8-sulfonate (bisANS) to assess the surface hydrophobicity, and thereby distinguish between different conformations, of SOD1and other proteins in situ. Results Covalent bisANS labeling of spinal cord extracts revealed that alterations in surface hydrophobicity of H46R/H48Q mutations in SOD1 provoke formation of high molecular weight SOD1 species with lowered solubility, likely due to increased exposure of hydrophobic surfaces. BisANS was docked on the H46R/H48Q SOD1 structure at the disordered copper binding and electrostatic loops of mutant SOD1, but not non-mutant WT SOD1. 16 non-SOD1 proteins were also identified that exhibited altered surface hydrophobicity in the H46R/H48Q mutant mouse model of ALS, including proteins involved in energy metabolism, cytoskeleton, signaling, and protein quality control. Heat shock proteins (HSPs) were also enriched in the detergent-insoluble fractions with SOD1. Given that chaperones recognize proteins with exposed hydrophobic surfaces as substrates and the importance of protein homeostasis in ALS, we crossed SOD1 H46R/H48Q mutant mice with mice over-expressing the heat shock factor 1 (HSF1) transcription factor. Here we showed that HSF1 over-expression in H46R/H48Q ALS mice enhanced proteostasis as evidenced by increased expression of HSPs in motor neurons and astrocytes and increased solubility of mutant SOD1. HSF1 over-expression significantly reduced body weight loss, delayed ALS disease onset, decreases cases of early disease, and increased survival for the 25th percentile in an H46R/H48Q SOD1 background. HSF1 overexpression did not affect macroautophagy in the ALS background, but was associated with maintenance of carboxyl terminus of Hsp70 interacting protein (CHIP) expression which declined in H46R/H48Q mice. Conclusion Our results uncover the potential importance of changes in protein surface hydrophobicity of SOD1 and other non-SOD1 proteins in ALS, and how strategies that activate HSF1 are valid therapies for ALS and other age-associated proteinopathies.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Structural switching of Cu,Zn-superoxide dismutases at loop VI: insights from the crystal structure of 2-mercaptoethanol-modified enzyme. Biosci Rep 2013; 32:539-48. [PMID: 22804629 PMCID: PMC3497728 DOI: 10.1042/bsr20120029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cu,Zn SOD1 (superoxide dismutase 1) is implicated in FALS (familial amyotrophic lateral sclerosis) through the accumulation of misfolded proteins that are toxic to neuronal cells. Loop VI (residues 102-115) of the protein is at the dimer interface and could play a critical role in stability. The free cysteine residue, Cys111 in the loop, is readily oxidized and alkylated. We have found that modification of this Cys111 with 2-ME (2-mercaptoethanol; 2-ME-SOD1) stabilizes the protein and the mechanism may provide insights into destabilization and the formation of aggregated proteins. Here, we determined the crystal structure of 2-ME-SOD1 and find that the 2-ME moieties in both subunits interact asymmetrically at the dimer interface and that there is an asymmetric configuration of segment Gly108 to Cys111 in loop VI. One loop VI of the dimer forms a 310-helix (Gly108 to His110) within a unique β-bridge stabilized by a hydrogen bond between Ser105-NH and His110-CO, while the other forms a β-turn without the H-bond. The H-bond (H-type) and H-bond free (F-type) configurations are also seen in some wild-type and mutant human SOD1s in the Protein Data Bank suggesting that they are interconvertible and an intrinsic property of SOD1s. The two structures serve as a basis for classification of these proteins and hopefully a guide to their stability and role in pathophysiology.
Collapse
|
31
|
Molecular chaperone Hsp110 rescues a vesicle transport defect produced by an ALS-associated mutant SOD1 protein in squid axoplasm. Proc Natl Acad Sci U S A 2013; 110:5428-33. [PMID: 23509252 DOI: 10.1073/pnas.1303279110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutant human Cu/Zn superoxide dismutase 1 (SOD1) is associated with motor neuron toxicity and death in an inherited form of amyotrophic lateral sclerosis (ALS; Lou Gehrig disease). One aspect of toxicity in motor neurons involves diminished fast axonal transport, observed both in transgenic mice and, more recently, in axoplasm isolated from squid giant axons. The latter effect appears to be directly mediated by misfolded SOD1, whose addition activates phosphorylation of p38 MAPK and phosphorylation of kinesin. Here, we observe that several different oligomeric states of a fusion protein, comprising ALS-associated human G85R SOD1 joined with yellow fluorescent protein (G85R SOD1YFP), which produces ALS in transgenic mice, inhibited anterograde transport when added to squid axoplasm. Inhibition was blocked both by an apoptosis signal-regulating kinase 1 (ASK1; MAPKKK) inhibitor and by a p38 inhibitor, indicating the transport defect is mediated through the MAPK cascade. In further incubations, we observed that addition of the mammalian molecular chaperone Hsc70, abundantly associated with G85R SOD1YFP in spinal cord of transgenic mice, exerted partial correction of the transport defect, associated with diminished phosphorylation of p38. Most striking, the addition of the molecular chaperone Hsp110, in a concentration substoichiometric to the mutant SOD1 protein, completely rescued both the transport defect and the phosphorylation of p38. Hsp110 has been demonstrated to act as a nucleotide exchange factor for Hsc70 and, more recently, to be able to cooperate with it to mediate protein disaggregation. We speculate that it can cooperate with endogenous squid Hsp(c)70 to mediate binding and/or disaggregation of mutant SOD1 protein, abrogating toxicity.
Collapse
|
32
|
Carman A, Kishinevsky S, Koren J, Lou W, Chiosis G. Chaperone-dependent Neurodegeneration: A Molecular Perspective on Therapeutic Intervention. ACTA ACUST UNITED AC 2013; 2013. [PMID: 25258700 PMCID: PMC4172285 DOI: 10.4172/2161-0460.s10-007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of cellular homeostasis is regulated by the molecular chaperones. Under pathogenic conditions, aberrant proteins are triaged by the chaperone network. These aberrant proteins, known as "clients," have major roles in the pathogenesis of numerous neurological disorders, including tau in Alzheimer's disease, α-synuclein and LRRK2 in Parkinson's disease, SOD-1, TDP-43 and FUS in amyotrophic lateral sclerosis, and polyQ-expanded proteins such as huntingtin in Huntington's disease. Recent work has demonstrated that the use of chemical compounds which inhibit the activity of molecular chaperones subsequently alter the fate of aberrant clients. Inhibition of Hsp90 and Hsc70, two major molecular chaperones, has led to a greater understanding of how chaperone triage decisions are made and how perturbing the chaperone system can promote clearance of these pathogenic clients. Described here are major pathways and components of several prominent neurological disorders. Also discussed is how treatment with chaperone inhibitors, predominately Hsp90 inhibitors which are selective for a diseased state, can relieve the burden of aberrant client signaling in these neurological disorders.
Collapse
Affiliation(s)
- Aaron Carman
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - Sarah Kishinevsky
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - John Koren
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - Wenjie Lou
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA
| | - Gabriela Chiosis
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| |
Collapse
|
33
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
34
|
Zetterström P, Graffmo KS, Andersen PM, Brännström T, Marklund SL. Composition of soluble misfolded superoxide dismutase-1 in murine models of amyotrophic lateral sclerosis. Neuromolecular Med 2012; 15:147-58. [PMID: 23076707 DOI: 10.1007/s12017-012-8204-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
A common cause of amyotrophic lateral sclerosis is mutations in superoxide dismutase-1, which provoke the disease by an unknown mechanism. We have previously found that soluble hydrophobic misfolded mutant human superoxide dismutase-1 species are enriched in the vulnerable spinal cords of transgenic model mice. The levels were broadly inversely correlated with life spans, suggesting involvement in the pathogenesis. Here, we used methods based on antihuman superoxide dismutase-1 peptide antibodies specific for misfolded species to explore the composition and amounts of soluble misfolded human superoxide dismutase-1 in tissue extracts. Mice expressing 5 different human superoxide dismutase-1 variants with widely variable structural characteristics were examined. The levels were generally higher in spinal cords than in other tissues. The major portion of misfolded superoxide dismutase-1 was shown to be monomers lacking the C57-C146 disulfide bond with large hydrodynamic volume, indicating a severely disordered structure. The remainder of the misfolded protein appeared to be non-covalently associated in 130- and 250-kDa complexes. The malleable monomers should be prone to aggregate and associate with other cellular components, and should be easily translocated between compartments. They may be the primary cause of toxicity in superoxide dismutase-1-induced amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 85, Umeå, Sweden
| | | | | | | | | |
Collapse
|
35
|
Pratt AJ, Getzoff ED, Perry JJP. Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscul Dis 2012; 2012:1-14. [PMID: 23019386 PMCID: PMC3457793 DOI: 10.2147/dnnd.s19803] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease. It is typically characterized by adult-onset degeneration of the upper and lower motor neurons, and is usually fatal within a few years of onset. A subset of ALS patients has an inherited form of the disease, and a few of the known mutant genes identified in familial cases have also been found in sporadic forms of ALS. Precisely how the diverse ALS-linked gene products dictate the course of the disease, resulting in compromised voluntary muscular ability, is not entirely known. This review addresses the major advances that are being made in our understanding of the molecular mechanisms giving rise to the disease, which may eventually translate into new treatment options.
Collapse
Affiliation(s)
- Ashley J Pratt
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,
| | - Elizabeth D Getzoff
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,
| | - J Jefferson P Perry
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,
- The School of Biotechnology, Amrita University, Kollam, Kerala 690525, India,
| |
Collapse
|
36
|
Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, Rao M, Eagle A, Kammesheidt A, Christensen A, Mendell JR, Burghes AHM, Kaspar BK. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 2011; 29:824-8. [PMID: 21832997 PMCID: PMC3170425 DOI: 10.1038/nbt.1957] [Citation(s) in RCA: 601] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 12/24/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron (MN) disease with astrocytes implicated as a significant contributor to MN death in familial ALS (fALS)1–5. However, these conclusions, in part, derive from rodent models of fALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene which account for less than 2% of all ALS cases2, 4, 5. Here, we generated astrocytes from post-mortem tissue from both fALS and sporadic ALS (sALS) patients, and show that astrocytes derived from both patient groups are similarly toxic to MNs. In addition, we show that SOD1 is a viable target for sALS, as its knockdown significantly attenuates astrocyte-mediated toxicity towards MNs. Our data highlight astrocytes as a non-cell autonomous component in sALS and provide the first in vitro model system to investigate common disease mechanisms and evaluate potential therapies for sALS and fALS.
Collapse
|