1
|
Lea G, Hanna CW. Loss of DNA methylation disrupts syncytiotrophoblast development: Proposed consequences of aberrant germline gene activation. Bioessays 2024; 46:e2300140. [PMID: 37994176 DOI: 10.1002/bies.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de-repression of a subset of germline genes, normally expressed in gametogenesis. We recently reported loss of de novo DNA methyltransferase DNMT3B resulted in up-regulation of germline genes and impaired syncytiotrophoblast formation in the murine placenta. This defect led to embryonic lethality. We hypothesize that de-repression of germline genes in the Dnmt3b knockout underpins aspects of the placental phenotype by interfering with normal developmental processes. Specifically, we discuss molecular mechanisms by which aberrant expression of the piRNA pathway, meiotic proteins or germline transcriptional regulators may disrupt syncytiotrophoblast development.
Collapse
Affiliation(s)
- Georgia Lea
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Courtney W Hanna
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Zuo Z. The successive emergence of ERVL-MaLRs in primates. Virus Evol 2023; 9:vead072. [PMID: 38131004 PMCID: PMC10735291 DOI: 10.1093/ve/vead072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Although the ERVL-mammalian-apparent LTR retrotransposons (MaLRs) are the fourth largest family of transposable elements in the human genome, their evolutionary history and relationship have not been thoroughly studied. In this study, through RepeatMasker annotations of some representative species and construction of phylogenetic tree by sequence similarity, all primate-specific MaLR members are found to descend from MLT1A1 retrotransposon. Comparative genomic analysis, transposition-in-transposition inference, and sequence feature comparisons consistently show that each MaLR member evolved from its predecessor successively and had a limited activity period during primate evolution. Accordingly, a novel MaLR member was discovered as successor of MSTB1 in Tarsiiformes. At last, the identification of candidate precursor and intermediate THE1A elements provides further evidence for the previously proposed arms race model between ZNF430/ZNF100 and THE1B/THE1A. Taken together, this study sheds light on the evolutionary history of MaLRs and can serve as a foundation for future research on their interactions with zinc finger genes, gene regulation, and human health implications.
Collapse
Affiliation(s)
- Zheng Zuo
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Torre D, Francoeur NJ, Kalma Y, Gross Carmel I, Melo BS, Deikus G, Allette K, Flohr R, Fridrikh M, Vlachos K, Madrid K, Shah H, Wang YC, Sridhar SH, Smith ML, Eliyahu E, Azem F, Amir H, Mayshar Y, Marazzi I, Guccione E, Schadt E, Ben-Yosef D, Sebra R. Isoform-resolved transcriptome of the human preimplantation embryo. Nat Commun 2023; 14:6902. [PMID: 37903791 PMCID: PMC10616205 DOI: 10.1038/s41467-023-42558-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
Human preimplantation development involves extensive remodeling of RNA expression and splicing. However, its transcriptome has been compiled using short-read sequencing data, which fails to capture most full-length mRNAs. Here, we generate an isoform-resolved transcriptome of early human development by performing long- and short-read RNA sequencing on 73 embryos spanning the zygote to blastocyst stages. We identify 110,212 unannotated isoforms transcribed from known genes, including highly conserved protein-coding loci and key developmental regulators. We further identify 17,964 isoforms from 5,239 unannotated genes, which are largely non-coding, primate-specific, and highly associated with transposable elements. These isoforms are widely supported by the integration of published multi-omics datasets, including single-cell 8CLC and blastoid studies. Alternative splicing and gene co-expression network analyses further reveal that embryonic genome activation is associated with splicing disruption and transient upregulation of gene modules. Together, these findings show that the human embryo transcriptome is far more complex than currently known, and will act as a valuable resource to empower future studies exploring development.
Collapse
Affiliation(s)
- Denis Torre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Yael Kalma
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Ilana Gross Carmel
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Betsaida S Melo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ron Flohr
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Maya Fridrikh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Foad Azem
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Hadar Amir
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ivan Marazzi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT); Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dalit Ben-Yosef
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel.
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel.
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Keighley LM, Lynch-Sutherland CF, Almomani SN, Eccles MR, Macaulay EC. Unveiling the hidden players: The crucial role of transposable elements in the placenta and their potential contribution to pre-eclampsia. Placenta 2023; 141:57-64. [PMID: 37301654 DOI: 10.1016/j.placenta.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The human placenta is a vital connection between maternal and fetal tissues, allowing for the exchange of molecules and modulation of immune interactions during pregnancy. Interestingly, some of the placenta's unique functions can be attributed to transposable elements (TEs), which are DNA sequences that have mobilised into the genome. Co-option throughout mammalian evolution has led to the generation of TE-derived regulators and TE-derived genes, some of which are expressed in the placenta but silenced in somatic tissues. TE genes encompass both TE-derived genes with a repeat element in the coding region and TE-derived regulatory regions such as alternative promoters and enhancers. Placental-specific TE genes are known to contribute to the placenta's unique functions, and interestingly, they are also expressed in some cancers and share similar functions. There is evidence to support that aberrant activity of TE genes may contribute to placental pathologies, cancer and autoimmunity. In this review, we highlight the crucial roles of TE genes in placental function, and how their dysregulation may lead to pre-eclampsia, a common and dangerous placental condition. We provide a summary of the functional TE genes in the placenta to offer insight into their significance in normal and abnormal human development. Ultimately, this review highlights an opportunity for future research to investigate the potential dysregulation of TE genes in the development of placental pathologies such as pre-eclampsia. Further understanding of TE genes and their role in the placenta could lead to significant improvements in maternal and fetal health.
Collapse
Affiliation(s)
- Laura M Keighley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
5
|
Zheng X, Lian Y, Zhou J, Zhou Q, Zhu Y, Tang C, Zhang P, Zhao X. Placental ischemia disrupts DNA methylation patterns in distal regulatory regions in rats. Life Sci 2023; 321:121623. [PMID: 37001402 DOI: 10.1016/j.lfs.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal morbidity and mortality worldwide. However, the impact of PE on the organization of the functional architecture of the placental methylome remains largely unknown. We performed whole-genome bisulfite sequencing of placental DNA and applied a Hidden Markov Model to investigate epigenome-wide alterations in functional structures, including partially methylated domains (PMDs), low-methylated regions (LMRs), and unmethylated regions (UMRs), in a reduced uterine perfusion pressure (RUPP) rat model of PE. The remarkable similarity we observed between the rat and human placental DNA methylomes suggests that the RUPP rat model is appropriate to elucidate the epigenetic mechanisms underlying human PE. The notable changes in PMDs indicate RUPP-induced perturbation of the stressed placental methylome. This was probably regulated via modulation of the epigenetic modifier expression, including significant downregulation of Dnmt1 and Dnmt3a and upregulation of Tet2. More importantly, changes in RUPP-induced DNA methylation occurred predominately in LMRs (80 %), which represent active enhancers, rather than in canonical UMRs (3 %), which represent promoters, suggesting that placental ischemia disrupts enhancer DNA methylation. Our findings emphasize the role of enhancer methylation in response to PE, corroborating discoveries in human PE studies. We suggest paying more attention to enhancer regions in future studies on PE.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Yahan Lian
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Jing Zhou
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Qian Zhou
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yu Zhu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Chunhua Tang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Ping Zhang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Xinzhi Zhao
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
6
|
Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS. Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Front Cell Dev Biol 2022; 10:884088. [PMID: 35547813 PMCID: PMC9081528 DOI: 10.3389/fcell.2022.884088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Assisted Reproductive Technologies (ART) employ gamete/embryo handling and culture in vitro to produce offspring. ART pregnancies have an increased risk of low birth weight, abnormal placentation, pregnancy complications, and imprinting disorders. Embryo culture induces low birth weight, abnormal placental morphology, and lower levels of DNA methylation in placentas in a mouse model of ART. Whether preimplantation embryos at specific stages of development are more susceptible to these perturbations remains unresolved. Accordingly, we performed embryo culture for several discrete periods of preimplantation development and following embryo transfer, assessed fetal and placental outcomes at term. We observed a reduction in fetal:placental ratio associated with two distinct windows of preimplantation embryo development, one prior to the morula stage and the other from the morula to blastocyst stage, whereas placental morphological abnormalities and reduced imprinting control region methylation were only associated with culture prior to the morula stage. Extended culture to the blastocyst stage also induces additional placental DNA methylation changes compared to embryos transferred at the morula stage, and female concepti exhibited a higher loss of DNA methylation than males. By identifying specific developmental windows of susceptibility, this study provides a framework to optimize further culture conditions to minimize risks associated with ART pregnancies.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Eric A. Rhon-Calderon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kashviya V. Suri
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Asha K. Dahiya
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Arthurs AL, Smith MD, Hintural MD, Breen J, McCullough D, Thornton FI, Leemaqz SY, Dekker GA, Jankovic-Karasoulos T, Roberts CT. Placental Inflammasome mRNA Levels Differ by Mode of Delivery and Fetal Sex. Front Immunol 2022; 13:807750. [PMID: 35401528 PMCID: PMC8992795 DOI: 10.3389/fimmu.2022.807750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Parturition signals the end of immune tolerance in pregnancy. Term labour is usually a sterile inflammatory process triggered by damage associated molecular patterns (DAMPs) as a consequence of functional progesterone withdrawal. Activation of DAMPs recruits leukocytes and inflammatory cytokine responses in the myometrium, decidua, cervix and fetal membranes. Emerging evidence shows components of the inflammasome are detectable in both maternal decidua and placenta. However, the activation of the placental inflammasome with respect to mode of delivery has not been profiled. Placental chorionic villus samples from women delivering at term via unassisted vaginal (UV) birth, labouring lower segment caesarean section (LLSCS, emergency caesarean section) and prelabour lower segment caesarean section (PLSCS, elective caesarean section) underwent high throughput RNA sequencing (NextSeq Illumina) and bioinformatic analyses to identify differentially expressed inflammatory (DE) genes. DE genes (IL1RL1, STAT1, STAT2, IL2RB, IL17RE, IL18BP, TNFAIP2, TNFSF10 and TNFRSF8), as well as common inflammasome genes (IL1B, IL1R1, IL1R2, IL6, IL18, IL18R1, IL18R1, IL10, and IL33), were targets for further qPCR analyses and Western blotting to quantify protein expression. There was no specific sensor molecule-activated inflammasome which dominated expression when stratified by mode of delivery, implying that multiple inflammasomes may function synergistically during parturition. Whilst placentae from women who had UV births overall expressed pro-inflammatory mediators, placentae from LLSCS births demonstrated a much greater pro-inflammatory response, with additional interplay of pro- and anti-inflammatory mediators. As expected, inflammasome activation was very low in placentae from women who had PLSCS births. Sex-specific differences were also detected. Placentae from male-bearing pregnancies displayed higher inflammasome activation in LLSCS compared with PLSCS, and placentae from female-bearing pregnancies displayed higher inflammasome activation in LLSCS compared with UV. In conclusion, placental inflammasome activation differs with respect to mode of delivery and neonatal sex. Its assessment may identify babies who have been exposed to aberrant inflammation at birth that may compromise their development and long-term health and wellbeing.
Collapse
Affiliation(s)
- Anya L Arthurs
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Melanie D Smith
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mhyles D Hintural
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - James Breen
- South Australian Genomics Centre, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Dylan McCullough
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Francesca I Thornton
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Shalem Y Leemaqz
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Gustaaf A Dekker
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Tanja Jankovic-Karasoulos
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Claire T Roberts
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
8
|
Rodríguez-Frías F, Quer J, Tabernero D, Cortese MF, Garcia-Garcia S, Rando-Segura A, Pumarola T. Microorganisms as Shapers of Human Civilization, from Pandemics to Even Our Genomes: Villains or Friends? A Historical Approach. Microorganisms 2021; 9:2518. [PMID: 34946123 PMCID: PMC8708650 DOI: 10.3390/microorganisms9122518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Universal history is characterized by continuous evolution, in which civilizations are born and die. This evolution is associated with multiple factors, among which the role of microorganisms is often overlooked. Viruses and bacteria have written or decisively contributed to terrible episodes of history, such as the Black Death in 14th century Europe, the annihilation of pre-Columbian American civilizations, and pandemics such as the 1918 Spanish flu or the current COVID-19 pandemic caused by the coronavirus SARS-CoV-2. Nevertheless, it is clear that we could not live in a world without these tiny beings. Endogenous retroviruses have been key to our evolution and for the regulation of gene expression, and the gut microbiota helps us digest compounds that we could not otherwise process. In addition, we have used microorganisms to preserve or prepare food for millennia and more recently to obtain drugs such as antibiotics or to develop recombinant DNA technologies. Due to the enormous importance of microorganisms for our survival, they have significantly influenced the population genetics of different human groups. This paper will review the role of microorganisms as "villains" who have been responsible for tremendous mortality throughout history but also as "friends" who help us survive and evolve.
Collapse
Affiliation(s)
- Francisco Rodríguez-Frías
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Francesca Cortese
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Selene Garcia-Garcia
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Tomas Pumarola
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| |
Collapse
|
9
|
Xu X, Lv S, Xiao Z. Analysis of a circRNA-, miRNA-, and mRNA-associated ceRNA network reveals potential biomarkers in preeclampsia a ceRNA network in preeclampsia. Ann Med 2021; 53:2354-2364. [PMID: 34894939 PMCID: PMC8741177 DOI: 10.1080/07853890.2021.2014554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Preeclampsia (PE), one of hypertension-related disorders of pregnancy, is a common cause of maternal death worldwide. This study aimed to identify a circRNA-miRNA-mRNA-associated ceRNA network and related pathways in PE. MATERIAL AND METHODS We downloaded 3 microarray datasets from the Gene Expression Omnibus database, obtained 163 differentially expressed circRNAs (dif-circRNAs) (61 upregulated and 102 downregulated), 39 differentially expressed microRNAs (dif-miRNAs) (22 upregulated and 17 downregulated), and 271 differentially expressed mRNAs (dif-mRNAs) (168 upregulated and 103 downregulated) from placenta tissues of PE. Functional enrichment analysis and protein-protein interaction (PPI) network with module analysis of dif-mRNAs were performed. The regulatory relationship between dif-miRNAs and dif-mRNAs/circRNAs was predicted via related databases. A circRNA-miRNA-mRNA regulatory network was constructed. RESULTS A total of 53 pairs were obtained, including 13 circRNAs (10 upregulated and 3 downregulated), 9 miRNAs (3 upregulated and 6 downregulated) and 31 mRNAs (22 upregulated and 9 downregulated). GNB5 and IL2RB were obtained. KEGG enrichment analysis showed that both of them were closely related with the PI3K-Akt signalling pathway. Therefore, ceRNAs might affect the PI3K-Akt signalling pathway via the upregulation of GNB5 by binding to miR-1248 in PE. Meanwhile, hsa_circ_0052661 might upregulate IL2RB by binding miR-4303 to play a role in PE in the same way. CONCLUSION GNB5 and IL2RB might be key genes involved in the PI3K-Akt signalling pathway in PE, and hsa_circ_0087208, hsa_circ_0035443, hsa_circ_0067557 and hsa_circ_0052661 might regulate these key genes in PE by binding miR-1248 or miR-4303.Key messagesThere is still a lack of predictive and diagnostic factors for preeclampsia, which is a common cause of maternal death worldwide.This study identified a novel circRNA-associated ceRNA network and related pathways in preeclampsia.GNB5 and IL2RB might be key genes in their related circRNA-associated ceRNA network, and probably take an important role in preeclampsia via PI3K-Akt signalling pathway, which made them to be potential markers of preeclampsia.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Guizhou Medical University, Guiyang City, China
| | - Sha Lv
- Guizhou Medical University, Guiyang City, China
| | - Ziwen Xiao
- Guizhou Medical University, Guiyang City, China
| |
Collapse
|
10
|
Gordon SM. Interleukin-15 in Outcomes of Pregnancy. Int J Mol Sci 2021; 22:11094. [PMID: 34681751 PMCID: PMC8541205 DOI: 10.3390/ijms222011094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that classically acts to support the development, maintenance, and function of killer lymphocytes. IL-15 is abundant in the uterus prior to and during pregnancy, but it is subject to tight spatial and temporal regulation. Both mouse models and human studies suggest that homeostasis of IL-15 is essential for healthy pregnancy. Dysregulation of IL-15 is associated with adverse outcomes of pregnancy. Herein, we review producers of IL-15 and responders to IL-15, including non-traditional responders in the maternal uterus and fetal placenta. We also review regulation of IL-15 at the maternal-fetal interface and propose mechanisms of action of IL-15 to facilitate additional study of this critical cytokine in the context of pregnancy.
Collapse
Affiliation(s)
- Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Zhang X, Muglia LJ. Baby's best Foe-riend: Endogenous retroviruses and the evolution of eutherian reproduction. Placenta 2021; 113:1-7. [PMID: 33685754 DOI: 10.1016/j.placenta.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022]
Abstract
High maternal investment in pregnancy and the perinatal period are prominent features of eutherian reproduction. Viviparity increases offspring survival, favoring high maternal prenatal investment. Matrotrophy through the placenta reduces maternal investment at early pregnancy, allowing the mother to abort embryos of subpar quality, therefore reducing resources wastage. On the other hand, intimate maternal-fetal interplay enables the fetus to manipulate maternal physiology to acquire more resources. This parent-offspring conflict likely drives the evolution of eutherian placentation, which is facilitated by the endogenous retroviruses (ERVs), ancient retroviruses that invaded host genome millions of years ago. ERVs bring new genes and novel regulatory elements into host genome, contribute to maternal-fetal tolerance, placenta-specific cell type formation, trophoblast gene expression network rewiring, and the establishment of imprinting. However, retroviruses/ERVs can function as infectious pathogens that interfere with host immune and inflammation pathways and cause genomic instability. In addition, ERVs coopted for host function may contribute to pathogenesis during infections due to their susceptibility to mechanisms activated by the invading pathogens. ERVs have been implicated in multiple perinatal adverse outcomes, therefore, eutherians must have evolved control mechanisms to regulate their function. Here we propose the TRIM family as an important participant of host antiviral defense and a likely candidate that mediates the coevolution of ERVs and their eutherian host. TRIMs have been shown to interact with retroviruses during each step of the infectious cycle. Understanding TRIMs' role in ERV regulation in the placenta may provide insight to both the physiology and pathology of eutherian reproduction.
Collapse
Affiliation(s)
- Xuzhe Zhang
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA; Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Louis J Muglia
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA; Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Burroughs Wellcome Fund, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
13
|
Legault LM, Doiron K, Lemieux A, Caron M, Chan D, Lopes FL, Bourque G, Sinnett D, McGraw S. Developmental genome-wide DNA methylation asymmetry between mouse placenta and embryo. Epigenetics 2020; 15:800-815. [PMID: 32056496 PMCID: PMC7518706 DOI: 10.1080/15592294.2020.1722922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
In early embryos, DNA methylation is remodelled to initiate the developmental program but for mostly unknown reasons, methylation marks are acquired unequally between embryonic and placental cells. To better understand this, we generated high-resolution DNA methylation maps of mouse mid-gestation (E10.5) embryo and placenta. We uncovered specific subtypes of differentially methylated regions (DMRs) that contribute directly to the developmental asymmetry existing between mid-gestation embryonic and placental DNA methylation patterns. We show that the asymmetry occurs rapidly during the acquisition of marks in the post-implanted conceptus (E3.5-E6.5), and that these patterns are long-lasting across subtypes of DMRs throughout prenatal development and in somatic tissues. We reveal that at the peri-implantation stages, the de novo methyltransferase activity of DNMT3B is the main driver of methylation marks on asymmetric DMRs, and that DNMT3B can largely compensate for lack of DNMT3A in the epiblast and extraembryonic ectoderm, whereas DNMT3A can only partially compensate in the absence of DNMT3B. However, as development progresses and as DNMT3A becomes the principal de novo methyltransferase, the compensatory DNA methylation mechanism of DNMT3B on DMRs becomes less effective.
Collapse
Affiliation(s)
- LM Legault
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - K Doiron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
| | - A Lemieux
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - M Caron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - D Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - FL Lopes
- School of Veterinary Medicine, São Paulo State University (Unesp), Aracatuba, Brazil
| | - G Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
- Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - D Sinnett
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Pediatrics, Université De Montréal, Montreal, Canada
| | - S McGraw
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
- Department of Obstetrics and Gynecology, Université De Montréal, Montreal, Canada
| |
Collapse
|
14
|
Abstract
As the maternal–foetal interface, the placenta is essential for the establishment and progression of healthy pregnancy, regulating both foetal growth and maternal adaptation to pregnancy. The evolution and functional importance of genomic imprinting are inextricably linked to mammalian placentation. Recent technological advances in mapping and manipulating the epigenome in embryogenesis in mouse models have revealed novel mechanisms regulating genomic imprinting in placental trophoblast, the physiological implications of which are only just beginning to be explored. This review will highlight important recent discoveries and exciting new directions in the study of placental imprinting. The placenta is essential for healthy pregnancy because it supports the growth of the baby, helps the mother’s body adapt, and provides a connection between mother and the developing baby. Studying gene regulation and the early steps in placental development is challenging in human pregnancy, so mouse models have been key in building our understanding of these processes. In particular, these studies have identified a subset of genes that are essential for placentation, termed imprinted genes. Imprinted genes are those that are expressed from only one copy, depending on whether they were inherited from mom or dad. In this review, I describe recent novel approaches used to study the mechanisms regulating these imprinted genes in mouse models, and I highlight several new discoveries. It has become apparent that the regulation of imprinted genes in placenta is often unique from other tissues and that there are species-specific mechanisms allowing the evolution of new imprinted genes specifically in the placenta.
Collapse
Affiliation(s)
- Courtney W. Hanna
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Hanna CW, Pérez-Palacios R, Gahurova L, Schubert M, Krueger F, Biggins L, Andrews S, Colomé-Tatché M, Bourc’his D, Dean W, Kelsey G. Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol 2019; 20:225. [PMID: 31665063 PMCID: PMC6819472 DOI: 10.1186/s13059-019-1833-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon that allows a subset of genes to be expressed mono-allelically based on the parent of origin and is typically regulated by differential DNA methylation inherited from gametes. Imprinting is pervasive in murine extra-embryonic lineages, and uniquely, the imprinting of several genes has been found to be conferred non-canonically through maternally inherited repressive histone modification H3K27me3. However, the underlying regulatory mechanisms of non-canonical imprinting in post-implantation development remain unexplored. RESULTS We identify imprinted regions in post-implantation epiblast and extra-embryonic ectoderm (ExE) by assaying allelic histone modifications (H3K4me3, H3K36me3, H3K27me3), gene expression, and DNA methylation in reciprocal C57BL/6 and CAST hybrid embryos. We distinguish loci with DNA methylation-dependent (canonical) and independent (non-canonical) imprinting by assaying hybrid embryos with ablated maternally inherited DNA methylation. We find that non-canonical imprints are localized to endogenous retrovirus-K (ERVK) long terminal repeats (LTRs), which act as imprinted promoters specifically in extra-embryonic lineages. Transcribed ERVK LTRs are CpG-rich and located in close proximity to gene promoters, and imprinting status is determined by their epigenetic patterning in the oocyte. Finally, we show that oocyte-derived H3K27me3 associated with non-canonical imprints is not maintained beyond pre-implantation development at these elements and is replaced by secondary imprinted DNA methylation on the maternal allele in post-implantation ExE, while being completely silenced by bi-allelic DNA methylation in the epiblast. CONCLUSIONS This study reveals distinct epigenetic mechanisms regulating non-canonical imprinted gene expression between embryonic and extra-embryonic development and identifies an integral role for ERVK LTR repetitive elements.
Collapse
Affiliation(s)
- Courtney W. Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Lenka Gahurova
- University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Animal Physiology and Genetics, ASCR, Libechov, Czech Republic
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | | | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Present Address: Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Del Gobbo GF, Konwar C, Robinson WP. The significance of the placental genome and methylome in fetal and maternal health. Hum Genet 2019; 139:1183-1196. [PMID: 31555906 DOI: 10.1007/s00439-019-02058-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023]
Abstract
The placenta is a crucial organ for supporting a healthy pregnancy, and defective development or function of the placenta is implicated in a number of complications of pregnancy that affect both maternal and fetal health, including maternal preeclampsia, fetal growth restriction, and spontaneous preterm birth. In this review, we highlight the role of the placental genome in mediating fetal and maternal health by discussing the impact of a variety of genetic alterations, from large whole-chromosome aneuploidies to single-nucleotide variants, on placental development and function. We also discuss the placental methylome in relation to its potential applications for refining diagnosis, predicting pathology, and identifying genetic variants with potential functional significance. We conclude that understanding the influence of the placental genome on common placental-mediated pathologies is critical to improving perinatal health outcomes.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada. .,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
17
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
18
|
Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet 2019; 15:e1008236. [PMID: 31369552 PMCID: PMC6675049 DOI: 10.1371/journal.pgen.1008236] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is the interface between maternal and fetal circulations, integrating maternal and fetal signals to selectively regulate nutrient, gas, and waste exchange, as well as secrete hormones. In turn, the placenta helps create the in utero environment and control fetal growth and development. The unique epigenetic profile of the human placenta likely reflects its early developmental separation from the fetus proper and its role in mediating maternal–fetal exchange that leaves it open to a range of exogenous exposures in the maternal circulation. In this review, we cover recent advances in DNA methylation in the context of placental function and development, as well as the interaction between the pregnancy and the environment.
Collapse
|
19
|
Dunn-Fletcher CE, Muglia LM, Pavlicev M, Wolf G, Sun MA, Hu YC, Huffman E, Tumukuntala S, Thiele K, Mukherjee A, Zoubovsky S, Zhang X, Swaggart KA, Lamm KYB, Jones H, Macfarlan TS, Muglia LJ. Anthropoid primate-specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length. PLoS Biol 2018; 16:e2006337. [PMID: 30231016 PMCID: PMC6166974 DOI: 10.1371/journal.pbio.2006337] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/01/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023] Open
Abstract
Pregnancy and parturition are intricately regulated to ensure successful reproductive outcomes. However, the factors that control gestational length in humans and other anthropoid primates remain poorly defined. Here, we show the endogenous retroviral long terminal repeat transposon-like human element 1B (THE1B) selectively controls placental expression of corticotropin-releasing hormone (CRH) that, in turn, influences gestational length and birth timing. Placental expression of CRH and subsequently prolonged gestational length were found in two independent strains of transgenic mice carrying a 180-kb human bacterial artificial chromosome (BAC) DNA that contained the full length of CRH and extended flanking regions, including THE1B. Restricted deletion of THE1B silenced placental CRH expression and normalized birth timing in these transgenic lines. Furthermore, we revealed an interaction at the 5′ insertion site of THE1B with distal-less homeobox 3 (DLX3), a transcription factor expressed in placenta. Together, these findings suggest that retroviral insertion of THE1B into the anthropoid primate genome may have initiated expression of CRH in placental syncytiotrophoblasts via DLX3 and that this placental CRH is sufficient to alter the timing of birth. The proper timing of delivery is critical during pregnancy; if too early or too late, the baby will be at risk of serious health problems and even death. Corticotropin-releasing hormone (CRH) is a protein that can be detected in maternal blood, and its concentration correlates with the timing of birth. In humans and other anthropoid primates, CRH is made by the placenta, whereas in other mammals, it is produced in a specialized region of the brain. To understand the regulation and evolution of this key protein, we inserted the human CRH gene and nearby regions into the mouse genome, which resulted in human CRH expression in the mouse placenta. Mouse litters that make CRH in their placentas are born later than control mice, showing that CRH can directly affect birth timing. Using our mouse model, we then selectively deleted a remnant of an ancient retrovirus that is normally found in the DNA of anthropoid primates and demonstrated that this specific region controls expression of CRH in the placenta. Deletion of this region also restored normal birth timing in the mice by eliminating CRH production from the placenta. We propose that retroviral regulation of CRH in the placenta may be a mechanism of controlling birth timing in humans and other anthropoid primates.
Collapse
Affiliation(s)
- Caitlin E. Dunn-Fletcher
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (CED); (LJM)
| | - Lisa M. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mihaela Pavlicev
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Elizabeth Huffman
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Shivani Tumukuntala
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Katri Thiele
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Amrita Mukherjee
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Sandra Zoubovsky
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xuzhe Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kayleigh A. Swaggart
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Katherine Y. Bezold Lamm
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Helen Jones
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Todd S. Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis J. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (CED); (LJM)
| |
Collapse
|
20
|
Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, Kabayama Y, Suyama M, Sasaki H, Arima T. Derivation of Human Trophoblast Stem Cells. Cell Stem Cell 2017; 22:50-63.e6. [PMID: 29249463 DOI: 10.1016/j.stem.2017.11.004] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022]
Abstract
Trophoblast cells play an essential role in the interactions between the fetus and mother. Mouse trophoblast stem (TS) cells have been derived and used as the best in vitro model for molecular and functional analysis of mouse trophoblast lineages, but attempts to derive human TS cells have so far been unsuccessful. Here we show that activation of Wingless/Integrated (Wnt) and EGF and inhibition of TGF-β, histone deacetylase (HDAC), and Rho-associated protein kinase (ROCK) enable long-term culture of human villous cytotrophoblast (CT) cells. The resulting cell lines have the capacity to give rise to the three major trophoblast lineages, which show transcriptomes similar to those of the corresponding primary trophoblast cells. Importantly, equivalent cell lines can be derived from human blastocysts. Our data strongly suggest that the CT- and blastocyst-derived cell lines are human TS cells, which will provide a powerful tool to study human trophoblast development and function.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sota Takahashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kenjiro Shirane
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuka Kabayama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
21
|
Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements. G3-GENES GENOMES GENETICS 2016; 6:1911-21. [PMID: 27172225 PMCID: PMC4938645 DOI: 10.1534/g3.116.030379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes.
Collapse
|
22
|
Nam GH, Gim JA, Lee HE, Kim WJ, Jung H, Kim W, Kim HS. Expression and promoter activity of endogenous retroviruses in the Olive flounder (Paralichthys olivaceus). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation of human placental function and pregnancy outcome: considerations for causal inference. Am J Obstet Gynecol 2015; 213:S182-96. [PMID: 26428498 DOI: 10.1016/j.ajog.2015.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetic mechanisms, often defined as regulating gene activity independently of underlying DNA sequence, are crucial for healthy development. The sum total of epigenetic marks within a cell or tissue (the epigenome) is sensitive to environmental influence, and disruption of the epigenome in utero has been associated with adverse pregnancy outcomes. Not surprisingly, given its multifaceted functions and important role in regulating pregnancy outcome, the placenta shows unique epigenetic features. Interestingly however, many of these are only otherwise seen in human malignancy (the pseudomalignant placental epigenome). Epigenetic variation in the placenta is now emerging as a candidate mediator of environmental influence on placental functioning and a key regulator of pregnancy outcome. However, replication of findings is generally lacking, most likely due to small sample sizes and a lack of standardization of analytical approaches. Defining DNA methylation "signatures" in the placenta associated with maternal and fetal outcomes offers tremendous potential to improve pregnancy outcomes, but care must be taken in interpretation of findings. Future placental epigenetic research would do well to address the issues present in epigenetic epidemiology more generally, including careful consideration of sample size, potentially confounding factors, issues of tissue heterogeneity, reverse causation, and the role of genetics in modulating epigenetic profile. The importance of animal or in vitro models in establishing a functional role of epigenetic variation identified in human beings, which is key to establishing causation, should not be underestimated.
Collapse
Affiliation(s)
- Vania Januar
- Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Boris Novakovic
- Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Silvija Cvitic
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Richard Saffery
- Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia; Department of Pediatrics, University of Melbourne, Parkville, Australia.
| |
Collapse
|
24
|
Abstract
This review provides an overview of the unique features of DNA methylation in the human placenta. We discuss the importance of understanding placental development, structure, and function in the interpretation of DNA methylation data. Examples are given of how DNA methylation is important in regulating placental-specific gene expression, including monoallelic expression and X-chromosome inactivation in the placenta. We also discuss studies of global DNA methylation changes in the context of placental pathology and environmental exposures.
Collapse
Affiliation(s)
- Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - E Magda Price
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
25
|
Bae JH, Eo J, Kim TO, Yi JM. Biological changes of transposable elements by radiation: recent progress. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0256-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Novakovic B, Saffery R. Placental pseudo-malignancy from a DNA methylation perspective: unanswered questions and future directions. Front Genet 2013; 4:285. [PMID: 24368911 PMCID: PMC3857887 DOI: 10.3389/fgene.2013.00285] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/26/2013] [Indexed: 11/28/2022] Open
Abstract
The growing fetus is dependent on adequate placental function for delivery of essential nutrients and oxygen, and for waste removal. The placenta also plays an important protective role; shielding the developing baby from the maternal immune system and adverse environmental exposures. Fundamental to these processes is correct invasion of the decidua and remodeling of maternal vasculature, each of which show remarkable parallels to tumorogenesis, with the obvious exception that the former is usually a tightly controlled process. It is not surprising that these physiological similarities are mirrored in gene expression and epigenetic parallels, many not found in any other aspect of human development. In this perspective, we summarize known DNA methylation similarities between placenta and human tumors, and discuss the implications and knowledge gaps associated with these findings. We also speculate on the potential origin of common DNA methylation features in these two disparate aspects of human physiology.
Collapse
Affiliation(s)
- Boris Novakovic
- Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital Parkville, VIC, Australia
| | - Richard Saffery
- Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital Parkville, VIC, Australia ; Department of Paediatrics, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
27
|
Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, Kim HS. Retroelements: molecular features and implications for disease. Genes Genet Syst 2013; 88:31-43. [PMID: 23676708 DOI: 10.1266/ggs.88.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic genomes comprise numerous retroelements that have a major impact on the structure and regulation of gene function. Retroelements are regulated by epigenetic controls, and they generate multiple miRNAs that are involved in the induction and progression of genomic instability. Elucidation of the biological roles of retroelements deserves continuous investigation to better understand their evolutionary features and implications for disease.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y, Rando OJ, Birney E, Myers RM, Noble WS, Snyder M, Weng Z. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 2013; 22:1798-812. [PMID: 22955990 PMCID: PMC3431495 DOI: 10.1101/gr.139105.112] [Citation(s) in RCA: 620] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become the dominant technique for mapping transcription factor (TF) binding regions genome-wide. We performed an integrative analysis centered around 457 ChIP-seq data sets on 119 human TFs generated by the ENCODE Consortium. We identified highly enriched sequence motifs in most data sets, revealing new motifs and validating known ones. The motif sites (TF binding sites) are highly conserved evolutionarily and show distinct footprints upon DNase I digestion. We frequently detected secondary motifs in addition to the canonical motifs of the TFs, indicating tethered binding and cobinding between multiple TFs. We observed significant position and orientation preferences between many cobinding TFs. Genes specifically expressed in a cell line are often associated with a greater occurrence of nearby TF binding in that cell line. We observed cell-line-specific secondary motifs that mediate the binding of the histone deacetylase HDAC2 and the enhancer-binding protein EP300. TF binding sites are located in GC-rich, nucleosome-depleted, and DNase I sensitive regions, flanked by well-positioned nucleosomes, and many of these features show cell type specificity. The GC-richness may be beneficial for regulating TF binding because, when unoccupied by a TF, these regions are occupied by nucleosomes in vivo. We present the results of our analysis in a TF-centric web repository Factorbook (http://factorbook.org) and will continually update this repository as more ENCODE data are generated.
Collapse
Affiliation(s)
- Jie Wang
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Novakovic B, Saffery R. The ever growing complexity of placental epigenetics – Role in adverse pregnancy outcomes and fetal programming. Placenta 2012; 33:959-70. [DOI: 10.1016/j.placenta.2012.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/02/2012] [Accepted: 10/06/2012] [Indexed: 02/01/2023]
|
30
|
Lee SA, Ding C. The dysfunctional placenta epigenome: causes and consequences. Epigenomics 2012; 4:561-9. [DOI: 10.2217/epi.12.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The placenta is a fetal–maternal endocrine organ responsible for ensuring proper fetal development throughout pregnancy. Adverse insults to the intrauterine environment often lead to expression level changes in placental genes, many of which are epigenetically regulated by DNA methylation, histone modifications and ncRNA interference. These epigenetic alterations may cause placental dysfunction, resulting in offspring of low birthweight owing to adverse pregnancy complications such as intrauterine growth restriction. Numerous epidemiological studies have shown a strong correlation between low birthweight and increased risk of developing metabolic diseases and neurological imbalances in adulthood, and in subsequent generations, indicating that epigenetic regulation of gene expression can be propagated stably with long-term effects on health. This article provides an overview of the various environmental factors capable of inducing detrimental changes to the placental epigenome, as well as the corresponding mechanisms that prime the offspring for onset of disease later in life.
Collapse
Affiliation(s)
- Sue-Ann Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A*STAR), Brenner Center for Molecular Medicine, 30 Medical Drive, Singapore, 117609
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A*STAR), Brenner Center for Molecular Medicine, 30 Medical Drive, Singapore, 117609
| |
Collapse
|
31
|
Kim HS. Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol Cells 2012; 33:539-44. [PMID: 22562360 PMCID: PMC3887755 DOI: 10.1007/s10059-012-0037-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022] Open
Abstract
Human endogenous retroviruses (HERVs) mediate structural variation and genomic instability based on their multiple copy number, inherent ability to mobilize via reverse transcriptase, and high sequence similarity. Moreover, they undergo multiple amplification and retrotransposition events, resulting in the widespread distribution of complete or partial retroviral sequences throughout the primate genome. As such, HERV elements have played important biological roles in genome evolution, and their long terminal repeat (LTR) elements contain numerous regulatory sequences, including effective promoters, enhancers, polyadenylation signals, and transcription factorbinding sites. Lastly, HERV elements are capable of influencing the expression of neighboring genes, a process that also contributed to primate evolution.
Collapse
Affiliation(s)
- Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea.
| |
Collapse
|