1
|
Maya-Rodríguez LM, Gómez-Verduzco G, Trigo-Tavera FJ, Moreno-Fierros L, Rojas-Trejo V, Miranda-Morales RE. A comparative in silico analysis of the vlhA gene regions of Mycoplasma gallisepticum and Mycoplasma synoviae isolates from commercial hen farms in Mexico. Access Microbiol 2025; 7:000760.v4. [PMID: 39990596 PMCID: PMC11845793 DOI: 10.1099/acmi.0.000760.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Avian mycoplasmosis, caused by Mycoplasma synoviae and Mycoplasma gallisepticum, poses significant economic challenges due to respiratory issues, reduced egg production and soft eggshells. The variable lipoprotein haemagglutinin (VlhA) protein, crucial for pathogenicity, comprises conserved (MSPB) and variable (MSPA) regions. The aim of this study was to identify the conserved region of vlhA gene sequences in field strain. We examined vlhA sequences from field strains collected in central Mexico (Jalisco and Mexico City). Specifically, we analysed 124 deformed eggs and 10 laying hens from 9 farms with Hy-line and Bovans breeds. Using PCR targeting the mgc2 and 16S rRNA genes, we characterized 24 field strains, 4 of which were Myc. synoviae and 20 of which were Myc. gallisepticum. We analysed the vlhA regions, based on the AF035624.1 reference sequence, with American Type Culture Collection strains as positive controls. Additionally, we validated the PCR with 20 negative samples from Mycoplasma isolation without the need for cultivation. We identified two amplification regions: MSPB and MSPA. Bioanalysis revealed relationships between our field samples and avian Mycoplasma sequences in GenBank, alongside similarities with lipoproteins present in Acholeplasma laidlawii PG8 and Escherichia coli. Given the significance of the VlhA protein in pathogenicity and immune evasion, the identified conserved sequences hold potential as therapeutic targets and for phylogenetic studies.
Collapse
Affiliation(s)
- Linda M. Maya-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Francisco J. Trigo-Tavera
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina (UBIMED), Los Reyes Ixtacala, Universidad Nacional Autónoma de México, Tlanepantla de Baz, 54090, Mexico
| | - Verónica Rojas-Trejo
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Rosa Elena Miranda-Morales
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
2
|
McClain MS, Boeglin WE, Algood HMS, Brash AR. Fatty acids of Helicobacter pylori lipoproteins CagT and Lpp20. Microbiol Spectr 2024; 12:e0047024. [PMID: 38501821 PMCID: PMC11064636 DOI: 10.1128/spectrum.00470-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.
Collapse
Affiliation(s)
- Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William E. Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Alan R. Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Takahashi D, Miyata M. Sequence analyses of a lipoprotein conserved with bacterial actins responsible for swimming motility of wall-less helical Spiroplasma. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000713. [PMID: 37033705 PMCID: PMC10074174 DOI: 10.17912/micropub.biology.000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023]
Abstract
Spiroplasma is a genus of pathogenic or commensal cell-wall-deficient helical bacterium. Spiroplasma -specific protein fibril and five classes of bacterial actins, MreB1-5, are involved in a helical ribbon structure responsible for helical-cell morphology and swimming motility. A gene for a hypothetical protein-SPE_1229, 7th protein-has been found in the locus coding mreB s. In this study, we characterized the 7th protein using in silico methods and found that it could be a lipoprotein whose gene is encoded downstream of mreB3 and conserved in a clade of Spiroplasma .
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
- Correspondence to: Makoto Miyata (
)
| |
Collapse
|
4
|
Venkataranganayaka Abhilasha K, Kedihithlu Marathe G. Bacterial lipoproteins in sepsis. Immunobiology 2021; 226:152128. [PMID: 34488139 DOI: 10.1016/j.imbio.2021.152128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
Bacterial lipoproteins are membrane proteins derived from both gram-negative and gram-positive bacteria. They seem to have diverse functions not only on bacterial growth, but also play an important role in host's virulence. Bacterial lipoproteins exert their action on host immune cells via TLR2/1 or TLR2/6. Therefore, bacterial lipoproteins also need to be considered while addressing bacterial pathogenicity besides classical bacterial endotoxin like LPS and other microbial associated molecular patterns such as LTA, and peptidoglycans. In this mini-review, we provide an overview of general bacterial lipoprotein biosynthesis and the need to understand the lipoprotein-mediated pathogenicity in diseases like sepsis.
Collapse
Affiliation(s)
- Kandahalli Venkataranganayaka Abhilasha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
5
|
Garcion C, Béven L, Foissac X. Comparison of Current Methods for Signal Peptide Prediction in Phytoplasmas. Front Microbiol 2021; 12:661524. [PMID: 33841387 PMCID: PMC8026896 DOI: 10.3389/fmicb.2021.661524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although phytoplasma studies are still hampered by the lack of axenic cultivation methods, the availability of genome sequences allowed dramatic advances in the characterization of the virulence mechanisms deployed by phytoplasmas, and highlighted the detection of signal peptides as a crucial step to identify effectors secreted by phytoplasmas. However, various signal peptide prediction methods have been used to mine phytoplasma genomes, and no general evaluation of these methods is available so far for phytoplasma sequences. In this work, we compared the prediction performance of SignalP versions 3.0, 4.0, 4.1, 5.0 and Phobius on several sequence datasets originating from all deposited phytoplasma sequences. SignalP 4.1 with specific parameters showed the most exhaustive and consistent prediction ability. However, the configuration of SignalP 4.1 for increased sensitivity induced a much higher rate of false positives on transmembrane domains located at N-terminus. Moreover, sensitive signal peptide predictions could similarly be achieved by the transmembrane domain prediction ability of TMHMM and Phobius, due to the relatedness between signal peptides and transmembrane regions. Beyond the results presented herein, the datasets assembled in this study form a valuable benchmark to compare and evaluate signal peptide predictors in a field where experimental evidence of secretion is scarce. Additionally, this study illustrates the utility of comparative genomics to strengthen confidence in bioinformatic predictions.
Collapse
Affiliation(s)
- Christophe Garcion
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Laure Béven
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Xavier Foissac
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| |
Collapse
|
6
|
Flow-Cytometric Method for Viability Analysis of Mycoplasma gallisepticum and Other Cell-Culture-Contaminant Mollicutes. Curr Microbiol 2020; 78:67-77. [PMID: 33159562 DOI: 10.1007/s00284-020-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Mycoplasma is the smallest self-replicating bacteria, figuring as common contaminant of eukaryotic cell cultures. Production inputs and operator's manipulation seem to be the main sources of such contamination. Many analytical approaches have been applied for mycoplasma detection in cell cultures and also in biological products. However, unless they were validated, only indicator cell culture and bacteriological culture are considered as compendial methods for quality control of biological products. Nano-flow cytometry has been pointed out as an alternative technique for addressing prokaryotic and eukaryotic cell viability being a substantial tool for reference material production. In this study, a viability-flow-cytometry assay was standardized for M. gallisepticum and then applied to other cell-culture-contaminant mycoplasmas. For this, M. galliseticum's growth rate was observed and different treatments were evaluated to establish low viability cultures (cell death-induced control). Distinct viability markers and their ideal concentrations (titration) were appraised. Ethanol treatment showed to be the best death-inducing control. CFDA and TOPRO markers revealed to be the best choice for detecting live and dead mycoplasma frequencies, respectively. The standardized methodology was applied to Mycoplasma arginini, M. hyorhinis, M. orale, Spiroplasma citri and Acholeplasma laidlawii. Significant statistical difference was observed in the percentage of viable cells in comparison to ethanol treatment for A. laidlawii in CFDA and in both markers for M. gallisepticum, M. hyorhinis and S. citri. In summary, we standardized a flow cytometry assay for assessing M. gallisepticum - and potentially other species - viability and ultimately applied for reference material production improving the quality control of biological products.
Collapse
|
7
|
Forrest S, Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog 2020; 103:36850420964317. [PMID: 33148128 PMCID: PMC10450907 DOI: 10.1177/0036850420964317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein secretion is almost universally employed by bacteria. Some proteins are retained on the cell surface, whereas others are released into the extracellular milieu, often playing a key role in virulence. In this review, we discuss the diverse types and potential functions of post-translational modifications (PTMs) occurring to extracellular bacterial proteins.
Collapse
Affiliation(s)
- Suzanne Forrest
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Dautin N, Argentini M, Mohiman N, Labarre C, Cornu D, Sago L, Chami M, Dietrich C, de Sousa d'Auria C, Houssin C, Masi M, Salmeron C, Bayan N. Role of the unique, non-essential phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2020; 166:759-776. [PMID: 32490790 DOI: 10.1099/mic.0.000937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacterial lipoproteins are secreted proteins that are post-translationally lipidated. Following synthesis, preprolipoproteins are transported through the cytoplasmic membrane via the Sec or Tat translocon. As they exit the transport machinery, they are recognized by a phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt), which converts them to prolipoproteins by adding a diacylglyceryl group to the sulfhydryl side chain of the invariant Cys+1 residue. Lipoprotein signal peptidase (LspA or signal peptidase II) subsequently cleaves the signal peptide, liberating the α-amino group of Cys+1, which can eventually be further modified. Here, we identified the lgt and lspA genes from Corynebacterium glutamicum and found that they are unique but not essential. We found that Lgt is necessary for the acylation and membrane anchoring of two model lipoproteins expressed in this species: MusE, a C. glutamicum maltose-binding lipoprotein, and LppX, a Mycobacterium tuberculosis lipoprotein. However, Lgt is not required for these proteins' signal peptide cleavage, or for LppX glycosylation. Taken together, these data show that in C. glutamicum the association of some lipoproteins with membranes through the covalent attachment of a lipid moiety is not essential for further post-translational modification.
Collapse
Affiliation(s)
- Nathalie Dautin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Present address: Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Manuela Argentini
- Present address: Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Niloofar Mohiman
- Present address: Curakliniken, Erikslustvägen 22, 217 73 Malmö, Sweden.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cécile Labarre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Mohamed Chami
- CBioEM lab, Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Christiane Dietrich
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Célia de Sousa d'Auria
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christine Houssin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Muriel Masi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christophe Salmeron
- Present address: Observatoire Océanologique de Banyuls Sur Mer, FR 3724-Laboratoire Arago - Sorbonne Université / CNRS, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nicolas Bayan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
9
|
Armbruster KM, Meredith TC. Enrichment of Bacterial Lipoproteins and Preparation of N-terminal Lipopeptides for Structural Determination by Mass Spectrometry. J Vis Exp 2018. [PMID: 29863685 DOI: 10.3791/56842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lipoproteins are important constituents of the bacterial cell envelope and potent activators of the mammalian innate immune response. Despite their significance to both cell physiology and immunology, much remains to be discovered about novel lipoprotein forms, how they are synthesized, and the effect of the various forms on host immunity. To enable thorough studies on lipoproteins, this protocol describes a method for bacterial lipoprotein enrichment and preparation of N-terminal tryptic lipopeptides for structural determination by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Expanding on an established Triton X-114 phase partitioning method for lipoprotein extraction and enrichment from the bacterial cell membrane, the protocol includes additional steps to remove non-lipoprotein contaminants, increasing lipoprotein yield and purity. Since lipoproteins are commonly used in Toll-like receptor (TLR) assays, it is critical to first characterize the N-terminal structure by MALDI-TOF MS. Herein, a method is presented to isolate concentrated hydrophobic peptides enriched in N-terminal lipopeptides suitable for direct analysis by MALDI-TOF MS/MS. Lipoproteins that have been separated by Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) are transferred to a nitrocellulose membrane, digested in situ with trypsin, sequentially washed to remove polar tryptic peptides, and finally eluted with chloroform-methanol. When coupled with MS of the more polar trypsinized peptides from wash solutions, this method provides the ability to both identify the lipoprotein and characterize its N-terminus in a single experiment. Intentional sodium adduct formation can also be employed as a tool to promote more structurally informative fragmentation spectra. Ultimately, enrichment of lipoproteins and determination of their N-terminal structures will permit more extensive studies on this ubiquitous class of bacterial proteins.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Biochemistry and Molecular Biology, Pennsylvania State University
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, Pennsylvania State University;
| |
Collapse
|
10
|
Identification of the Lyso-Form N-Acyl Intramolecular Transferase in Low-GC Firmicutes. J Bacteriol 2017; 199:JB.00099-17. [PMID: 28320885 DOI: 10.1128/jb.00099-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Bacterial lipoproteins are embedded in the cell membrane of both Gram-positive and Gram-negative bacteria, where they serve numerous functions central to cell envelope physiology. Lipoproteins are tethered to the membrane by an N-acyl-S-(mono/di)-acyl-glyceryl-cysteine anchor that is variously acylated depending on the genus. In several low-GC, Gram-positive firmicutes, a monoacyl-glyceryl-cysteine with an N-terminal fatty acid (known as the lyso form) has been reported, though how it is formed is unknown. Here, through an intergenic complementation rescue assay in Escherichia coli, we report the identification of a common orthologous transmembrane protein in both Enterococcus faecalis and Bacillus cereus that is capable of forming lyso-form lipoproteins. When deleted from the native host, lipoproteins remain diacylated with a free N terminus, as maturation to the N-acylated lyso form is abolished. Evidence is presented suggesting that the previously unknown gene product functions through a novel intramolecular transacylation mechanism, transferring a fatty acid from the diacylglycerol moiety to the α-amino group of the lipidated cysteine. As such, the discovered gene has been named lipoprotein intramolecular transacylase (lit), to differentiate it from the gene for the intermolecular N-acyltransferase (lnt) involved in triacyl lipoprotein biosynthesis in Gram-negative organisms.IMPORTANCE This study identifies a new enzyme, conserved among low-GC, Gram-positive bacteria, that is involved in bacterial lipoprotein biosynthesis and synthesizes lyso-form lipoproteins. Its discovery is an essential first step in determining the physiological role of N-terminal lipoprotein acylation in Gram-positive bacteria and how these modifications impact bacterial cell envelope function.
Collapse
|
11
|
Bastos PAD, da Costa JP, Vitorino R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J Proteomics 2016; 152:254-275. [PMID: 27888141 DOI: 10.1016/j.jprot.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a key bacterial feature that holds the capability to modulate protein function and responses to environmental cues. Until recently, their role in the regulation of prokaryotic systems has been largely neglected. However, the latest developments in mass spectrometry-based proteomics have allowed an unparalleled identification and quantification of proteins and peptides that undergo PTMs in bacteria, including in species which directly or indirectly affect human health. Herein, we address this issue by carrying out the largest and most comprehensive global pooling and comparison of PTM peptides and proteins from bacterial species performed to date. Data was collected from 91 studies relating to PTM bacterial peptides or proteins identified by mass spectrometry-based methods. The present analysis revealed that there was a considerable overlap between PTMs across species, especially between acetylation and other PTMs, particularly succinylation. Phylogenetically closer species may present more overlapping phosphoproteomes, but environmental triggers also contribute to this proximity. PTMs among bacteria were found to be extremely versatile and diverse, meaning that the same protein may undergo a wide variety of different modifications across several species, but it could also suffer different modifications within the same species.
Collapse
Affiliation(s)
- Paulo André Dias Bastos
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Chemistry, University of Aveiro, Portugal
| | | | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
13
|
Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene. Sci Rep 2016; 6:29495. [PMID: 27404047 PMCID: PMC4941574 DOI: 10.1038/srep29495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023] Open
Abstract
Bacterial lipoproteins are extracellular proteins tethered to cell membranes by covalently attached lipids. Deleting the lipoprotein signal peptidase (lsp) gene in Streptomyces coelicolor results in growth and developmental defects that cannot be restored by reintroducing lsp. This led us to hypothesise that lsp is essential and that the lsp mutant we isolated previously had acquired compensatory secondary mutations. Here we report resequencing of the genomes of wild-type M145 and the cis-complemented ∆lsp mutant (BJT1004) to map and identify these secondary mutations but we show that they do not increase the efficiency of disrupting lsp and are not lsp suppressors. We provide evidence that they are induced by introducing the cosmid St4A10∆lsp, as part of ReDirect PCR mutagenesis protocol, which transiently duplicates a number of important cell division genes. Disruption of lsp using a suicide vector (which does not result in gene duplication) still results in growth and developmental delays and we conclude that loss of Lsp function results in developmental defects due to the loss of all lipoproteins from the cell membrane. Significantly, our results also indicate the use of cosmid libraries for the genetic manipulation of bacteria can lead to phenotypes not necessarily linked to the gene(s) of interest.
Collapse
|
14
|
Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification—How, when and why? FEMS Microbiol Rev 2015; 39:246-61. [DOI: 10.1093/femsre/fuu006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Bumgardner EA, Kittichotirat W, Bumgarner RE, Lawrence PK. Comparative genomic analysis of seven Mycoplasma hyosynoviae strains. Microbiologyopen 2015; 4:343-359. [PMID: 25693846 PMCID: PMC4398514 DOI: 10.1002/mbo3.242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycoplasma hyosynoviae can result in debilitating arthritis in pigs, particularly those aged 10 weeks or older. Strategies for controlling this pathogen are becoming increasingly important due to the rise in the number of cases of arthritis that have been attributed to infection in recent years. In order to begin to develop interventions to prevent arthritis caused by M. hyosynoviae, more information regarding the specific proteins and potential virulence factors that its genome encodes was needed. However, the genome of this emerging swine pathogen had not been sequenced previously. In this report, we present a comparative analysis of the genomes of seven strains of M. hyosynoviae isolated from different locations in North America during the years 2010 to 2013. We identified several putative virulence factors that may contribute to the ability of this pathogen to adhere to host cells. Additionally, we discovered several prophage genes present within the genomes of three strains that show significant similarity to MAV1, a phage isolated from the related species, M. arthritidis. We also identified CRISPR-Cas and type III restriction and modification systems present in two strains that may contribute to their ability to defend against phage infection.
Collapse
Affiliation(s)
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant, Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
| | - Roger E Bumgarner
- Department of Microbiology, University of Washington, Seattle, Washington
| | | |
Collapse
|
16
|
Gélis-Jeanvoine S, Lory S, Oberto J, Buddelmeijer N. Residues located on membrane-embedded flexible loops are essential for the second step of the apolipoprotein N-acyltransferase reaction. Mol Microbiol 2015; 95:692-705. [PMID: 25471278 DOI: 10.1111/mmi.12897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Apolipoprotein N-acyltransferase (Lnt) is an essential membrane-bound enzyme that catalyzes the third and last step in the post-translational modification of bacterial lipoproteins. In order to identify essential residues implicated in substrate recognition and/or binding we screened for non-functional variants of Lnt obtained by error-prone polymerase chain reaction in a complementation assay using a lnt depletion strain. Mutations included amino acid substitutions in the active site and of residues located on flexible loops in the catalytic periplasmic domain. All, but one mutation, led to the formation of the thioester acyl-enzyme intermediate and to the accumulation of apo-Lpp, suggesting that these residues are involved in the second step of the reaction. A large cytoplasmic loop contains a highly conserved region and two hydrophobic segments. Accessibility analysis to alkylating reagents of substituted cysteine residues introduced in this region demonstrated that the hydrophobic segments do not completely span the membrane. Two residues in the highly conserved cytoplasmic region were shown to be essential for Lnt function. Together, our data suggest that amino acids located on flexible cytoplasmic and periplasmic loops, predicted to be membrane embedded, are required for efficient N-acylation of lipoproteins.
Collapse
Affiliation(s)
- Sébastien Gélis-Jeanvoine
- Institut Pasteur, Biology and Genetics of the Bacterial Cell Wall Unit, Inserm Group Avenir, 28 rue du docteur Roux, Paris, F-75724 cedex 15, France
| | | | | | | |
Collapse
|
17
|
Chernov VM, Mouzykantov AA, Baranova NB, Medvedeva ES, Grygorieva TY, Trushin MV, Vishnyakov IE, Sabantsev AV, Borchsenius SN, Chernova OA. Extracellular membrane vesicles secreted by mycoplasma Acholeplasma laidlawii PG8 are enriched in virulence proteins. J Proteomics 2014; 110:117-28. [PMID: 25088052 DOI: 10.1016/j.jprot.2014.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/18/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Mycoplasmas (class Mollicutes), the smallest prokaryotes capable of self-replication, as well as Archaea, Gram-positive and Gram-negative bacteria constitutively produce extracellular vesicles (EVs). However, little is known regarding the content and functions of mycoplasma vesicles. Here, we present for the first time a proteomics-based characterisation of extracellular membrane vesicles from Acholeplasma laidlawii PG8. The ubiquitous mycoplasma is widespread in nature, found in humans, animals and plants, and is the causative agent of phytomycoplasmoses and the predominant contaminant of cell cultures. Taking a proteomics approach using LC-ESI-MS/MS, we identified 97 proteins. Analysis of the identified proteins indicated that A. laidlawii-derived EVs are enriched in virulence proteins that may play critical roles in mycoplasma-induced pathogenesis. Our data will help to elucidate the functions of mycoplasma-derived EVs and to develop effective methods to control infections and contaminations of cell cultures by mycoplasmas. In the present study, we have documented for the first time the proteins in EVs secreted by mycoplasma vesicular proteins identified in this study are likely involved in the adaptation of bacteria to stressors, survival in microbial communities and pathogen-host interactions. These findings suggest that the secretion of EVs is an evolutionally conserved and universal process that occurs in organisms from the simplest wall-less bacteria to complex organisms and indicate the necessity of developing new approaches to control infects.
Collapse
Affiliation(s)
- Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia; Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Natalia B Baranova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Elena S Medvedeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Tatiana Yu Grygorieva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Maxim V Trushin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia; Kazan (Volga Region) Federal University, Kazan, Russia.
| | | | - Anton V Sabantsev
- Institute for Nanobiotechnologies, Saint Petersburg State Polytechnical University, St. Petersburg, Russia
| | | | - Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia; Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
18
|
Lichti CF, Wildburger NC, Emmett MR, Mostovenko E, Shavkunov AS, Strain SK, Nilsson CL. Post-translational Modifications in the Human Proteome. TRANSLATIONAL BIOINFORMATICS 2014. [DOI: 10.1007/978-94-017-9202-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Brülle JK, Tschumi A, Sander P. Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG_2070c. BMC Microbiol 2013; 13:223. [PMID: 24093492 PMCID: PMC3850990 DOI: 10.1186/1471-2180-13-223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022] Open
Abstract
Background Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid. Results We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed. Conclusions Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria.
Collapse
Affiliation(s)
- Juliane K Brülle
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006, Zurich, Switzerland.
| | | | | |
Collapse
|
20
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
21
|
Nakayama H, Kurokawa K, Lee BL. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 2012; 279:4247-68. [PMID: 23094979 DOI: 10.1111/febs.12041] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/02/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Abstract
Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor onto bacterial cell membranes. These proteins play important roles in a wide variety of bacterial physiological processes, including virulence, and induce innate immune reactions by functioning as ligands of the mammalian Toll-like receptor 2. We review recent advances in our understanding of bacterial lipoprotein structure, biosynthesis and structure-function relationships between bacterial lipoproteins and Toll-like receptor 2. Notably, 40 years after the first report of the triacyl structure of Braun's lipoprotein in Escherichia coli, recent intensive MS-based analyses have led to the discovery of three new lipidated structures of lipoproteins in monoderm bacteria: the lyso, N-acetyl and peptidyl forms. Moreover, the bacterial lipoprotein structure is considered to be constant in each bacterium; however, lipoprotein structures in Staphylococcus aureus vary between the diacyl and triacyl forms depending on the environmental conditions. Thus, the lipidation state of bacterial lipoproteins, particularly in monoderm bacteria, is more complex than previously assumed.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
22
|
Mohiman N, Argentini M, Batt SM, Cornu D, Masi M, Eggeling L, Besra G, Bayan N. The ppm operon is essential for acylation and glycosylation of lipoproteins in Corynebacterium glutamicum. PLoS One 2012; 7:e46225. [PMID: 23029442 PMCID: PMC3460810 DOI: 10.1371/journal.pone.0046225] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp) and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt). The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2) involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown. Results In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX) in C. glutamicum Δppm1 and Δppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the Δppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was overexpressed. Conclusion Together, these results show for the first time that Cg-Ppm1 (Ppm synthase) and Cg-Ppm2 (Lnt) operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.
Collapse
Affiliation(s)
- Niloofar Mohiman
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 8619, Orsay, France
| | - Manuela Argentini
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles, Gif sur Yvette, France
| | - Sarah M. Batt
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - David Cornu
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles, Gif sur Yvette, France
| | - Muriel Masi
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 8619, Orsay, France
| | | | - Gurdyal Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicolas Bayan
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 8619, Orsay, France
- * E-mail:
| |
Collapse
|
23
|
N
-Acylation of Lipoproteins: Not When Sour. J Bacteriol 2012; 194:3297-8. [DOI: 10.1128/jb.00441-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 2012; 3:163-70. [PMID: 22410786 DOI: 10.1007/s13238-012-2023-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial lipoproteins are proteins that are post-translationally modified with a diacylglyceride at an N-terminal cysteine, which serves to tether these proteins to the outer face of the plasma membrane or to the outer membrane. This paper reviews recent insights into the enzymology of bacterial lipoprotein biosynthesis and localization. Moreover, we use bioinformatic analyses of bacterial lipoprotein signal peptide features and of the key biosynthetic enzymes to consider the distribution of lipoprotein biosynthesis at the phylum level. These analyses support the important conclusion that lipoprotein biosynthesis is a fundamental pathway utilized across the domain bacteria. Moreover, with the exception of a small number of sequences likely to derive from endosymbiont genomes, the enzymes of bacterial lipoprotein biosynthesis appear unique to bacteria, making this pathway an attractive target for the development of novel antimicrobials. Whilst lipoproteins with comparable signal peptide features are encoded in the genomes of Archaea, it is clear that these lipoproteins have a distinctive biosynthetic pathway that has yet to be characterized.
Collapse
|
25
|
Sheldon JR, Heinrichs DE. The iron-regulated staphylococcal lipoproteins. Front Cell Infect Microbiol 2012; 2:41. [PMID: 22919632 PMCID: PMC3417571 DOI: 10.3389/fcimb.2012.00041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/13/2012] [Indexed: 01/01/2023] Open
Abstract
Lipoproteins fulfill diverse roles in antibiotic resistance, adhesion, protein secretion, signaling and sensing, and many also serve as the substrate binding protein (SBP) partner to ABC transporters for the acquisition of a diverse array of nutrients including peptides, sugars, and scarcely abundant metals. In the staphylococci, the iron-regulated SBPs are significantly upregulated during iron starvation and function to sequester and deliver iron into the bacterial cell, enabling staphylococci to circumvent iron restriction imposed by the host environment. Accordingly, this subset of lipoproteins has been implicated in staphylococcal pathogenesis and virulence. Lipoproteins also activate the host innate immune response, triggered through Toll-like receptor-2 (TLR2) and, notably, the iron-regulated subset of lipoproteins are particularly immunogenic. In this review, we discuss the iron-regulated staphylococcal lipoproteins with regard to their biogenesis, substrate specificity, and impact on the host innate immune response.
Collapse
Affiliation(s)
- Jessica R Sheldon
- Department of Microbiology and Immunology, Western University, London ON, Canada
| | | |
Collapse
|
26
|
Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus. J Bacteriol 2012; 194:3299-306. [PMID: 22467779 DOI: 10.1128/jb.00314-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial lipoproteins are believed to exist in only one specific lipid-modified structure, such as the diacyl form or the triacyl form, in each bacterium. In the case of Staphylococcus aureus, recent extensive matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis revealed that S. aureus lipoproteins exist in the α-aminoacylated triacyl form. Here, we discovered conditions that induce the accumulation of diacyl lipoproteins that lack α-aminoacylation in S. aureus. The accumulation of diacyl lipoproteins required a combination of conditions, including acidic pH and a post-logarithmic-growth phase. High temperatures and high salt concentrations additively accelerated the accumulation of the diacyl lipoprotein form. Following a post-logarithmic-growth phase where S. aureus MW2 cells were grown at pH 6, SitC lipoprotein was found almost exclusively in its diacyl structure rather than in its triacyl structure. This is the first report showing that the environment mediates lipid-modified structural alterations of bacterial lipoproteins.
Collapse
|
27
|
Kurokawa K, Ryu KH, Ichikawa R, Masuda A, Kim MS, Lee H, Chae JH, Shimizu T, Saitoh T, Kuwano K, Akira S, Dohmae N, Nakayama H, Lee BL. Novel bacterial lipoprotein structures conserved in low-GC content gram-positive bacteria are recognized by Toll-like receptor 2. J Biol Chem 2012; 287:13170-81. [PMID: 22303020 DOI: 10.1074/jbc.m111.292235] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial lipoproteins/lipopeptides inducing host innate immune responses are sensed by mammalian Toll-like receptor 2 (TLR2). These bacterial lipoproteins are structurally divided into two groups, diacylated or triacylated lipoproteins, by the absence or presence of an amide-linked fatty acid. The presence of diacylated lipoproteins has been predicted in low-GC content gram-positive bacteria and mycoplasmas based on the absence of one modification enzyme in their genomes; however, we recently determined triacylated structures in low-GC gram-positive Staphylococcus aureus, raising questions about the actual lipoprotein structure in other low-GC content gram-positive bacteria. Here, through intensive MS analyses, we identified a novel and unique bacterial lipoprotein structure containing an N-acyl-S-monoacyl-glyceryl-cysteine (named the lyso structure) from low-GC gram-positive Enterococcus faecalis, Bacillus cereus, Streptococcus sanguinis, and Lactobacillus bulgaricus. Two of the purified native lyso-form lipoproteins induced proinflammatory cytokine production from mice macrophages in a TLR2-dependent and TLR1-independent manner but with a different dependence on TLR6. Additionally, two other new lipoprotein structures were identified. One is the "N-acetyl" lipoprotein structure containing N-acetyl-S-diacyl-glyceryl-cysteine, which was found in five gram-positive bacteria, including Bacillus subtilis. The N-acetyl lipoproteins induced the proinflammatory cytokines through the TLR2/6 heterodimer. The other was identified in a mycoplasma strain and is an unusual diacyl lipoprotein structure containing two amino acids before the lipid-modified cysteine residue. Taken together, our results suggest the existence of novel TLR2-stimulating lyso and N-acetyl forms of lipoproteins that are conserved in low-GC content gram-positive bacteria and provide clear evidence for the presence of yet to be identified key enzymes involved in the bacterial lipoprotein biosynthesis.
Collapse
Affiliation(s)
- Kenji Kurokawa
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J Bacteriol 2012; 194:2142-51. [PMID: 22287519 DOI: 10.1128/jb.06641-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lgt of Escherichia coli catalyzes the transfer of an sn-1,2-diacylglyceryl group from phosphatidylglycerol to prolipoproteins. The enzyme is essential for growth, as demonstrated here by the analysis of an lgt depletion strain. Cell fractionation demonstrated that Lgt is an inner membrane protein. Its membrane topology was determined by fusing Lgt to β-galactosidase and alkaline phosphatase and by substituted cysteine accessibility method (SCAM) studies. The data show that Lgt is embedded in the membrane by seven transmembrane segments, that its N terminus faces the periplasm, and that its C terminus faces the cytoplasm. Highly conserved amino acids in Lgt of both Gram-negative and Gram-positive bacteria were identified. Lgt enzymes are characterized by a so-called Lgt signature motif in which four residues are invariant. Ten conserved residues were replaced with alanine, and the activity of these Lgt variants was analyzed by their ability to complement the lgt depletion strain. Residues Y26, N146, and G154 are absolutely required for Lgt function, and R143, E151, R239, and E243 are important. The results demonstrate that the majority of the essential residues of Lgt are located in the membrane and that the Lgt signature motif faces the periplasm.
Collapse
|
29
|
Reffuveille F, Leneveu C, Chevalier S, Auffray Y, Rincé A. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. MICROBIOLOGY-SGM 2011; 157:3001-3013. [PMID: 21903750 DOI: 10.1099/mic.0.053314-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enterococcus faecalis is a ubiquitous bacterium that is capable of surviving in a broad range of natural environments, including the human host, as either a natural commensal or an opportunistic pathogen involved in severe hospital-acquired infections. How such opportunistic pathogens cause fatal infections is largely unknown but it is likely that they are equipped with sophisticated systems to perceive external signals and interact with eukaryotic cells. Accordingly, being partially exposed at the cell exterior, some surface-associated proteins are involved in several steps of the infection process. Among them are lipoproteins, representing about 25 % of the surface-associated proteins, which could play a major role in bacterial virulence processes. This review focuses on the identification of 90 lipoprotein-encoding genes in the genome of the E. faecalis V583 clinical strain and their putative roles, and provides a transcriptional comparison of microarray data performed in environmental conditions including blood and urine. Taken together, these data suggest a potential involvement of lipoproteins in E. faecalis virulence, making them serious candidates for vaccine production.
Collapse
Affiliation(s)
- Fany Reffuveille
- USC INRA 2017, Microbiologie de l'Environnement, EA 956, Université de Caen, France
| | - Charlène Leneveu
- Laboratoire de Microbiologie du Froid Signaux et Micro-Environnement (LMDF-SME), UPRES EA4312, Université de Rouen, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid Signaux et Micro-Environnement (LMDF-SME), UPRES EA4312, Université de Rouen, France
| | - Yanick Auffray
- USC INRA 2017, Microbiologie de l'Environnement, EA 956, Université de Caen, France
| | - Alain Rincé
- USC INRA 2017, Microbiologie de l'Environnement, EA 956, Université de Caen, France
| |
Collapse
|
30
|
Abstract
We present the complete genome sequence and proteogenomic map for Acholeplasma laidlawii PG-8A (class Mollicutes, order Acholeplasmatales, family Acholeplasmataceae). The genome of A. laidlawii is represented by a single 1,496,992-bp circular chromosome with an average G+C content of 31 mol%. This is the longest genome among the Mollicutes with a known nucleotide sequence. It contains genes of polymerase type I, SOS response, and signal transduction systems, as well as RNA regulatory elements, riboswitches, and T boxes. This demonstrates a significant capability for the regulation of gene expression and mutagenic response to stress. Acholeplasma laidlawii and phytoplasmas are the only Mollicutes known to use the universal genetic code, in which UGA is a stop codon. Within the Mollicutes group, only the sterol-nonrequiring Acholeplasma has the capacity to synthesize saturated fatty acids de novo. Proteomic data were used in the primary annotation of the genome, validating expression of many predicted proteins. We also detected posttranslational modifications of A. laidlawii proteins: phosphorylation and acylation. Seventy-four candidate phosphorylated proteins were found: 16 candidates are proteins unique to A. laidlawii, and 11 of them are surface-anchored or integral membrane proteins, which implies the presence of active signaling pathways. Among 20 acylated proteins, 14 contained palmitic chains, and six contained stearic chains. No residue of linoleic or oleic acid was observed. Acylated proteins were components of mainly sugar and inorganic ion transport systems and were surface-anchored proteins with unknown functions.
Collapse
|