1
|
Fona CMT, Miranda AMM, Jesus MI, Silva VM, Rocha CCS, Costa ACG, Mendes RA. Biomarkers of Pesticide Exposure in a Traditional Brazilian Amazon Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1396. [PMID: 39595663 PMCID: PMC11593667 DOI: 10.3390/ijerph21111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
In 2008, Brazil became the country with the highest pesticide use in the world, with over one billion liters of pesticides applied to crops in 2009. The impacts of these products on public health are wide-ranging. Vast territories are affected, involving different population groups, such as workers in various fields of activity, the population that consumes contaminated food, and people living around factories, such as traditional communities. This study aimed to assess human exposure to pesticides through epidemiological and laboratory data of residents of the Santo Antônio quilombola community in Concórdia do Pará, Amazon region, Brazil. Epidemiological data were collected using a semi-structured questionnaire, which included factors such as sex, age, length of residence, and level of exposure to pesticides. The modified Ellman method was used to assess the activity of cholinesterases, and flow cytometry was performed for cytokine analysis. Analysis of collected blood samples showed that, in most cases, there was no significant reduction in the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) compared to other studies in the scientific literature. Meanwhile, there was an increase in the levels of IFN-γ cytokines, especially IL-6, in all groups. The findings of this study highlight the urgent need for a comprehensive monitoring program, considering that some conditions other than pesticide exposure can alter the activities of the biomarkers used in this study.
Collapse
Affiliation(s)
- Cristal M. T. Fona
- Postgraduate Program in Health Surveillance and Epidemiology, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (C.M.T.F.); (V.M.S.)
| | - Antonio M. M. Miranda
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Maria I. Jesus
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Viviane M. Silva
- Postgraduate Program in Health Surveillance and Epidemiology, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (C.M.T.F.); (V.M.S.)
| | - Cássia C. S. Rocha
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Amilton C. G. Costa
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Rosivaldo A. Mendes
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| |
Collapse
|
2
|
Cao C, Wang K, Wang Y, Liu TB, Rivera A, Xue C. Ubiquitin proteolysis of a CDK-related kinase regulates titan cell formation and virulence in the fungal pathogen Cryptococcus neoformans. Nat Commun 2022; 13:6397. [PMID: 36302775 PMCID: PMC9613880 DOI: 10.1038/s41467-022-34151-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/17/2022] [Indexed: 12/25/2022] Open
Abstract
Fungal pathogens often undergo morphological switches, including cell size changes, to adapt to the host environment and cause disease. The pathogenic yeast Cryptococcus neoformans forms so-called 'titan cells' during infection. Titan cells are large, polyploid, display alterations in cell wall and capsule, and are more resistant to phagocytosis and various types of stress. Titan cell formation is regulated by the cAMP/PKA signal pathway, which is stimulated by the protein Gpa1. Here, we show that Gpa1 is activated through phosphorylation by a CDK-related kinase (Crk1), which is targeted for degradation by an E3 ubiquitin ligase (Fbp1). Strains overexpressing CRK1 or an allele lacking a PEST domain exhibit increased production of titan cells similarly to the fbp1∆ mutant. Conversely, CRK1 deletion results in reduced titan cell production, indicating that Crk1 stimulates titan cell formation. Crk1 phosphorylates Gpa1, which then localizes to the plasma membrane and activates the cAMP/PKA signal pathway to induce cell enlargement. Furthermore, titan cell-overproducing strains trigger increased Th1 and Th17 cytokine production in CD4+ T cells and show attenuated virulence in a mouse model of systemic cryptococcosis. Overall, our study provides insights into the regulation of titan cell formation and fungal virulence.
Collapse
Affiliation(s)
- Chengjun Cao
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Yina Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Tong-Bao Liu
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Ozbek O, O Ulgen K, Ileri Ercan N. The Toxicity of Polystyrene-Based Nanoparticles in Saccharomyces cerevisiae Is Associated with Nanoparticle Charge and Uptake Mechanism. Chem Res Toxicol 2021; 34:1055-1068. [PMID: 33710856 DOI: 10.1021/acs.chemrestox.0c00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polystyrene latex (PSL) nanoparticles (NPs), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, and hybrid NPs that have different concentrations, sizes, surface charges, and functional groups were used to determine their toxicity to Saccharomyces cerevisiae cells. The size, charge, and morphology of the nanoparticles were characterized by dynamic light scattering, electrophoretic light scattering, scanning transmission electron microscopy, and transmission electron microscopy analysis. The cell viabilities were determined by colony forming unit analysis and confocal laser scanning microscopy imaging. Uptake inhibition studies were performed to determine the internalization mechanism of PSL NPs. At 50 mg/L, both positively and negatively charged NPs were slightly toxic. With increasing concentration, however, full toxicities were observed with positively charged PSL NPs, while a marginal increase in toxicity was obtained with negatively charged PSL NPs. For negatively charged and carboxyl-functionalized NPs, an increase in size induced toxicity, whereas for positively charged and amine-functionalized NPs, smaller-sized NPs were more toxic to yeast cells. Negatively charged NPs were internalized by the yeast cells, but they showed toxicity when they entered the cell vacuole. Positively charged NPs, however, accumulated on the cell surface and caused toxicity. When coated with DOPC liposomes, positively charged NPs became significantly less toxic. We attribute this reduction to the larger-diameter and/or more-agglomerated NPs in the extracellular environment, which resulted in lower interactions with the cell. In addition to endocytosis, it is possible that the negatively charged NPs (30-C-n) were internalized by the cells, partly via direct permeation, which is preferred for high drug delivery efficiency. Negatively charged PSL NP exposure to the yeast cells at low-to-moderate concentrations resulted in low toxicities in the long term. Our results indicate that negatively charged PSL NPs provide safer alternatives as cargo carriers in drug delivery applications. Moreover, the variations in NP size, concentration, and exposure time, along with the use of hybrid systems, have significant roles in nanoparticle-based drug delivery applications in terms of their effects on living organisms.
Collapse
Affiliation(s)
- Ozlem Ozbek
- Chemical Engineering Department, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Kutlu O Ulgen
- Chemical Engineering Department, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nazar Ileri Ercan
- Chemical Engineering Department, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
4
|
Vázquez-Ibarra A, Rodríguez-Martínez G, Guerrero-Serrano G, Kawasaki L, Ongay-Larios L, Coria R. Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast. Curr Genet 2020; 66:867-880. [PMID: 32564133 DOI: 10.1007/s00294-020-01089-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
The pheromone response and the high osmolarity glycerol (HOG) pathways are considered the prototypical MAPK signaling systems. They are the best-understood pathways in eukaryotic cells, yet they continue to provide insights in how cells relate with the environment. These systems are subjected to tight regulatory circuits to prevent hyperactivation in length and intensity. Failure to do this may be a matter of life or death specially for unicellular organisms such as Saccharomyces cerevisiae. The signaling pathways are fine-tuned by positive and negative feedback loops exerted by pivotal control elements that allow precise responses to specific stimuli, despite the fact that some elements of the systems are common to different signaling pathways. Here we describe the experimentally proven negative feedback loops that modulate the pheromone response and the HOG pathways. As described in this review, MAP kinases are central mechanistic components of these feedback loops. They have the capacity to modulate basal signaling activity, a fast extranuclear response, and a longer-lasting transcriptional process.
Collapse
Affiliation(s)
- Araceli Vázquez-Ibarra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Griselda Rodríguez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | | | - Laura Kawasaki
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México.
| |
Collapse
|
5
|
Abstract
Many sensory and chemical signal inputs are transmitted by intracellular GTP-binding (G) proteins. G proteins make up two major subfamilies: "large" G proteins comprising three subunits and "small" G proteins, such as the proto-oncogene product RAS, which contains a single subunit. Members of both subfamilies are regulated by post-translational modifications, including lipidation, proteolysis, and carboxyl methylation. Emerging studies have shown that these proteins are also modified by ubiquitination. Much of our current understanding of this post-translational modification comes from investigations of the large G-protein α subunit from yeast (Gpa1) and the three RAS isotypes in humans, NRAS, KRAS, and HRAS. Gα undergoes both mono- and polyubiquitination, and these modifications have distinct consequences for determining the sites and mechanisms of its degradation. Genetic and biochemical reconstitution studies have revealed the enzymes and binding partners required for addition and removal of ubiquitin, as well as the delivery and destruction of both the mono- and polyubiquitinated forms of the G protein. Complementary studies of RAS have identified multiple ubiquitination sites, each having distinct consequences for binding to regulatory proteins, shuttling to and from the plasma membrane, and degradation. Here, we review what is currently known about these two well-studied examples, Gpa1 and the human RAS proteins, that have revealed additional mechanisms of signal regulation and dysregulation relevant to human physiology. We also compare and contrast the effects of G-protein ubiquitination with other post-translational modifications of these proteins.
Collapse
Affiliation(s)
- Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
6
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
7
|
Arellano VJ, Martinell García P, Rodríguez Plaza JG, Lara Ortiz MT, Schreiber G, Volkmer R, Klipp E, Rio GD. An Antimicrobial Peptide Induces FIG1-Dependent Cell Death During Cell Cycle Arrest in Yeast. Front Microbiol 2018; 9:1240. [PMID: 29963019 PMCID: PMC6010521 DOI: 10.3389/fmicb.2018.01240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/23/2018] [Indexed: 12/30/2022] Open
Abstract
Although most antibiotics act on cells that are actively dividing and non-dividing cells such as in microbe sporulation or cancer stem cells represent a new paradigm for the control of disease. In addition to their relevance to health, such antibiotics may promote our understanding of the relationship between the cell cycle and cell death. No antibiotic specifically acting on microbial cells arrested in their cell cycle has been identified until the present time. In this study we used an antimicrobial peptide derived from α-pheromone, IP-1, targeted against MATa Saccharomyces cerevisiae cells in order to assess its dependence on cell cycle arrest to kill cells. Analysis by flow cytometry and fluorescence microscopy of various null mutations of genes involved in biological processes activated by the pheromone pathway (the mitogen-activated protein kinase pathway, cell cycle arrest, cell proliferation, autophagy, calcium influx) showed that IP-1 requires arrest in G0/G1 in order to kill yeast cells. Isolating cells in different cell cycle phases by elutriation provided further evidence that entry into cell cycle arrest, and not into G1 phase, is necessary if our peptide is to kill yeast cells. We also describe a variant of IP-1 that does not activate the pheromone pathway and consequently does not kill yeast cells that express the pheromone’s receptor; the use of this variant peptide in combination with different cell cycle inhibitors that induce cell cycle arrest independently of the pheromone pathway confirmed that it is cell cycle arrest that is required for the cell death induced by this peptide in yeast. We show that the cell death induced by IP-1 differs from that induced by α-pheromone and depends on FIG1 in a way independent of the cell cycle arrest induced by the pheromone. Thus, IP-1 is the first molecule described that specifically kills microbial cells during cell cycle arrest, a subject of interest beyond the process of mating in yeast cells. The experimental system described in this study should be useful in the study of the mechanisms at play in the communication between cell cycle arrest and cell death on other organisms, hence promoting the development of new antibiotics.
Collapse
Affiliation(s)
- Vladimir J Arellano
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paula Martinell García
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Maria T Lara Ortiz
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriel Del Rio
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Aluru M, McKinney T, Venero AKL, Choudhury S, Torres M. Mitogen-activated protein kinases, Fus3 and Kss1, regulate chronological lifespan in yeast. Aging (Albany NY) 2017; 9:2587-2609. [PMID: 29273704 PMCID: PMC5764394 DOI: 10.18632/aging.101350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/11/2017] [Indexed: 04/19/2023]
Abstract
Using a systems-based approach, we have identified several genes not previously evaluated for a role(s) in chronological aging. Here, we have thoroughly investigated the chronological lifespan (CLS) of three of these genes (FUS3, KSS1 and HOG1) and their protein products, each of which have well-defined cell signaling roles in young cells. The importance of FUS3 and KSS1 in CLS are largely unknown and analyzed here for the first time. Using both qualitative and quantitative CLS assays, we show that deletion of any of the three MAPK's increases yeast lifespan. Furthermore, combined deletion of any MAPK and TOR1, most prominently fus3Δ/tor1Δ, produces a two-stage CLS response ending in lifespan increase greater than that of tor1Δ. Similar effects are achieved upon endogenous expression of a non-activatable form of Fus3. We speculate that the autophagy-promoting role of FUS3, which is inherently antagonistic to the role of TOR1, may in part be responsible for the differential aging phenotype of fus3Δ/tor1Δ. Consistent with this notion we show that nitrogen starvation, which promotes autophagy by deactivating Tor1, results in decreased CLS if FUS3 is deleted. Taken together, these results reveal a previously unrealized effect of mating-specific MAPKs in the chronological lifespan of yeast.
Collapse
Affiliation(s)
- Maneesha Aluru
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | - Tori McKinney
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | | | - Shilpa Choudhury
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | - Matthew Torres
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Analysis of miRNA profiles identified miR-196a as a crucial mediator of aberrant PI3K/AKT signaling in lung cancer cells. Oncotarget 2017; 8:19172-19191. [PMID: 27880728 PMCID: PMC5386676 DOI: 10.18632/oncotarget.13432] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/02/2016] [Indexed: 01/22/2023] Open
Abstract
Hyperactivation of the PI3K/AKT pathway is observed in most human cancer including lung carcinomas. Here we have investigated the role of miRNAs as downstream targets of activated PI3K/AKT signaling in Non Small Cell Lung Cancer (NSCLC). To this aim, miRNA profiling was performed in human lung epithelial cells (BEAS-2B) expressing active AKT1 (BEAS-AKT1-E17K), active PI3KCA (BEAS-PIK3CA-E545K) or with silenced PTEN (BEAS-shPTEN). Twenty-four differentially expressed miRNAs common to BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells were identified through this analysis, with miR-196a being the most consistently up-regulated miRNA. Interestingly, miR-196a was significantly overexpressed also in human NSCLC-derived cell lines (n=11) and primary lung cancer samples (n=28). By manipulating the expression of miR-196a in BEAS-2B and NCI-H460 cells, we obtained compelling evidence that this miRNA acts downstream the PI3K/AKT pathway, mediating some of the proliferative, pro-migratory and tumorigenic activity that this pathway exerts in lung epithelial cells, possibly through the regulation of FoxO1, CDKN1B (hereafter p27) and HOXA9.
Collapse
|
10
|
Shellhammer JP, Morin-Kensicki E, Matson JP, Yin G, Isom DG, Campbell SL, Mohney RP, Dohlman HG. Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genet 2017; 13:e1006829. [PMID: 28558063 PMCID: PMC5469498 DOI: 10.1371/journal.pgen.1006829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.
Collapse
Affiliation(s)
- James P. Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Jacob P. Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guowei Yin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel G. Isom
- The University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert P. Mohney
- Metabolon, Inc., Research Triangle Park, North Carolina, United States of America
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tunc-Ozdemir M, Urano D, Jaiswal DK, Clouse SD, Jones AM. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex. J Biol Chem 2016; 291:13918-13925. [PMID: 27235398 DOI: 10.1074/jbc.c116.736702] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dinesh Kumar Jaiswal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695-7609
| | - Alan M Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
12
|
Torres M. Chapter Two - Heterotrimeric G Protein Ubiquitination as a Regulator of G Protein Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:57-83. [PMID: 27378755 DOI: 10.1016/bs.pmbts.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ubiquitin-mediated regulation of G proteins has been known for over 20 years as a result of discoveries made independently in yeast and vertebrate model systems for pheromone and photoreception, respectively. Since that time, several details underlying the cause and effect of G protein ubiquitination have been determined-including the initiating signals, responsible enzymes, trafficking pathways, and their effects on protein structure, function, interactions, and cell signaling. The collective body of evidence suggests that Gα subunits are the primary targets of ubiquitination. However, longstanding and recent results suggest that Gβ and Gγ subunits are also ubiquitinated, in some cases impacting cell polarization-a process essential for chemotaxis and polarized cell growth. More recently, evidence from mass spectrometry (MS)-based proteomics coupled with advances in PTM bioinformatics have revealed that protein families representing G protein subunits contain several structural hotspots for ubiquitination-most of which have not been investigated for a functional role in signal transduction. Taken together, our knowledge and understanding of heterotrimeric G protein ubiquitination as a regulator of G protein signaling-despite 20 years of research-is still emerging.
Collapse
Affiliation(s)
- M Torres
- Georgia Institute of Technology, School of Biology, Atlanta, GA, United States.
| |
Collapse
|
13
|
Dewhurst HM, Choudhury S, Torres MP. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families. Mol Cell Proteomics 2015; 14:2285-97. [PMID: 26070665 PMCID: PMC4528253 DOI: 10.1074/mcp.m115.051177] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/08/2022] Open
Abstract
Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data.
Collapse
Affiliation(s)
- Henry M Dewhurst
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| | - Shilpa Choudhury
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| | - Matthew P Torres
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| |
Collapse
|
14
|
Shashkova S, Welkenhuysen N, Hohmann S. Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res 2015; 15:fov026. [DOI: 10.1093/femsyr/fov026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 02/02/2023] Open
|
15
|
Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition. Cell 2015; 160:1182-95. [PMID: 25768911 DOI: 10.1016/j.cell.2015.02.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 01/17/2015] [Indexed: 01/28/2023]
Abstract
Cells make accurate decisions in the face of molecular noise and environmental fluctuations by relying not only on present pathway activity, but also on their memory of past signaling dynamics. Once a decision is made, cellular transitions are often rapid and switch-like due to positive feedback loops in the regulatory network. While positive feedback loops are good at promoting switch-like transitions, they are not expected to retain information to inform subsequent decisions. However, this expectation is based on our current understanding of network motifs that accounts for temporal, but not spatial, dynamics. Here, we show how spatial organization of the feedback-driven yeast G1/S switch enables the transmission of memory of past pheromone exposure across this transition. We expect this to be one of many examples where the exquisite spatial organization of the eukaryotic cell enables previously well-characterized network motifs to perform new and unexpected signal processing functions.
Collapse
|
16
|
Dixit G, Baker R, Sacks CM, Torres MP, Dohlman HG. Guanine nucleotide-binding protein (Gα) endocytosis by a cascade of ubiquitin binding domain proteins is required for sustained morphogenesis and proper mating in yeast. J Biol Chem 2014; 289:15052-63. [PMID: 24722989 PMCID: PMC4031556 DOI: 10.1074/jbc.m114.566117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/07/2014] [Indexed: 01/10/2023] Open
Abstract
Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization.
Collapse
Affiliation(s)
- Gauri Dixit
- From the Department of Biochemistry and Biophysics
| | | | | | - Matthew P Torres
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Henrik G Dohlman
- From the Department of Biochemistry and Biophysics, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
17
|
Sprang SR. An acid test for g proteins. Mol Cell 2013; 51:405-6. [PMID: 23973370 DOI: 10.1016/j.molcel.2013.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this issue, Isom et al. (2013) report their exciting discovery that G proteins can sense pH changes to fine-tune signaling in response to metabolic changes.
Collapse
Affiliation(s)
- Stephen R Sprang
- Center for Biomolecular Structure and Dynamics, Division of Biology, The University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
18
|
Abstract
In yeast, the mating response pathway is activated when a peptide pheromone binds to a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor, which leads to the activation of a mitogen-activated protein kinase signaling cascade and the stimulation of mating behavior. However, when nutrients in the environment are limiting, stimulation of the mating response would be maladaptive. A study indicates that the signaling pathways that respond to nutrient availability dampen the mating response by directly phosphorylating Gpa1, the G protein α subunit that initiates the mating response pathway. Snf1, the yeast homolog of adenosine monophosphate-activated protein kinase, is a highly conserved kinase that maintains energy homeostasis in response to nutrient limitation. The study found that the upstream kinases and phosphatase that control the activity of Snf1 also act on Gpa1 and provide a direct means to coordinate cell behavior and integrate the mating response with nutrient sensing.
Collapse
Affiliation(s)
- Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
19
|
Clement ST, Dixit G, Dohlman HG. Regulation of yeast G protein signaling by the kinases that activate the AMPK homolog Snf1. Sci Signal 2013; 6:ra78. [PMID: 24003255 DOI: 10.1126/scisignal.2004143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular signals, such as nutrients and hormones, cue intracellular pathways to produce adaptive responses. Often, cells must coordinate their responses to multiple signals to produce an appropriate outcome. We showed that components of a glucose-sensing pathway acted on components of a heterotrimeric guanine nucleotide-binding protein (G protein)-mediated pheromone signaling pathway in the yeast Saccharomyces cerevisiae. We demonstrated that the G protein α subunit Gpa1 was phosphorylated in response to conditions of reduced glucose availability and that this phosphorylation event contributed to reduced pheromone-dependent stimulation of mitogen-activated protein kinases, gene transcription, cell morphogenesis, and mating efficiency. We found that Elm1, Sak1, and Tos3, the kinases that phosphorylate Snf1, the yeast homolog of adenosine monophosphate-activated protein kinase (AMPK), in response to limited glucose availability, also phosphorylated Gpa1 and contributed to the diminished mating response. Reg1, the regulatory subunit of the phosphatase PP1 that acts on Snf1, was likewise required to reverse the phosphorylation of Gpa1 and to maintain the mating response. Thus, the same kinases and phosphatase that regulate Snf1 also regulate Gpa1. More broadly, these results indicate that the pheromone signaling and glucose-sensing pathways communicate directly to coordinate cell behavior.
Collapse
Affiliation(s)
- Sarah T Clement
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
20
|
Isom DG, Sridharan V, Baker R, Clement ST, Smalley DM, Dohlman HG. Protons as second messenger regulators of G protein signaling. Mol Cell 2013; 51:531-8. [PMID: 23954348 DOI: 10.1016/j.molcel.2013.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/11/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Abstract
In response to environmental stress, cells often generate pH signals that serve to protect vital cellular components and reprogram gene expression for survival. A major barrier to our understanding of this process has been the identification of signaling proteins that detect changes in intracellular pH. To identify candidate pH sensors, we developed a computer algorithm that searches proteins for networks of proton-binding sidechains. This analysis indicates that Gα subunits, the principal transducers of G protein-coupled receptor (GPCR) signals, are pH sensors. Our structure-based calculations and biophysical investigations reveal that Gα subunits contain networks of pH-sensing sidechains buried between their Ras and helical domains. Further, we show that proton binding induces changes in conformation that promote Gα phosphorylation and suppress receptor-initiated signaling. Together, our computational, biophysical, and cellular analyses reveal an unexpected function for G proteins as mediators of stress-response signaling.
Collapse
Affiliation(s)
- Daniel G Isom
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, Wang Y, Loh T, Kowolik C, Jamsen J, Zhou M, Truong K, Chen Y, Zheng L, Shen B. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 2012; 47:444-56. [PMID: 22749529 DOI: 10.1016/j.molcel.2012.05.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/14/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
We propose that cell-cycle-dependent timing of FEN1 nuclease activity is essential for cell-cycle progression and the maintenance of genome stability. After DNA replication is complete at the exit point of the S phase, removal of excess FEN1 may be crucial. Here, we report a mechanism that controls the programmed degradation of FEN1 via a sequential cascade of posttranslational modifications. We found that FEN1 phosphorylation stimulated its SUMOylation, which in turn stimulated its ubiquitination and ultimately led to its degradation via the proteasome pathway. Mutations or inhibitors that blocked the modification at any step in this pathway suppressed FEN1 degradation. Critically, the presence of SUMOylation- or ubiquitination-defective, nondegradable FEN1 mutant protein caused accumulation of Cyclin B, delays in the G1 and G2/M phases, and polyploidy. These findings may represent a newly identified regulatory mechanism used by cells to ensure precise cell-cycle progression and to prevent transformation.
Collapse
Affiliation(s)
- Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dohlman HG, Jones JC. Signal activation and inactivation by the Gα helical domain: a long-neglected partner in G protein signaling. Sci Signal 2012; 5:re2. [PMID: 22649098 DOI: 10.1126/scisignal.2003013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) are positioned at the top of many signal transduction pathways. The G protein α subunit is composed of two domains, one that resembles Ras and another that is composed entirely of α helices. Historically most attention has focused on the Ras-like domain, but emerging evidence reveals that the helical domain is an active participant in G protein signaling.
Collapse
Affiliation(s)
- Henrik G Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|