1
|
Roberts CF, Cao Y, Im W, Nichols RA, Lukas RJ, George AA. Neuroprotective amyloid β N-terminal peptides differentially alter human α7- and α7β2-nicotinic acetylcholine (nACh) receptor single-channel properties. Br J Pharmacol 2024; 181:3172-3191. [PMID: 38720171 DOI: 10.1111/bph.16381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Oligomeric amyloid β 1-42 (oAβ1-42) exhibits agonist-like action at human α7- and α7β2-containing nicotinic receptors. The N-terminal amyloid β1-15 fragment (N-Aβ fragment) modulates presynaptic calcium and enhances hippocampal-based synaptic plasticity via α7-containing nicotinic receptors. Further, the N-Aβ fragment and its core sequence, the N-amyloid-beta core hexapeptide (N-Aβcore), protect against oAβ1-42-associated synapto- and neurotoxicity. Here, we investigated how oAβ1-42, the N-Aβ fragment, and the N-Aβcore regulate the single-channel properties of α7- and α7β2-nicotinic receptors. EXPERIMENTAL APPROACH Single-channel recordings measured the impact of acetylcholine, oAβ1-42, the N-Aβ fragment, and the N-Aβcore on the unitary properties of human α7- and α7β2-containing nicotinic receptors expressed in nicotinic-null SH-EP1 cells. Molecular dynamics simulations identified potential sites of interaction between the N-Aβ fragment and orthosteric α7+/α7- and α7+/β2- nicotinic receptor binding interfaces. KEY RESULTS The N-Aβ fragment and N-Aβcore induced α7- and α7β2-nicotinic receptor single-channel openings. Relative to acetylcholine, oAβ1-42 preferentially enhanced α7β2-nicotinic receptor single-channel open probability and open-dwell times. Co-application with the N-Aβcore neutralized these effects. Further, administration of the N-Aβ fragment alone, or in combination with acetylcholine or oAβ1-42, selectively enhanced α7-nicotinic receptor open probability and open-dwell times (compared to acetylcholine or oAβ1-42). CONCLUSIONS AND IMPLICATIONS Amyloid-beta peptides demonstrate functional diversity in regulating α7- and α7β2-nicotinic receptor function, with implications for a wide range of nicotinic receptor-mediated functions in Alzheimer's disease. The effects of these peptides on α7- and/or α7β2-nicotinic receptors revealed complex interactions with these subtypes, providing novel insights into the neuroprotective actions of amyloid β-derived fragments against the toxic effects of oAβ1-42.
Collapse
Affiliation(s)
- Catherine F Roberts
- Department of Life Sciences, University of Bath, Bath, UK
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yiwei Cao
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Robert A Nichols
- Department of Cell & Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | - Andrew A George
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Gao X, Guan Y, Wang C, Jia M, Ahmad S, Nouman MF, Ai H. Specific interaction from different Aβ 42 peptide fragments to α7nAChR-A study of molecular dynamics simulation. J Mol Model 2024; 30:233. [PMID: 38937296 DOI: 10.1007/s00894-024-06032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
CONTEXT Existing researches confirmed that β amyloid (Aβ) has a high affinity for the α7 nicotinic acetylcholine receptor (α7nAChR), associating closely to Alzheimer's disease. The majority of related studies focused on the experimental reports on the neuroprotective role of Aβ fragment (Aβx), however, with a lack of investigation into the most suitable binding region and mechanism of action between Aβ fragment and α7nAChR. In the study, we employed four Aβ1-42 fragments Aβx, Aβ1-16, Aβ10-16, Aβ12-28, and Aβ30-42, of which the first three were confirmed to play neuroprotective roles upon directly binding, to interact with α7nAChR. METHODS The protein-ligand docking server of CABS-DOCK was employed to obtain the α7nAChR-Aβx complexes. Only the top α7nAChR-Aβx complexes were used to perform all-atom GROMACS dynamics simulation in combination with Charmm36 force field, by which α7nAChR-Aβx interactions' dynamic behavior and specific locations of these different Aβx fragments were identified. MM-PBSA calculations were also done to estimate the binding free energies and the different contributions from the residues in the Aβx. Two distinct results for the first three and fourth Aβx fragments in binding site, strength, key residue, and orientation, account for why the fourth fails to play a neuroprotective role at the molecular level.
Collapse
Affiliation(s)
- Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Muhammad Fahad Nouman
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
3
|
Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2023; 48:1026-1046. [PMID: 35976488 PMCID: PMC10030451 DOI: 10.1007/s11064-022-03699-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.
Collapse
Affiliation(s)
- Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Djemil S, Sames AM, Pak DTS. ACh Transfers: Homeostatic Plasticity of Cholinergic Synapses. Cell Mol Neurobiol 2023; 43:697-709. [PMID: 35643882 PMCID: PMC11415198 DOI: 10.1007/s10571-022-01227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
The field of homeostatic plasticity continues to advance rapidly, highlighting the importance of stabilizing neuronal activity within functional limits in the context of numerous fundamental processes such as development, learning, and memory. Most homeostatic plasticity studies have been focused on glutamatergic synapses, while the rules that govern homeostatic regulation of other synapse types are less understood. While cholinergic synapses have emerged as a critical component in the etiology of mammalian neurodegenerative disease mechanisms, relatively few studies have been conducted on the homeostatic plasticity of such synapses, particularly in the mammalian nervous system. An exploration of homeostatic mechanisms at the cholinergic synapse may illuminate potential therapeutic targets for disease management and treatment. We will review cholinergic homeostatic plasticity in the mammalian neuromuscular junction, the autonomic nervous system, central synapses, and in relation to pathological conditions including Alzheimer disease and DYT1 dystonia. This work provides a historical context for the field of cholinergic homeostatic regulation by examining common themes, unique features, and outstanding questions associated with these distinct cholinergic synapse types and aims to inform future research in the field.
Collapse
Affiliation(s)
- Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Antonia M Sames
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
5
|
Song W, Li Q, Wang T, Li Y, Fan T, Zhang J, Wang Q, Pan J, Dong Q, Sun ZS, Wang Y. Putative complement control protein CSMD3 dysfunction impairs synaptogenesis and induces neurodevelopmental disorders. Brain Behav Immun 2022; 102:237-250. [PMID: 35245678 DOI: 10.1016/j.bbi.2022.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/23/2022] Open
Abstract
Recent studies have reported that complement-related proteins modulate brain development through regulating synapse processes in the cortex. CSMD3 belongs to a group of putative complement control proteins. However, its role in the central nervous system and synaptogenesis remains largely unknown. Here we report that CSMD3 deleterious mutations occur frequently in patients with neurodevelopmental disorders (NDDs). Csmd3 is predominantly expressed in cortical neurons of the developing cortex. In mice, Csmd3 disruption induced retarded development and NDD-related behaviors. Csmd3 deficiency impaired synaptogenesis and neurogenesis, allowing fewer neurons reaching the cortical plate. Csmd3 deficiency also induced perturbed functional networks in the developing cortex, involving a number of downregulated synapse-associated genes that influence early synaptic organization and upregulated genes related to immune activity. Our study provides mechanistic insights into the endogenous regulation of complement-related proteins in synaptic development and supports the pathological role of CSMD3 in NDDs.
Collapse
Affiliation(s)
- Wei Song
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Tao Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianghong Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinrong Pan
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwen Dong
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Duan Y, Lv J, Zhang Z, Chen Z, Wu H, Chen J, Chen Z, Yang J, Wang D, Liu Y, Chen F, Tian Y, Cao X. Exogenous Aβ 1-42 monomers improve synaptic and cognitive function in Alzheimer's disease model mice. Neuropharmacology 2022; 209:109002. [PMID: 35196539 DOI: 10.1016/j.neuropharm.2022.109002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 01/16/2023]
Abstract
Growing evidence has suggested the poor correlation between brain amyloid plaque and Alzheimer's disease (AD). Presenilin1 (PS1) and presenilin2 (PS2) conditional double knockout (cDKO) mice exhibited the reduced 42-amino acid amyloid-β peptide (Aβ1-42) level and AD-like symptoms, indicating a different pathological mechanism from the amyloid cascade hypothesis for AD. Here we found that exogenous synthetic Aβ1-42 monomers could improve the impaired memory not only in cDKO mice without Aβ1-42 deposition but also in the APP/PS1/Tau triple transgenic 3 × Tg-AD mice with Aβ1-42 deposition, which were mediated by α7-nAChR. Our findings demonstrate for the first time that reduced soluble Aβ1-42 level is the main cause of cognitive dysfunction in cDKO mice, and support the opinions that low soluble Aβ1-42 level due to Aβ1-42 deposition may also cause cognitive deficits in 3 × Tg-AD mice. Therefore, "loss-of-function" of Aβ1-42 should be avoided when designing therapies aimed at reducing Aβ1-42 burden in AD.
Collapse
Affiliation(s)
- Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhonghui Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhenzhen Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Hao Wu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jinnan Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhidong Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jiarun Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Dasheng Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| |
Collapse
|
7
|
Fagiani F, Lanni C, Racchi M, Govoni S. (Dys)regulation of Synaptic Activity and Neurotransmitter Release by β-Amyloid: A Look Beyond Alzheimer's Disease Pathogenesis. Front Mol Neurosci 2021; 14:635880. [PMID: 33716668 PMCID: PMC7943918 DOI: 10.3389/fnmol.2021.635880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Beside its widely studied role in the pathogenesis of Alzheimer's disease (AD), β-amyloid (Aβ) is a normal and soluble product of neuronal metabolism that regulates several key physiological functions, exerting neuromodulatory effects on synaptic plasticity, memory, and neurotransmitter release. Such effects have been observed to occur in a hormetic fashion, with Aβ exhibiting a dual role influenced by its concentration, the different isoforms, or aggregation forms of the peptide. However, to date, our knowledge about the physiological functions of Aβ and, in particular, its modulatory role on synaptic activity and neurotransmission in the normal brain is fragmentary, thus hindering a clear comprehension of the biological mechanisms underlying the derangement from function to dysfunction. In particular, according to the amyloid cascade hypothesis, the switch from physiology to pathology is linked to the abnormal increase in Aβ levels, due to an imbalance in Aβ production and clearance. In this regard, increased Aβ levels have been hypothesized to induce early defects in synaptic function and such alterations have been suggested to account, at least in part, for the onset of neuropsychiatric symptoms (e.g., apathy, anxiety, changes in mood, depression, and agitation/aggression), frequently observed in the prodromal stage of AD. Therefore, understanding the biological mechanisms underlying early synaptic alterations in AD is a key starting point to frame the relevant time windows for AD treatment and to gain insight into AD etiopathogenesis.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy.,Istituto Universitario di Studi Superiori - IUSS, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Roberts JP, Stokoe SA, Sathler MF, Nichols RA, Kim S. Selective coactivation of α7- and α4β2-nicotinic acetylcholine receptors reverses beta-amyloid-induced synaptic dysfunction. J Biol Chem 2021; 296:100402. [PMID: 33571523 PMCID: PMC7961090 DOI: 10.1016/j.jbc.2021.100402] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 01/04/2023] Open
Abstract
Beta-amyloid (Aβ) has been recognized as an early trigger in the pathogenesis of Alzheimer's disease (AD) leading to synaptic and cognitive impairments. Aβ can alter neuronal signaling through interactions with nicotinic acetylcholine receptors (nAChRs), contributing to synaptic dysfunction in AD. The three major nAChR subtypes in the hippocampus are composed of α7-, α4β2-, and α3β4-nAChRs. Aβ selectively affects α7- and α4β2-nAChRs, but not α3β4-nAChRs in hippocampal neurons, resulting in neuronal hyperexcitation. However, how nAChR subtype selectivity for Aβ affects synaptic function in AD is not completely understood. Here, we showed that Aβ associated with α7- and α4β2-nAChRs but not α3β4-nAChRs. Computational modeling suggested that two amino acids in α7-nAChRs, arginine 208 and glutamate 211, were important for the interaction between Aβ and α7-containing nAChRs. These residues are conserved only in the α7 and α4 subunits. We therefore mutated these amino acids in α7-containing nAChRs to mimic the α3 subunit and found that mutant α7-containing receptors were unable to interact with Aβ. In addition, mutant α3-containing nAChRs mimicking the α7 subunit interact with Aβ. This provides direct molecular evidence for how Aβ selectively interacted with α7- and α4β2-nAChRs, but not α3β4-nAChRs. Selective coactivation of α7- and α4β2-nAChRs also sufficiently reversed Aβ-induced AMPA receptor dysfunction, including Aβ-induced reduction of AMPA receptor phosphorylation and surface expression in hippocampal neurons. Moreover, costimulation of α7- and α4β2-nAChRs reversed the Aβ-induced disruption of long-term potentiation. These findings support a novel mechanism for Aβ's impact on synaptic function in AD, namely, the differential regulation of nAChR subtypes.
Collapse
Affiliation(s)
- Jessica P Roberts
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stokoe
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Matheus F Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
9
|
Transcriptome Profile of Nicotinic Receptor-Linked Sensitization of Beta Amyloid Neurotoxicity. Sci Rep 2020; 10:5696. [PMID: 32231242 PMCID: PMC7105468 DOI: 10.1038/s41598-020-62726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
Understanding the specific gene changes underlying the prodromic stages of Alzheimer’s disease pathogenesis will aid the development of new, targeted therapeutic strategies for this neurodegenerative disorder. Here, we employed RNA-sequencing to analyze global differential gene expression in a defined model nerve cell line expressing α4β2 nicotinic receptors (nAChRs), high-affinity targets for beta amyloid (Aβ). The nAChR-expressing neuronal cells were treated with nanomolar Aβ1–42 to gain insights into the molecular mechanisms underlying Aβ-induced neurotoxicity in the presence of this sensitizing target receptor. We identified 15 genes (out of 15,336) that were differentially expressed upon receptor-linked Aβ treatment. Genes up-regulated with Aβ treatment were associated with calcium signaling and axonal vesicle transport (including the α4 nAChR subunit, the calcineurin regulator RCAN3, and KIF1C of the kinesin family). Downregulated genes were associated with metabolic, apoptotic or DNA repair pathways (including APBA3, PARP1 and RAB11). Validation of the differential expression was performed via qRT-PCR and immunoblot analysis in the defined model nerve cell line and primary mouse neurons. Further verification was performed using immunocytochemistry. In conclusion, we identified apparent changes in gene expression on Aβ treatment in the presence of the sensitizing nAChRs, linked to early-stage Aβ-induced neurotoxicity, which may represent novel therapeutic targets.
Collapse
|
10
|
Hahm ET, Nagaraja RY, Waro G, Tsunoda S. Cholinergic Homeostatic Synaptic Plasticity Drives the Progression of Aβ-Induced Changes in Neural Activity. Cell Rep 2019; 24:342-354. [PMID: 29996096 DOI: 10.1016/j.celrep.2018.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) is the ability of neurons to exert compensatory changes in response to altered neural activity. How pathologically induced activity changes are intertwined with HSP mechanisms is unclear. We show that, in cholinergic neurons from Drosophila, beta-amyloid (Aβ) peptides Aβ40 and Aβ42 both induce an increase in spontaneous activity. In a transgenic line expressing Aβ42, we observe that this early increase in spontaneous activity is followed by a dramatic reduction in spontaneous events, a progression that has been suggested to occur in cholinergic brain regions of mammalian models of Alzheimer's disease. We present evidence that the early enhancement in synaptic activity is mediated by the Drosophila α7 nicotinic acetylcholine receptor (nAChR) and that, later, Aβ42-induced inhibition of synaptic events is a consequence of Dα7-dependent HSP mechanisms induced by earlier hyperactivity. Thus, while HSP may initially be an adaptive response, it may also drive maladaptive changes and downstream pathologies.
Collapse
Affiliation(s)
- Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| | - Raghavendra Y Nagaraja
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Forest KH, Nichols RA. Assessing Neuroprotective Agents for Aβ-Induced Neurotoxicity. Trends Mol Med 2019; 25:685-695. [DOI: 10.1016/j.molmed.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
|
12
|
Lasala M, Fabiani C, Corradi J, Antollini S, Bouzat C. Molecular Modulation of Human α7 Nicotinic Receptor by Amyloid-β Peptides. Front Cell Neurosci 2019; 13:37. [PMID: 30800059 PMCID: PMC6376857 DOI: 10.3389/fncel.2019.00037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid β peptide (Aβ) is a key player in the development of Alzheimer's disease (AD). It is the primary component of senile plaques in AD patients and is also found in soluble forms. Cholinergic activity mediated by α7 nicotinic receptors has been shown to be affected by Aβ soluble forms. To shed light into the molecular mechanism of this effect, we explored the direct actions of oligomeric Aβ1-40 and Aβ1-42 on human α7 by fluorescence spectroscopy and single-channel recordings. Fluorescence measurements using the conformational sensitive probe crystal violet (CrV) revealed that in the presence of Aβ α7 undergoes concentration-dependent conformational changes. Exposure of α7 to 100 pM Aβ changes CrV KD towards that of the desensitized state. However, α7 is still reactive to high carbamylcholine (Carb) concentrations. These observations are compatible with the induction of active/desensitized states as well as of a novel conformational state in the presence of both Aβ and Carb. At 100 nM Aβ, α7 adopts a resting-state-like structure which does not respond to Carb, suggesting stabilization of α7 in a blocked state. In real time, we found that Aβ is capable of eliciting α7 channel activity either in the absence or presence of the positive allosteric modulator (PAM) PNU-120596. Activation by Aβ is favored at picomolar or low nanomolar concentrations and is not detected at micromolar concentrations. At high Aβ concentrations, the mean duration of activation episodes elicited by ACh in the presence of PNU-120596 is significantly reduced, an effect compatible with slow open-channel block. We conclude that Aβ directly affects α7 function by acting as an agonist and a negative modulator. Whereas the capability of low concentrations of Aβ to activate α7 could be beneficial, the reduced α7 activity in the presence of higher Aβ concentrations or its long exposure may contribute to the cholinergic signaling deficit and may be involved in the initiation and development of AD.
Collapse
Affiliation(s)
- Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Silvia Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
13
|
Mulcahy MJ, Paulo JA, Hawrot E. Proteomic Investigation of Murine Neuronal α7-Nicotinic Acetylcholine Receptor Interacting Proteins. J Proteome Res 2018; 17:3959-3975. [PMID: 30285449 DOI: 10.1021/acs.jproteome.8b00618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel that is expressed widely in vertebrates and is the principal high-affinity α-bungarotoxin (α-bgtx) binding protein in the mammalian CNS. α7-nAChRs associate with proteins that can modulate its properties. The α7-nAChR interactome is the summation of proteins interacting or associating with α7-nAChRs in a protein complex. To identify an α7-nAChR interactome in neural tissue, we isolated α-bgtx-affinity protein complexes from wild-type and α7-nAChR knockout (α7 KO) mouse whole brain tissue homogenates using α-bgtx-affinity beads. Affinity precipitated proteins were trypsinized and analyzed with an Orbitrap Fusion mass spectrometer. Proteins isolated with the α7-nAChR specific ligand, α-bgtx, were determined to be α7-nAChR associated proteins. The α7-nAChR subunit and 120 additional proteins were identified. Additionally, 369 proteins were identified as binding to α-bgtx in the absence of α7-nAChR expression, thereby identifying nonspecific proteins for α7-nAChR investigations using α-bgtx enrichment. These results expand on our previous investigations of α7-nAChR interacting proteins using α-bgtx-affinity bead isolation by controlling for differences between α7-nAChR and α-bgtx-specific proteins, developing an improved protein isolation methodology, and incorporating the latest technology in mass spectrometry. The α7-nAChR interactome identified in this study includes proteins associated with the expression, localization, function, or modulation of α7-nAChRs, and it provides a foundation for future studies to elucidate how these interactions contribute to human disease.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States.,Department of Molecular Pharmacology, Physiology and Biotechnology , Brown University , Providence , Rhode Island 02912 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
14
|
Identification of a common immune regulatory pathway induced by small heat shock proteins, amyloid fibrils, and nicotine. Proc Natl Acad Sci U S A 2018; 115:7081-7086. [PMID: 29915045 DOI: 10.1073/pnas.1804599115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although certain dogma portrays amyloid fibrils as drivers of neurodegenerative disease and neuroinflammation, we have found, paradoxically, that amyloid fibrils and small heat shock proteins (sHsps) are therapeutic in experimental autoimmune encephalomyelitis (EAE). They reduce clinical paralysis and induce immunosuppressive pathways, diminishing inflammation. A key question was the identification of the target for these molecules. When sHsps and amyloid fibrils were chemically cross-linked to immune cells, a limited number of proteins were precipitated, including the α7 nicotinic acetylcholine receptor (α7 NAChR). The α7 NAChR is noteworthy among the over 20 known receptors for amyloid fibrils, because it plays a central role in a well-defined immune-suppressive pathway. Competitive binding between amyloid fibrils and α-bungarotoxin to peritoneal macrophages (MΦs) confirmed the involvement of α7 NAChR. The mechanism of immune suppression was explored, and, similar to nicotine, amyloid fibrils inhibited LPS induction of a common set of inflammatory cytokines while inducing Stat3 signaling and autophagy. Consistent with this, previous studies have established that nicotine, sHsps, and amyloid fibrils all were effective therapeutics in EAE. Interestingly, B lymphocytes were needed for the therapeutic effect. These results suggest that agonists of α7 NAChR might have therapeutic benefit for a variety of inflammatory diseases.
Collapse
|
15
|
Competitive docking model for prediction of the human nicotinic acetylcholine receptor α7 binding of tobacco constituents. Oncotarget 2018; 9:16899-16916. [PMID: 29682193 PMCID: PMC5908294 DOI: 10.18632/oncotarget.24458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
The detrimental health effects associated with tobacco use constitute a major public health concern. The addiction associated with nicotine found in tobacco products has led to difficulty in quitting among users. Nicotinic acetylcholine receptors (nAChRs) are the targets of nicotine and are responsible for addiction to tobacco products. However, it is unknown if the other >8000 tobacco constituents are addictive. Since it is time-consuming and costly to experimentally assess addictive potential of such larger number of chemicals, computationally predicting human nAChRs binding is important for in silico evaluation of addiction potential of tobacco constituents and needs structures of human nAChRs. Therefore, we constructed three-dimensional structures of the ligand binding domain of human nAChR α7 subtype and then developed a predictive model based on the constructed structures to predict human nAChR α7 binding activity of tobacco constituents. The predictive model correctly predicted 11 out of 12 test compounds to be binders of nAChR α7. The model is a useful tool for high-throughput screening of potential addictive tobacco constituents. These results could inform regulatory science research by providing a new validated predictive tool using cutting-edge computational methodology to high-throughput screen tobacco additives and constituents for their binding interaction with the human α7 nicotinic receptor. The tool represents a prediction model capable of screening thousands of chemicals found in tobacco products for addiction potential, which improves the understanding of the potential effects of additives.
Collapse
|
16
|
Forest KH, Alfulaij N, Arora K, Taketa R, Sherrin T, Todorovic C, Lawrence JLM, Yoshikawa GT, Ng HL, Hruby VJ, Nichols RA. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence. J Neurochem 2017; 144:201-217. [PMID: 29164616 DOI: 10.1111/jnc.14257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022]
Abstract
High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application.
Collapse
Affiliation(s)
- Kelly H Forest
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Naghum Alfulaij
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Komal Arora
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Ruth Taketa
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Tessi Sherrin
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Cedomir Todorovic
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - James L M Lawrence
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Gene T Yoshikawa
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Ho-Leung Ng
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Robert A Nichols
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
17
|
Ju Y, Asahi T, Sawamura N. Arctic Aβ40 blocks the nicotine-induced neuroprotective effect of CHRNA7 by inhibiting the ERK1/2 pathway in human neuroblastoma cells. Neurochem Int 2017; 110:49-56. [PMID: 28890319 DOI: 10.1016/j.neuint.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
Amyloid β protein (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Point mutations in the Aβ sequence, which cluster around the central hydrophobic core of the peptide, are associated with familial AD (FAD). Several mutations have been identified, with the Arctic mutation exhibiting a purely cognitive phenotype that is typical of AD. Our previous findings suggest that Arctic Aβ40 binds to and aggregates with CHRNA7, thereby inhibiting the calcium response and signaling pathways downstream of the receptor. Activation of CHRNA7 is neuroprotective both in vitro and in vivo. Therefore, in the present study, we investigated whether Arctic Aβ40 affects neuronal survival and/or death via CHRNA7. Using human neuroblastoma SH-SY5Y cells, we found that the neuroprotective function of CHRNA7 is blocked by CHRNA7 knockdown using RNA interference. Furthermore, Arctic Aβ40 blocked the neuroprotective effect of nicotine by inhibiting the ERK1/2 pathway downstream of CHRNA7. Moreover, we show that ERK1/2 activation mediates the neuroprotective effect of nicotine against oxidative stress. Collectively, our findings further our understanding of the molecular pathogenesis of Arctic FAD.
Collapse
Affiliation(s)
- Ye Ju
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Naoya Sawamura
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
18
|
Wang HY, Lee KC, Pei Z, Khan A, Bakshi K, Burns LH. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging 2017; 55:99-114. [DOI: 10.1016/j.neurobiolaging.2017.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
|
19
|
Ludewig S, Korte M. Novel Insights into the Physiological Function of the APP (Gene) Family and Its Proteolytic Fragments in Synaptic Plasticity. Front Mol Neurosci 2017; 9:161. [PMID: 28163673 PMCID: PMC5247455 DOI: 10.3389/fnmol.2016.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) is well known to be involved in the pathophysiology of Alzheimer's disease (AD) via its cleavage product amyloid ß (Aß). However, the physiological role of APP, its various proteolytic products and the amyloid precursor-like proteins 1 and 2 (APLP1/2) are still not fully clarified. Interestingly, it has been shown that learning and memory processes represented by functional and structural changes at synapses are altered in different APP and APLP1/2 mouse mutants. In addition, APP and its fragments are implicated in regulating synaptic strength further reinforcing their modulatory role at the synapse. While APLP2 and APP are functionally redundant, the exclusively CNS expressed APLP1, might have individual roles within the synaptic network. The proteolytic product of non-amyloidogenic APP processing, APPsα, emerged as a neurotrophic peptide that facilitates long-term potentiation (LTP) and restores impairments occurring with age. Interestingly, the newly discovered η-secretase cleavage product, An-α acts in the opposite direction, namely decreasing LTP. In this review we summarize recent findings with emphasis on the physiological role of the APP gene family and its proteolytic products on synaptic function and plasticity, especially during processes of hippocampal LTP. Therefore, we focus on literature that provide electrophysiological data by using different mutant mouse strains either lacking full-length or parts of the APP proteins or that utilized secretase inhibitors as well as secreted APP fragments.
Collapse
Affiliation(s)
- Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU BraunschweigBraunschweig, Germany; Helmholtz Centre for Infection Research, AG NINDBraunschweig, Germany
| |
Collapse
|
20
|
Burns LH, Wang HY. Altered filamin A enables amyloid beta-induced tau hyperphosphorylation and neuroinflammation in Alzheimer's disease. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2017; 4:263-271. [PMID: 34295950 PMCID: PMC8294116 DOI: 10.20517/2347-8659.2017.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with proteopathy characterized by abnormalities in amyloid beta (Aβ) and tau proteins. Defective amyloid and tau propagate and aggregate, leading to eventual amyloid plaques and neurofibrillary tangles. New data show that a third proteopathy, an altered conformation of the scaffolding protein filamin A (FLNA), is critically linked to the amyloid and tau pathologies in AD. Altered FLNA is pervasive in AD brain and without apparent aggregation. In a striking interdependence, altered FLNA is both induced by Aβ and required for two prominent pathogenic signaling pathways of Aβ. Aβ monomers or small oligomers signal via the α7 nicotinic acetylcholine receptor (α7nAChR) to activate kinases that hyperphosphorylate tau to cause neurofibrillary lesions and formation of neurofibrillary tangles. Altered FLNA also enables a persistent activation of toll-like-receptor 4 (TLR4) by Aβ, leading to excessive inflammatory cytokine release and neuroinflammation. The novel AD therapeutic candidate PTI-125 binds and reverses the altered FLNA conformation to prevent Aβ’s signaling via α7nAChR and aberrant activation of TLR4, thus reducing multiple AD-related neuropathologies. As a regulator of Aβ’s signaling via α7nAChR and TLR4, altered FLNA represents a novel AD therapeutic target.
Collapse
Affiliation(s)
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY 10031, USA.,Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
21
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [PMID: 26419447 DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Chih-Hung L Lee
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Dorothy Flood
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Fabrice Marger
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Diana Donnelly-Roberts
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| |
Collapse
|
22
|
Marotta CB, Lester HA, Dougherty DA. An Unaltered Orthosteric Site and a Network of Long-Range Allosteric Interactions for PNU-120596 in α7 Nicotinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2015. [PMID: 26211363 DOI: 10.1016/j.chembiol.2015.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are vital to neuronal signaling, are implicated in important processes such as learning and memory, and are therapeutic targets for neural diseases. The α7 nAChR has been implicated in Alzheimer's disease and schizophrenia, and allosteric modulators have become one focus of drug development efforts. We investigate the mode of action of the α7-selective positive allosteric modulator, PNU-120596, and show that the higher potency of acetylcholine in the presence of PNU-120596 is not due to an altered agonist binding site. In addition, we propose several residues in the gating interface and transmembrane region that are functionally important to transduction of allosteric properties, and link PNU-120596, the acetylcholine binding region, and the receptor gate. These results suggest global protein stabilization from a communication network through several key residues that alter the gating equilibrium of the receptor while leaving the agonist binding properties unperturbed.
Collapse
Affiliation(s)
- Christopher B Marotta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
23
|
Arora K, Cheng J, Nichols RA. Nicotinic Acetylcholine Receptors Sensitize a MAPK-linked Toxicity Pathway on Prolonged Exposure to β-Amyloid. J Biol Chem 2015; 290:21409-20. [PMID: 26139609 DOI: 10.1074/jbc.m114.634162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
Among putative downstream synaptic targets of β-amyloid (Aβ) are signaling molecules involved in synaptic function, memory formation and cognition, such as the MAP kinases, MKPs, CaMKII, CREB, Fyn, and Tau. Here, we assessed the activation and interaction of signaling pathways upon prolonged exposure to Aβ in model nerve cells expressing nicotinic acetylcholine receptors (nAChRs). Our goal was to characterize the steps underlying sensitization of the nerve cells to neurotoxicity when Aβ-target receptors are present. Of particular focus was the connection of the activated signaling molecules to oxidative stress. Differentiated neuroblastoma cells expressing mouse α4β2-nAChRs were exposed to Aβ1-42 for intervals from 30 min to 3 days. The cells and cell-derived protein extracts were then probed for activation of signaling pathway molecules (ERK, JNK, CaMKII, CREB, MARCKS, Fyn, tau). Our results show substantial, progressive activation of ERK in response to nanomolar Aβ exposure, starting at the earliest time point. Increased ERK activation was followed by JNK activation as well as an increased expression of PHF-tau, paralleled by increased levels of reactive oxygen species (ROS). The impact of prolonged Aβ on the levels of pERK, pJNK, and ROS was attenuated by MEK-selective and JNK-selective inhibitors. In addition, the MEK inhibitor as well as a JNK inhibitor attenuated Aβ-induced nuclear fragmentation, which followed the changes in ROS levels. These results demonstrate that the presence of nAChRs sensitizes neurons to the neurotoxic action of Aβ through the timed activation of discrete intracellular signaling molecules, suggesting pathways involved in the early stages of Alzheimer disease.
Collapse
Affiliation(s)
- Komal Arora
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii 96813
| | - Justin Cheng
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii 96813
| | - Robert A Nichols
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
24
|
Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment. J Neurosci 2015; 34:14210-8. [PMID: 25339735 DOI: 10.1523/jneurosci.0326-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator.
Collapse
|
25
|
Olivero G, Grilli M, Chen J, Preda S, Mura E, Govoni S, Marchi M. Effects of soluble β-amyloid on the release of neurotransmitters from rat brain synaptosomes. Front Aging Neurosci 2014; 6:166. [PMID: 25076904 PMCID: PMC4098032 DOI: 10.3389/fnagi.2014.00166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
Abstract
Contradictory results have been reported on the interaction of beta-amyloid (Aβ) with cholinergic receptors. The present paper investigates the modulatory effect of Aβ1-40 on the neurotransmitter release evoked by nicotinic (nAChRs) and muscarinic (mAChRs) receptors. Aβ1-40 inhibits both nicotinic and muscarinic-evoked [3H]DA overflow from rat nerve endings. Added to perfusion medium, Aβ1-40 is able to enter into synaptosomes; it exerts its inhibitory effect at extracellular sites when release is stimulated by nAChRs and intracellularly when release is evoked by mAChRs. Moreover, our data show that Aβ1-40 acts as non competitive antagonist of heteromeric α4β2* but not of α3β4* nAChRs which modulate [3H]NA overflow. Positive allosteric modulators of nAChRs counteract its inhibitory effect. It might be that compounds of this type could be useful to prevent, slow down the appearance or reverse the cognitive decline typical of the normal processes of brain aging.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa Genoa, Italy
| | - Jiayang Chen
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa Genoa, Italy
| | - Stefania Preda
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia Pavia, Italy
| | - Elisa Mura
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia Pavia, Italy
| | - Mario Marchi
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa Genoa, Italy ; Center of Excellence for Biomedical Research, University of Genoa Genoa, Italy
| |
Collapse
|
26
|
Sadigh-Eteghad S, Talebi M, Farhoudi M, Golzari SE, Sabermarouf B, Mahmoudi J. Beta-amyloid exhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2014.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Cochran JN, Hall AM, Roberson ED. The dendritic hypothesis for Alzheimer's disease pathophysiology. Brain Res Bull 2014; 103:18-28. [PMID: 24333192 PMCID: PMC3989444 DOI: 10.1016/j.brainresbull.2013.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 01/02/2023]
Abstract
Converging evidence indicates that processes occurring in and around neuronal dendrites are central to the pathogenesis of Alzheimer's disease. These data support the concept of a "dendritic hypothesis" of AD, closely related to the existing synaptic hypothesis. Here we detail dendritic neuropathology in the disease and examine how Aβ, tau, and AD genetic risk factors affect dendritic structure and function. Finally, we consider potential mechanisms by which these key drivers could affect dendritic integrity and disease progression. These dendritic mechanisms serve as a framework for therapeutic target identification and for efforts to develop disease-modifying therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Alicia M Hall
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
28
|
Pirttimaki TM, Codadu NK, Awni A, Pratik P, Nagel DA, Hill EJ, Dineley KT, Parri HR. α7 Nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer's mouse model. PLoS One 2013; 8:e81828. [PMID: 24312364 PMCID: PMC3842962 DOI: 10.1371/journal.pone.0081828] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/17/2013] [Indexed: 11/18/2022] Open
Abstract
It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs) such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ), the toxic trigger for Alzheimer's disease (AD), interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs). Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs) in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT). The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline.
Collapse
Affiliation(s)
| | | | - Alia Awni
- School of Life and Health Sciences, Aston University, Birmingham, England
| | - Pandey Pratik
- School of Life and Health Sciences, Aston University, Birmingham, England
| | - David Andrew Nagel
- School of Life and Health Sciences, Aston University, Birmingham, England
| | - Eric James Hill
- Aston Research Centre into Healthy Ageing, Aston University, Birmingham, England
| | - Kelly Tennyson Dineley
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (KTD); (HRP)
| | - H. Rheinallt Parri
- School of Life and Health Sciences, Aston University, Birmingham, England
- * E-mail: (KTD); (HRP)
| |
Collapse
|
29
|
Salamone A, Mura E, Zappettini S, Grilli M, Olivero G, Preda S, Govoni S, Marchi M. Inhibitory effects of beta-amyloid on the nicotinic receptors which stimulate glutamate release in rat hippocampus: the glial contribution. Eur J Pharmacol 2013; 723:314-21. [PMID: 24275353 DOI: 10.1016/j.ejphar.2013.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 01/20/2023]
Abstract
We investigated on the neuronal nicotinic acetylcholine receptor subtypes involved in the cholinergic control of in vivo hippocampal glutamate (GLU), aspartate (ASP) and inhibitory γ-aminobutyric acid (GABA) overflow. We also investigated on the possible contribution of nicotinic acetylcholine receptors subtypes present on astrocytes in the regulation of the three neurotransmitter amino acids overflow using hippocampal gliosomes and on the effects of beta-amyloid (Aβ) 1-40 on the nicotinic control of amino acid neurotransmitter release. Nicotine was able to enhance the in vivo overflow of the three amino acids being more potent in stimulating GLU overflow. The α7 selective agonist PHA543613 induced an overflow very similar to that of nicotine. The α4β2 selective agonist 5IA85380 was significantly less potent in inducing GLU overflow while the overflow of ASP and GABA were almost inconsistent. Aβ1-40 inhibited the neurotransmitter overflow stimulated by PHA543613 but not the one evoked by 5IA85380. In hippocampal gliosomes nicotine elicited selectively GLU overflow which was also evoked by 5IA85380 and by the α7 selective agonist choline. Nicotine- and choline-induced glutamate overflow in gliosomes was inhibited by Aα1-40. In conclusion nicotine administration in vivo elicits hippocampal GLU release mostly through α7 nicotinic acetylcholine receptors likely present both on neurons and astrocytes. Aβ inhibitory effect on the nicotinic-control of GLU release seems to depend primarily to the inhibition of α7 nicotinic acetylcholine receptors functional responses.
Collapse
Affiliation(s)
- Alessia Salamone
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Elisa Mura
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy
| | - Stefania Zappettini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Massimo Grilli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Stefania Preda
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy
| | - Mario Marchi
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Italy.
| |
Collapse
|
30
|
Sarkar B, Das AK, Maiti S. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. Front Physiol 2013; 4:84. [PMID: 23781202 PMCID: PMC3681284 DOI: 10.3389/fphys.2013.00084] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/02/2013] [Indexed: 12/23/2022] Open
Abstract
Amyloid beta (Aβ) is an extracellular 39–43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer's disease (AD). Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al., 2011). Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of monomers and small oligomers (containing dimers to decamers), providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A) at physiological concentrations (250 nM), while oligomers at the same concentrations show strong binding within 30 min of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T). Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 h of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results (a) provide an explanation for the non-toxic nature of Aβ monomers, (b) suggest that Aβ toxicity emerges at the initial oligomeric phase, and (c) provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.
Collapse
Affiliation(s)
- Bidyut Sarkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Colaba, Mumbai, India
| | | | | |
Collapse
|
31
|
Arora K, Alfulaij N, Higa JK, Panee J, Nichols RA. Impact of sustained exposure to β-amyloid on calcium homeostasis and neuronal integrity in model nerve cell system expressing α4β2 nicotinic acetylcholine receptors. J Biol Chem 2013; 288:11175-90. [PMID: 23479730 DOI: 10.1074/jbc.m113.453746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although the interaction between β-amyloid (Aβ) and nicotinic acetylcholine receptors has been widely studied, the impact of prolonged exposure to Aβ on nAChR expression and signaling is not known. In this study, we employed a neuronal culture model to better understand the impact of sustained exposure of Aβ on the regulation of cellular and synaptic function. The differentiated rodent neuroblastoma cell line NG108-15 expressing exogenous high-affinity α4β2 nAChRs was exposed to soluble oligomeric Aβ for several days. Ca(2+) responses, expression levels of α4β2 nAChRs, rate of mitochondrial movement, mitochondrial fission, levels of reactive oxygen species, and nuclear integrity were compared between Aβ-treated and untreated cells, transfected or not (mock-transfected) with α4β2 nAChRs. Sustained exposure of Aβ(1-42) to α4β2 nAChR-transfected cells for several days led to increased Ca(2+) responses on subsequent acute stimulation with Aβ(1-42) or nicotine, paralleled by increased expression levels of α4β2 nAChRs, likely the result of enhanced receptor recycling. The rate of mitochondrial movement was sharply reduced, whereas the mitochondrial fission protein pDrp-1 was increased in α4β2 nAChR-transfected cells treated with Aβ(1-42). In addition, the presence of α4β2 nAChRs dramatically enhanced Aβ(1-42)-mediated increases in reactive oxygen species and nuclear fragmentation, eventually leading to apoptosis. Our data thus show disturbed calcium homeostasis coupled with mitochondrial dysfunction and loss of neuronal integrity on prolonged exposure of Aβ in cells transfected with α4β2 nAChRs. Together, the results suggest that the presence of nAChRs sensitizes neurons to the toxic actions of soluble oligomeric Aβ, perhaps contributing to the cholinergic deficit in Alzheimer disease.
Collapse
Affiliation(s)
- Komal Arora
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | | | |
Collapse
|
32
|
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev 2012; 112:6285-318. [PMID: 22988962 DOI: 10.1021/cr3000829] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Damien Lemoine
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg , 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
33
|
Conotoxins that confer therapeutic possibilities. Mar Drugs 2012; 10:1244-1265. [PMID: 22822370 PMCID: PMC3397437 DOI: 10.3390/md10061244] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 12/19/2022] Open
Abstract
Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt®; Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ω-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred.
Collapse
|
34
|
Neuronal receptors as targets for the action of amyloid-beta protein (Aβ) in the brain. Expert Rev Mol Med 2012; 14:e2. [PMID: 22261393 DOI: 10.1017/s1462399411002134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Accumulation of neurotoxic soluble amyloid-beta protein (Aβ) oligomers in the brains of patients with Alzheimer disease (AD) and their role in AD pathogenesis have emerged as topics of considerable interest in recent years. Soluble Aβ oligomers impair synaptic and neuronal function, leading to neurodegeneration that is clinically manifested by memory and cognitive dysfunction. The precise mechanisms whereby Aβ oligomers cause neurotoxicity remain unknown. Emerging insights into the mechanistic link between neuronal receptors and soluble Aβ oligomers highlight the potential role of these receptors in Aβ-mediated neurotoxicity in AD. The current review focuses on studies describing interactions between soluble Aβ oligomers and neuronal receptors, and their role in AD pathogenesis. Furthermore, these studies provide insight into potential therapies for AD using compounds directed at putative target receptors for the action of Aβ in the central nervous system. We focus on interactions of Aβ with subtypes of acetylcholine and glutamatergic receptors. Additionally, neuronal receptors such as insulin, amylin and receptor for advanced glycation end products could be potential targets for soluble Aβ-oligomer-mediated neurotoxicity. Aβ interactions with other receptors such as the p75 neurotrophin receptors, which are highly expressed on cholinergic basal forebrain neurons lost in AD, are also highlighted.
Collapse
|
35
|
Xu J, Kurup P, Nairn AC, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase in Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:303-25. [PMID: 22840751 PMCID: PMC3740556 DOI: 10.1016/b978-0-12-394816-8.00009-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, affecting millions of people worldwide and representing a substantial economic burden. AD is a progressive disease associated with memory loss and impaired cognitive function. The neuropathology is characterized by cortical accumulation of amyloid plaques and neurofibrillary tangles (NFTs). Amyloid plaques are small, aggregated peptides called beta amyloid (Aβ) and NFTs are aggregates of hyperphosphorylated Tau protein. Because Aβ disrupts multiple intracellular signaling pathways, resulting in some of the clinical symptoms of AD, understanding the underlying molecular mechanisms has implications for the diagnosis and treatment of AD. Recent studies have demonstrated that Aβ regulates striatal-enriched protein tyrosine phosphatase (STEP) (PTPN5). Aβ accumulation is associated with increases in STEP levels and activity that in turn disrupts glutamate receptor trafficking to and from the neuronal membrane. These findings indicate that modulating STEP levels or inhibiting its activity may have beneficial effects for patients with AD, making it an important target for drug discovery. This article reviews the biology of STEP and its role in AD as well as the potential clinical applications.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|