1
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Song W, Ki DU, Cho H, Kwon O, Cho H, Yoon SI. Structural basis of transcriptional regulation by UrtR in response to uric acid. Nucleic Acids Res 2024; 52:13192-13205. [PMID: 39484741 PMCID: PMC11602129 DOI: 10.1093/nar/gkae922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Uric acid (UA)-responsive transcriptional regulators (UrtRs), which belong to the multiple antibiotic resistance regulator (MarR) superfamily, transcriptionally coordinate virulence and metabolism in bacteria by modulating interactions with operator DNA in response to UA. To elucidate the transcriptional regulatory mechanism of UrtR, we structurally analyzed UrtR proteins, including PecS, MftR, and HucR, alone and in complex with UA or DNA. UrtR contains a dimerization domain (DD) and a winged helix-turn-helix domain (wHTHD) and forms a homodimer primarily via the DD, as observed for other MarR superfamily proteins. However, UrtRs are characterized by a unique N-terminal α-helix, which contributes to dimerization and UA recognition. In the absence of UA, the UrtR dimer symmetrically binds to the operator double-stranded DNA (dsDNA) by inserting its α4 recognition helix and β-stranded wing within the wHTHD into the major and minor grooves of dsDNA, respectively. Upon exposure to UA, UrtR accommodates UA in the intersubunit pocket between the DD and wHTHD. UA binding induces a conformational change in the major groove-binding core element of the UrtR wHTHD, generating a DNA binding-incompatible structure. This local allosteric mechanism of UrtR completely differs from that generally observed in other MarR superfamily members, in which the entire wHTHD undergoes effector-responsive global shifts.
Collapse
Affiliation(s)
- Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Dong Uk Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Hye Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Oh Hyun Kwon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Sung-il Yoon
- Institute of Bioscience and Biotechnology, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Huang X, Yang S, Zhao J, Yang J, Jiang H, Li S, Wang C, Liu G. Generation and evaluation of Salmonella entericaserovar Choleraesuis mutant strains as a potential live-attenuated vaccine. Vaccine 2024; 42:126262. [PMID: 39197218 DOI: 10.1016/j.vaccine.2024.126262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Salmonella entericaserovar Choleraesuis (S.C) is a swine enteric pathogen causing paratyphoid fever, enterocolitis, and septicemia in piglets. S. C is mainly transmitted through the fecal-oral route. Vaccination is an effective strategy for preventing and controlling Salmonella infection. RESULTS Herein, we used CRISPR-Cas9 technology to knockout the virulence regulatory genes, rpoS, and slyA of S. C and constructed the ∆rpoS, ∆slyA, and ∆rpoS ∆slyA strains. The phenotypic characteristics of the mutant strains remained unchanged compared with the parental wild-type strain. In vivo study, unlike the wild-type strain, the ∆slyA and ∆rpoS ∆slyA strains alleviated splenomegaly, colon atrophy, and lower bacterial loads in the spleen, liver, ileum, and colon. These mutant strains survived in Peyer's patches (PPs) and mesenteric lymph nodes (MLN) for up to 15 days post-infection. Furthermore, the immunization of the ∆rpoS ∆slyA strain induced robust humoral and cellular immune responses. CONCLUSIONS Consequently, vaccination with ∆rpoS ∆slyA conferred a high percentage of protection against lethal invasive Salmonella, specifically S. C, in mice. This study provided novel insights into the development of live-attenuated vaccines against the infection of S. C.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanshan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium
| | - Huazheng Jiang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuxian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
4
|
Song K, Li R, Cui Y, Chen B, Zhou L, Han W, Jiang B, He Y. The phytopathogen Xanthomonas campestris senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants. MLIFE 2024; 3:430-444. [PMID: 39359673 PMCID: PMC11442134 DOI: 10.1002/mlf2.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen Xanthomonas campestris pv. campestris (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated hepABCD expression by specifically binding to an AT-rich region of the promoter of the hepRABCD operon, Phep. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter Phep and then induced the expression of hepABCD. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The hepRABCD cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the hepRABCD cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruifang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lian Zhou
- Zhiyuan Innovative Research CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Wenying Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ya‐Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
5
|
Boral A, Mitra D. Heterogeneity in winged helix-turn-helix and substrate DNA interactions: Insights from theory and experiments. J Cell Biochem 2023; 124:337-358. [PMID: 36715571 DOI: 10.1002/jcb.30369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023]
Abstract
Specific interactions between transcription factors (TFs) and substrate DNA constitute the fundamental basis of gene expression. Unlike in TFs like basic helix-loop-helix or basic leucine zippers, prediction of substrate DNA is extremely challenging for helix-turn-helix (HTH). Experimental techniques like chromatin immunoprecipitation combined with massively parallel DNA sequencing remains a viable option. We characterize the molecular basis of heterogeneity in HTH-DNA interaction using in silico tools and thence validate them experimentally. Given the profound functional diversity in HTH, we focus primarily on winged-HTH (wHTH). We consider 180 wHTH TFs, whose experimental three-dimensional structures are available in DNA bound/unbound conformations. Starting with PDB-wide scanning and curation of data, we construct a phylogenetic tree, which distributes 180 wHTH sequences under multiple sub-groups. Structure-sequence alignment followed by detailed intra/intergroup analysis, covariation studies and extensive network theory analysis help us to gain deep insight into heterogeneous wHTH-substrate DNA interactions. A central aim of this study is to find a consensus to predict the substrate DNA sequence for wHTH, amidst heterogeneity. The strength of our exhaustive theoretical investigations including molecular docking are successfully tested through experimental characterization of wHTH TF from Sulfurimonas denitrificans.
Collapse
Affiliation(s)
- Aparna Boral
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Caporaletti F, Pietras Z, Morad V, Mårtensson LG, Gabel F, Wallner B, Martel A, Sunnerhagen M. Small-angle x-ray and neutron scattering of MexR and its complex with DNA supports a conformational selection binding model. Biophys J 2023; 122:408-418. [PMID: 36474441 PMCID: PMC9892617 DOI: 10.1016/j.bpj.2022.11.2949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this work, we used small-angle x-ray and neutron scattering to reveal the shape of the protein-DNA complex of the Pseudomonas aeruginosa transcriptional regulator MexR, a member of the multiple antibiotics resistance regulator (MarR) family, when bound to one of its native DNA binding sites. Several MarR-like proteins, including MexR, repress the expression of efflux pump proteins by binding to DNA on regulatory sites overlapping with promoter regions. When expressed, efflux proteins self-assemble to form multiprotein complexes and actively expel highly toxic compounds out of the host organism. The mutational pressure on efflux-regulating MarR family proteins is high since deficient DNA binding leads to constitutive expression of efflux pumps and thereby supports acquired multidrug resistance. Understanding the functional outcome of such mutations and their effects on DNA binding has been hampered by the scarcity of structural and dynamic characterization of both free and DNA-bound MarR proteins. Here, we show how combined neutron and x-ray small-angle scattering of both states in solution support a conformational selection model that enhances MexR asymmetry in binding to one of its promoter-overlapping DNA binding sites.
Collapse
Affiliation(s)
- Francesca Caporaletti
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden; Large Scale Structure, Institute Laue Langevin, Grenoble, France
| | - Zuzanna Pietras
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Vivian Morad
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Lars-Göran Mårtensson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Frank Gabel
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Björn Wallner
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Anne Martel
- Large Scale Structure, Institute Laue Langevin, Grenoble, France
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
| |
Collapse
|
7
|
Lambrecht SJ, Stappert N, Sommer F, Schroda M, Steglich C. A Cyanophage MarR-Type Transcription Factor Regulates Host RNase E Expression during Infection. Microorganisms 2022; 10:2245. [PMID: 36422315 PMCID: PMC9692554 DOI: 10.3390/microorganisms10112245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/30/2024] Open
Abstract
The marine picocyanobacterium Prochlorococcus contributes significantly to global primary production, and its abundance and diversity is shaped in part by viral infection. Here, we identified a cyanophage-encoded MarR-type transcription factor that induces the gene expression of host Prochlorococcus MED4 endoribonuclease (RNase) E during phage infection. The increase in rne transcript levels relies on the phage (p)MarR-mediated activation of an alternative promoter that gives rise to a truncated yet enzymatically fully functional RNase E isoform. In this study, we demonstrate that pMarR binds to an atypical activator site downstream of the transcriptional start site and that binding is enhanced in the presence of Ca2+ ions. Furthermore, we show that dimeric pMarR interacts with the α subunit of RNA polymerase, and we identified amino acid residues S66, R67, and G106, which are important for Ca2+ binding, DNA binding, and dimerization of pMarR, respectively.
Collapse
Affiliation(s)
- S. Joke Lambrecht
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Medical Faculty, Medical Center, Institute for Surgical Pathology, University of Freiburg, 79106 Freiburg, Germany
| | - Nils Stappert
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
McLaughlin M, Hershey DM, Reyes Ruiz LM, Fiebig A, Crosson S. A cryptic transcription factor regulates Caulobacter adhesin development. PLoS Genet 2022; 18:e1010481. [PMID: 36315598 PMCID: PMC9648850 DOI: 10.1371/journal.pgen.1010481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/10/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Alphaproteobacteria commonly produce an adhesin that is anchored to the exterior of the envelope at one cell pole. In Caulobacter crescentus this adhesin, known as the holdfast, facilitates attachment to solid surfaces and cell partitioning to air-liquid interfaces. An ensemble of two-component signal transduction (TCS) proteins controls C. crescentus holdfast biogenesis by indirectly regulating expression of HfiA, a potent inhibitor of holdfast synthesis. We performed a genetic selection to discover direct hfiA regulators that function downstream of the adhesion TCS system and identified rtrC, a hypothetical gene. rtrC transcription is directly activated by the adhesion TCS regulator, SpdR. Though its primary structure bears no resemblance to any defined protein family, RtrC binds and regulates dozens of sites on the C. crescentus chromosome via a pseudo-palindromic sequence. Among these binding sites is the hfiA promoter, where RtrC functions to directly repress transcription and thereby activate holdfast development. Either RtrC or SpdR can directly activate transcription of a second hfiA repressor, rtrB. Thus, environmental regulation of hfiA transcription by the adhesion TCS system is subject to control by an OR-gated type I coherent feedforward loop; these regulatory motifs are known to buffer gene expression against fluctuations in regulating signals. We have further assessed the functional role of rtrC in holdfast-dependent processes, including surface adherence to a cellulosic substrate and formation of pellicle biofilms at air-liquid interfaces. Strains harboring insertional mutations in rtrC have a diminished adhesion profile in a competitive cheesecloth binding assay and a reduced capacity to colonize pellicle biofilms in select media conditions. Our results add to an emerging understanding of the regulatory topology and molecular components of a complex bacterial cell adhesion control system.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
9
|
The structure of Deinococcus radiodurans transcriptional regulator HucR retold with the urate bound. Biochem Biophys Res Commun 2022; 615:63-69. [DOI: 10.1016/j.bbrc.2022.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
|
10
|
The Plant Defense Signal Salicylic Acid Activates the RpfB-Dependent Quorum Sensing Signal Turnover via Altering the Culture and Cytoplasmic pH in the Phytopathogen Xanthomonas campestris. mBio 2022; 13:e0364421. [PMID: 35254135 PMCID: PMC9040794 DOI: 10.1128/mbio.03644-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant colonization by phytopathogens is a very complex process in which numerous factors are involved. Upon infection by phytopathogens, plants produce salicylic acid (SA) that triggers gene expression within the plant to counter the invading pathogens. The present study demonstrated that SA signal also directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the diffusible signaling factor (DSF) family QS signal. First, Xanthomonas campestris pv. campestris infection induces SA biosynthesis in the cabbage host plant. SA cannot be degraded by Xanthomonas campestris pv. campestris during culturing. Exogenous addition of SA or endogenous production of SA induces DSF signal turnover during late growth phase of Xanthomonas campestris pv. campestris in XYS medium that mimics plant vascular environments. Further, the DSF turnover gene rpfB is required for SA induction of DSF turnover. However, SA does not affect the expression of rpfB and DSF biosynthesis gene rpfF at the transcriptional level. SA induction of DSF turnover only occurs under acidic conditions in XYS medium. Furthermore, addition of SA to XYS medium significantly increased both culture and cytoplasmic pH. Increased cytoplasmic pH induced DSF turnover in a rpfB-dependent manner. In vitro RpfB-dependent DSF turnover activity increased when pH increased from 6 to 8. SA exposure did not affect the RpfB-dependent DSF turnover in vitro. Finally, SA-treated Xanthomonas campestris pv. campestris strain exhibited enhanced virulence when inoculated on cabbage. These results provide new insight into the roles of SA in host plants and the molecular interactions between Xanthomonas campestris pv. campestris and cruciferous plants.
Collapse
|
11
|
Kucukyildirim S. Whole-population genomic sequencing reveals the mutational profiles of the antibiotic-treated Escherichia coli populations. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Permsirivisarn P, Yuenyao A, Pramanpol N, Charoenwattanasatien R, Suginta W, Chaiyen P, Pakotiprapha D. Mechanism of transcription regulation by Acinetobacter baumannii HpaR in the catabolism of p-hydroxyphenylacetate. FEBS J 2021; 289:3217-3240. [PMID: 34967505 DOI: 10.1111/febs.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
HpaR is a transcription regulator in the MarR family that controls the expression of the gene cluster responsible for conversion of p-hydroxyphenylacetate to pyruvate and succinate for cellular metabolism. Here, we report the biochemical and structural characterization of Acinetobacter baumannii HpaR (AbHpaR) and its complex with cognate DNA. Our study revealed that AbHpaR binds upstream of the divergently transcribed hpaA gene and the meta-cleavage operon, as well as the hpaR gene, thereby repressing their transcription by blocking access of RNA polymerase. Structural analysis of AbHpaR-DNA complex revealed that the DNA binding specificity can be achieved via a combination of both direct and indirect DNA sequence readouts. DNA binding of AbHpaR is weakened by 3,4-dihydroxyphenylacetate (DHPA), which is the substrate of the meta-cleavage reactions; this likely leads to expression of the target genes. Based on our findings, we propose a model for how A. baumannii controls transcription of HPA-metabolizing genes, which highlights the independence of global catabolite repression and could be beneficial for metabolic engineering towards bioremediation applications.
Collapse
Affiliation(s)
- Permkun Permsirivisarn
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anan Yuenyao
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttawan Pramanpol
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | | | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
13
|
The sRNA MicC downregulates hilD translation to control the SPI1 T3SS in Salmonella enterica serovar Typhimurium. J Bacteriol 2021; 204:e0037821. [PMID: 34694902 DOI: 10.1128/jb.00378-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium invades the intestinal epithelium and induces inflammatory diarrhea using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Expression of the SPI1 T3SS is controlled by three AraC-like regulators, HilD, HilC and RtsA, which form a feed-forward regulatory loop that leads to activation of hilA, encoding the main transcriptional regulator of the T3SS structural genes. This complex system is affected by numerous regulatory proteins and environmental signals, many of which act at the level of hilD mRNA translation or HilD protein function. Here, we show that the sRNA MicC blocks translation of the hilD mRNA by base pairing near the ribosome binding site. MicC does not induce degradation of the hilD message. Our data indicate that micC is transcriptionally activated by SlyA, and SlyA feeds into the SPI1 regulatory network solely through MicC. Transcription of micC is negatively regulated by the OmpR/EnvZ two-component system, but this regulation is dependent on SlyA. OmpR/EnvZ control SPI1 expression partially through MicC, but also affect expression through other pathways, including an EnvZ-dependent, OmpR-independent mechanism. MicC-mediated regulation plays a role during infection, as evidenced by a SPI1 T3SS-dependent increase in Salmonella fitness in the intestine in the micC deletion mutant. These results further elucidate the complex regulatory network controlling SPI1 expression and add to the list of sRNAs that control this primary virulence factor. IMPORTANCE The Salmonella SPI1 T3SS is the primary virulence factor required for causing intestinal disease and initiating systemic infection. The system is regulated in response to a large variety of environmental and physiological factors such that the T3SS is expressed at only the appropriate time and place in the host during infection. Here we show how the sRNA MicC affects expression of the system. This work adds to our detailed mechanistic studies aimed at a complete understanding of the regulatory circuit.
Collapse
|
14
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Tian S, Wang C, Li Y, Bao X, Zhang Y, Tang T. The Impact of SlyA on Cell Metabolism of Salmonella typhimurium: A Joint Study of Transcriptomics and Metabolomics. J Proteome Res 2020; 20:184-190. [PMID: 32969666 DOI: 10.1021/acs.jproteome.0c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SlyA is an important transcriptional regulator in Salmonella typhimurium (S. typhimurium). Numerous reports have indicated the impact of SlyA on the virulence of S. typhimurium. Less information regarding the role of SlyA in the cell metabolism of S. typhimurium is available. To close this gap, we compared the growth kinetics of an S. typhimurium wild-type strain to a slyA deletion mutant strain. The data suggested that the cell growth of S. typhimurium was impaired when slyA abolished, indicating that SlyA might affect the cell metabolism of S. typhimurium. To determine the role of SlyA in cell metabolism, we analyzed the metabolite profiles of S. typhimurium in the presence or absence of slyA using gas chromatography coupled with tandem mass spectrometry (GC-MS-MS). With the aim of appropriately interpreting the results obtained from metabolomics, a transcriptomic analysis on both the wild-type S. typhimurium and the slyA deletion mutant was performed. The metabolome data indicated that several glycolysis and lipid metabolism-associated pathways, including the turnover of glycerolipid, pyruvate, butanoate, and glycerophospholipid, were affected in the absence of slyA. In addition, the mRNA levels of several genes associated with glycolysis and lipid turnover were downregulated when slyA was deleted, including pagP, fadL, mgtB, iacp, and yciA. Collectively, these evidence suggested that SlyA affects the glycolysis and lipid turnover of S. typhimurium at a transcriptional level. The raw data of metabolomics is available in the MetaboLights database with an access number of MTBLS1858. The raw data of transcriptome is available in the Sequence Read Archive (SRA) database with an access number of PRJNA656165.
Collapse
Affiliation(s)
- Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Yongyu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoming Bao
- Shimadzu (China) Co., Ltd., Sanse Road, Spirit Industry Business District, Chengdu, Sichuan Province 610063, P.R. China
| | - Yunwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
16
|
Bartoli J, Viala JP, Bouveret E. SlyA Transcriptional Regulator Is Not Directly Affected by ppGpp Levels. Front Microbiol 2020; 11:1856. [PMID: 32849447 PMCID: PMC7417354 DOI: 10.3389/fmicb.2020.01856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The SlyA transcriptional regulator controls the expression of genes involved in virulence and production of surface components in S. Typhimurium and E. coli. Its mode of action is mainly explained by its antagonism with the H-NS repressor for the same DNA binding regions. Interestingly, it has been reported that the alarmone ppGpp promotes SlyA dimerization and DNA binding at the promoter of pagC, enhancing the expression of this gene in Salmonella. A recurring problem in the field of stringent response has been to find a way of following ppGpp levels in vivo in real time. We thought that SlyA, as a ppGpp responsive ligand, was a perfect candidate for the development of a specific ppGpp biosensor. Therefore, we decided to characterize in depth this SlyA control by ppGpp. However, using various genes whose expression is activated by SlyA, as reporters, we showed that ppGpp does not affect SlyA regulation in vivo. In addition, modulating ppGpp levels did not affect SlyA dimerization in vivo, and did not impact its binding to DNA in vitro. We finally showed that ppGpp is required for the expression of hlyE in E. coli, a gene also activated by SlyA, and propose that both regulators are independently required for hlyE expression. The initial report of ppGpp action on SlyA might be explained by a similar action of SlyA and ppGpp on pagC expression, and the complexity of promoters controlled by several global regulators, such as the promoters of pagC in Salmonella or hlyE in E. coli.
Collapse
Affiliation(s)
- Julia Bartoli
- LISM, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille University, Marseille, France
| | - Julie Pamela Viala
- LISM, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
17
|
CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria. Appl Environ Microbiol 2020; 86:AEM.00120-20. [PMID: 32169942 DOI: 10.1128/aem.00120-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2 Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria.IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated.
Collapse
|
18
|
The evolution of MarR family transcription factors as counter-silencers in regulatory networks. Curr Opin Microbiol 2020; 55:1-8. [PMID: 32044654 DOI: 10.1016/j.mib.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
Gene duplication facilitates the evolution of biological complexity, as one copy of a gene retains its original function while a duplicate copy can acquire mutations that would otherwise diminish fitness. Duplication has played a particularly important role in the evolution of regulatory networks by permitting novel regulatory interactions and responses to stimuli. The diverse MarR family of transcription factors (MFTFs) illustrate this concept, ranging from highly specific repressors of single operons to pleiotropic global regulators controlling hundreds of genes. MFTFs are often genetically and functionally linked to antimicrobial efflux systems. However, the SlyA MFTF lineage in the Enterobacteriaceae plays little or no role in regulating efflux but rather functions as transcriptional counter-silencers, which alleviate xenogeneic silencing of horizontally acquired genes and facilitate bacterial evolution by horizontal gene transfer. This review will explore recent advances in our understanding of MFTF traits that have contributed to their functional evolution.
Collapse
|
19
|
Fish borne Edwardsiella tarda eha involved in the bacterial biofilm formation, hemolytic activity, adhesion capability and pathogenicity. Arch Microbiol 2019; 202:835-842. [PMID: 31865430 DOI: 10.1007/s00203-019-01794-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Edwardsiella tarda (E. tarda) is distributed widely in a variety of hosts including humans, other mammals and fish, and it is worthwhile to notice that E. tarda -caused fish infections lead to the most important bacterial disease in fish. Considering Eha acting as a transcriptional regulator in E. tarda strain ET13 have been reported previously, to better understand its pathogenesis due to this, a type of cell of epithelial cell line (Caco-2) infection model for the pathogen was established in the laboratory. We focused on studying various parameters such as lactate dehydrogenase release (to measure cytotoxicity) and cell adhesions, both of which are related to the bacterial pathogenesis. Furthermore biofilm formation, hemolytic activity, and adhesion to Caco-2 cells were decreased in an E.tarda mutant strain with deletion in-frame isogenic gene eha (∆eha) compared to the wild-type and the complementary strain eha+ (an engineered construct of ∆eha expressing eha); Meanwhile, we found that hemolytic activity and biofilm formation were significantly enhanced in the strain eha+. Moreover, the ∆eha strain had attenuated pathogenicity in the zebrafish infection model. The data also demonstrated that the series of genes fimA, esrB, gadB, mukF, katB, and katG are regulated by eha based on a quantitative reverse transcription polymerase chain reaction tests and analysis. Thus our research data indicated that eha has an impact on hemolytic activity, biofilm formation, adhesion, and pathogenicity of pathogenic strain ET13 and plays an essential role in manifesting the virulence factors.
Collapse
|
20
|
Booth WT, Davis RR, Deora R, Hollis T. Structural mechanism for regulation of DNA binding of BpsR, a Bordetella regulator of biofilm formation, by 6-hydroxynicotinic acid. PLoS One 2019; 14:e0223387. [PMID: 31697703 PMCID: PMC6837509 DOI: 10.1371/journal.pone.0223387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Bordetella bacteria are respiratory pathogens of humans, birds, and livestock. Bordetella pertussis the causative agent of whopping cough remains a significant health issue. The transcriptional regulator, BpsR, represses a number of Bordetella genes relating to virulence, cell adhesion, cell motility, and nicotinic acid metabolism. DNA binding of BpsR is allosterically regulated by interaction with 6-hydroxynicotinic acid (6HNA), the first product in the nicotinic acid degradation pathway. To understand the mechanism of this regulation, we have determined the crystal structures of BpsR and BpsR in complex with 6HNA. The structures reveal that BpsR binding of 6HNA induces a conformational change in the protein to prevent DNA binding. We have also identified homologs of BpsR in other Gram negative bacteria in which the amino acids involved in recognition of 6HNA are conserved, suggesting a similar mechanism for regulating nicotinic acid degradation.
Collapse
Affiliation(s)
- William T. Booth
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Ryan R. Davis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, and Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zuo G, Chen ZP, Jiang YL, Zhu Z, Ding C, Zhang Z, Chen Y, Zhou CZ, Li Q. Structural insights into repression of the Pneumococcal fatty acid synthesis pathway by repressor FabT and co-repressor acyl-ACP. FEBS Lett 2019; 593:2730-2741. [PMID: 31291684 DOI: 10.1002/1873-3468.13534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
The Streptococcus pneumoniae fatty acid synthesis (FAS) pathway is globally controlled at the transcriptional level by the repressor FabT and its co-repressor acyl carrier protein (acyl-ACP), the intermediate of phospholipid synthesis. Here, we report the crystal structure of FabT complexed with a 23-bp dsDNA, which indicates that FabT is a weak repressor with low DNA-binding affinity in the absence of acyl-ACP. Modification of ACP with a long-chain fatty acid is necessary for the formation of a stable complex with FabT, mimicked in vitro by cross-linking, which significantly elevates the DNA-binding affinity of FabT. Altogether, we propose a putative working model of gene repression under the double control of FabT and acyl-ACP, elucidating a distinct repression network for Pneumococcus to precisely coordinate FAS.
Collapse
Affiliation(s)
- Gang Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chengtao Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
22
|
A Dopamine-Responsive Signal Transduction Controls Transcription of Salmonella enterica Serovar Typhimurium Virulence Genes. mBio 2019; 10:mBio.02772-18. [PMID: 30992361 PMCID: PMC6469979 DOI: 10.1128/mbio.02772-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that the ligand-responsive MarR family member SlyA plays an important role in transcription activation of multiple virulence genes in Salmonella enterica serovar Typhimurium by responding to guanosine tetraphosphate (ppGpp). Here, we demonstrate that another MarR family member, EmrR, is required for virulence of S. Typhimurium and another enteric bacterium, Yersinia pestis EmrR is found to activate transcription of an array of virulence determinants, including Salmonella pathogenicity island 2 (SPI-2) genes and several divergent operons, which have been shown to be activated by SlyA and the PhoP/PhoQ two-component system. We studied the regulatory effect of EmrR on one of these genetic loci, i.e., the pagC-pagD divergent operon, and characterized a catecholamine neurotransmitter, dopamine, as an EmrR-sensed signal. Dopamine acts on EmrR to reduce its ability to bind to the target promoters, thus functioning as a negative signal to downregulate this EmrR-activated transcription. EmrR can bind to AT-rich sequences, which particularly overlap the SlyA and PhoP binding sites in the pagC-pagD divergent promoter. EmrR is a priming transcription regulator that binds its target promoters prior to successive transcription activators, by which it displaces universal silencer H-NS from these promoters and facilitates successive regulators to bind these regions. Regulation of the Salmonella-specific gene in Escherichia coli and Y. pestis reveals that EmrR-dependent regulation is conserved in enteric bacteria. These observations suggest that EmrR is a transcription activator to control the expression of virulence genes, including the SPI-2 genes. Dopamine can act on the EmrR-mediated signal transduction, thus downregulating expression of these virulence factors.IMPORTANCE In this study, MarR family regulator EmrR is identified as a novel virulence factor of enteric bacteria, here exemplified by Salmonella enterica serovar Typhimurium and Yersinia pestis EmrR exerts an essential effect as a transcription activator for expression of virulence determinants, including Salmonella pathogenicity island 2 genes and a set of horizontally acquired genetic loci that formed divergent operons. EmrR senses the neurotransmitter dopamine and is subsequently released from target promoters, resulting in downregulation of the virulence gene expression. Through this action on EmrR, dopamine can weaken Salmonella resistance against host defense mechanisms. This provides an explanation for the previous observation that dopamine inhibits bacterial infection in animal gastrointestinal tracts. Our findings provide evidence that this neurotransmitter can modulate bacterial gene expression through interaction with virulence regulator EmrR.
Collapse
|
23
|
Will WR, Brzovic P, Le Trong I, Stenkamp RE, Lawrenz MB, Karlinsey JE, Navarre WW, Main-Hester K, Miller VL, Libby SJ, Fang FC. The Evolution of SlyA/RovA Transcription Factors from Repressors to Countersilencers in Enterobacteriaceae. mBio 2019; 10:e00009-19. [PMID: 30837332 PMCID: PMC6401476 DOI: 10.1128/mbio.00009-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Gene duplication and subsequent evolutionary divergence have allowed conserved proteins to develop unique roles. The MarR family of transcription factors (TFs) has undergone extensive duplication and diversification in bacteria, where they act as environmentally responsive repressors of genes encoding efflux pumps that confer resistance to xenobiotics, including many antimicrobial agents. We have performed structural, functional, and genetic analyses of representative members of the SlyA/RovA lineage of MarR TFs, which retain some ancestral functions, including repression of their own expression and that of divergently transcribed multidrug efflux pumps, as well as allosteric inhibition by aromatic carboxylate compounds. However, SlyA and RovA have acquired the ability to countersilence horizontally acquired genes, which has greatly facilitated the evolution of Enterobacteriaceae by horizontal gene transfer. SlyA/RovA TFs in different species have independently evolved novel regulatory circuits to provide the enhanced levels of expression required for their new role. Moreover, in contrast to MarR, SlyA is not responsive to copper. These observations demonstrate the ability of TFs to acquire new functions as a result of evolutionary divergence of both cis-regulatory sequences and in trans interactions with modulatory ligands.IMPORTANCE Bacteria primarily evolve via horizontal gene transfer, acquiring new traits such as virulence and antibiotic resistance in single transfer events. However, newly acquired genes must be integrated into existing regulatory networks to allow appropriate expression in new hosts. This is accommodated in part by the opposing mechanisms of xenogeneic silencing and countersilencing. An understanding of these mechanisms is necessary to understand the relationship between gene regulation and bacterial evolution. Here we examine the functional evolution of an important lineage of countersilencers belonging to the ancient MarR family of classical transcriptional repressors. We show that although members of the SlyA lineage retain some ancestral features associated with the MarR family, their cis-regulatory sequences have evolved significantly to support their new function. Understanding the mechanistic requirements for countersilencing is critical to understanding the pathoadaptation of emerging pathogens and also has practical applications in synthetic biology.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Peter Brzovic
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Isolde Le Trong
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Ronald E Stenkamp
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Joyce E Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - William W Navarre
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kara Main-Hester
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Stephen J Libby
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Regulatory Effect of SlyA on rcsB Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00673-18. [PMID: 30510144 DOI: 10.1128/jb.00673-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that the rcsC11 mutant, which constitutively activates the RcsB regulator, attenuates Salmonella virulence in an animal model. This attenuated phenotype was also produced by deletion of the slyA gene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulates rcsB transcription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, P rcsDB and P rcsB , which control rcsB transcriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of both rcsB promoters. According to these results, SlyA represses rcsB transcription by direct binding to specific sites located on the rcsB promoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects the Salmonella motility phenotype. In this sense, we observed that under SlyA overproduction, P rcsB is repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms of Salmonella Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCE The antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controlling rcsB transcription from the P rcsB promoter. We also demonstrate that SlyA negatively affects the expression of the rcsB gene by direct binding to P rcsDB and P rcsB promoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms of Salmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.
Collapse
|
25
|
Varela PF, Velours C, Aumont-Niçaise M, Pineau B, Legrand P, Poquet I. Biophysical and structural characterization of a zinc-responsive repressor of the MarR superfamily. PLoS One 2019; 14:e0210123. [PMID: 30753183 PMCID: PMC6372160 DOI: 10.1371/journal.pone.0210123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022] Open
Abstract
The uptake of zinc, which is vital in trace amounts, is tightly controlled in bacteria. For this control, bacteria of the Streptococcaceae group use a Zn(II)-binding repressor named ZitR in lactococci and AdcR in streptococci, while other bacteria use a Zur protein of the Ferric uptake regulator (Fur) superfamily. ZitR and AdcR proteins, characterized by a winged helix-turn-helix DNA-binding domain, belong to the multiple antibiotic resistance (MarR) superfamily, where they form a specific group of metallo-regulators. Here, one such Zn(II)-responsive repressor, ZitR of Lactococcus lactis subspecies cremoris strain MG1363, is characterized. Size Exclusion Chromatography-coupled to Multi Angle Light Scattering, Circular Dichroism and Isothermal Titration Calorimetry show that purified ZitR is a stable dimer complexed to Zn(II), which is able to bind its two palindromic operator sites on DNA fragments. The crystal structure of ZitR holo-form (Zn(II)4-ZitR2), has been determined at 2.8 Å resolution. ZitR is the fourth member of the MarR metallo-regulator subgroup whose structure has been determined. The folding of ZitR/AdcR metallo-proteins is highly conserved between both subspecies (cremoris or lactis) in the Lactococcus lactis species and between species (Lactococcus lactis and Streptococcus pneumoniae or pyogenes) in the Streptococcaceae group. It is also similar to the folding of other MarR members, especially in the DNA-binding domain. Our study contributes to better understand the biochemical and structural properties of metallo-regulators in the MarR superfamily.
Collapse
Affiliation(s)
- Paloma Fernández Varela
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
- Laboratoire d’Enzymologie et Biochimie Structurales, CNRS Gif-sur-Yvette, France
- * E-mail:
| | | | - Magali Aumont-Niçaise
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
| | - Blandine Pineau
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
| | - Isabelle Poquet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
26
|
MarR Family Transcription Factors from Burkholderia Species: Hidden Clues to Control of Virulence-Associated Genes. Microbiol Mol Biol Rev 2018; 83:83/1/e00039-18. [PMID: 30487164 DOI: 10.1128/mmbr.00039-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Species within the genus Burkholderia exhibit remarkable phenotypic diversity. Genomic plasticity, including genome reduction and horizontal gene transfer, has been correlated with virulence traits in several species. However, the conservation of virulence genes in species otherwise considered to have limited potential for infection suggests that phenotypic diversity may not be explained solely on the basis of genetic diversity. Instead, differential organization and control of gene regulatory networks may underlie many phenotypic differences. In this review, we evaluate how regulation of gene expression by members of the multiple antibiotic resistance regulator (MarR) family of transcription factors may contribute to shaping the physiological diversity of Burkholderia species, with a focus on the clinically relevant human pathogens. All Burkholderia species encode a relatively large number of MarR proteins, a feature common to bacteria that must respond to environmental changes such as those associated with host invasion. However, evolution of gene regulatory networks has likely resulted in orthologous transcription factors controlling disparate sets of genes. Adaptation to, and survival in, diverse habitats, including a human or plant host, is key to the success of Burkholderia species as (opportunistic) pathogens, and recent reports suggest that control of virulence-associated genes by MarR proteins features prominently among the survival strategies employed by these species. We suggest that identification of MarR regulons will contribute significantly to clarification of virulence determinants and phenotypic diversity.
Collapse
|
27
|
Capdevila DA, Huerta F, Edmonds KA, Le MT, Wu H, Giedroc DP. Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator. eLife 2018; 7:37268. [PMID: 30328810 PMCID: PMC6224198 DOI: 10.7554/elife.37268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
MarR (multiple antibiotic resistance repressor) family proteins are bacterial repressors that regulate transcription in response to a wide range of chemical signals. Although specific features of MarR family function have been described, the role of atomic motions in MarRs remains unexplored thus limiting insights into the evolution of allostery in this ubiquitous family of repressors. Here, we provide the first experimental evidence that internal dynamics play a crucial functional role in MarR proteins. Streptococcus pneumoniae AdcR (adhesin-competence repressor) regulates ZnII homeostasis and ZnII functions as an allosteric activator of DNA binding. ZnII coordination triggers a transition from somewhat independent domains to a more compact structure. We identify residues that impact allosteric activation on the basis of ZnII-induced perturbations of atomic motions over a wide range of timescales. These findings appear to reconcile the distinct allosteric mechanisms proposed for other MarRs and highlight the importance of conformational dynamics in biological regulation.
Collapse
Affiliation(s)
| | - Fidel Huerta
- Department of Chemistry, Indiana University, Bloomington, United States.,Graduate Program in Biochemistry, Indiana University, Bloomington, United States
| | | | - My Tra Le
- Department of Chemistry, Indiana University, Bloomington, United States
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, United States.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
28
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
29
|
Cogan DP, Baraquet C, Harwood CS, Nair SK. Structural basis of transcriptional regulation by CouR, a repressor of coumarate catabolism, in Rhodopseudomonas palustris. J Biol Chem 2018; 293:11727-11735. [PMID: 29794028 DOI: 10.1074/jbc.ra118.003561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
The MarR family transcriptional regulator CouR, from the soil bacterium Rhodopseudomonas palustris CGA009, has recently been shown to negatively regulate a p-coumarate catabolic operon. Unlike most characterized MarR repressors that respond to small metabolites at concentrations in the millimolar range, repression by CouR is alleviated by the 800-Da ligand p-coumaroyl-CoA with high affinity and specificity. Here we report the crystal structures of ligand-free CouR as well as the complex with p-coumaroyl-CoA, each to 2.1-Å resolution, and the 2.85-Å resolution cocrystal structure of CouR bound to an oligonucleotide bearing the cognate DNA operator sequence. In combination with binding experiments that uncover specific residues important for ligand and DNA recognition, these structures provide glimpses of a MarR family repressor in all possible states, providing an understanding of the molecular basis of DNA binding and the conformation alterations that accompany ligand-induced dissociation for activation of the operon.
Collapse
Affiliation(s)
- Dillon P Cogan
- From the Department of Biochemistry.,Institute for Genomic Biology, and
| | - Claudine Baraquet
- the Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Caroline S Harwood
- the Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Satish K Nair
- From the Department of Biochemistry, .,Institute for Genomic Biology, and.,Center for Biophysics and Computational Biology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
30
|
Fan JR, Zhang HX, Mu YG, Zheng QC. Studying the recognition mechanism of TcaR and ssDNA using molecular dynamic simulations. J Mol Graph Model 2018; 80:67-75. [DOI: 10.1016/j.jmgm.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
31
|
Pan Y, Liang F, Li RJ, Qian W. MarR-Family Transcription Factor HpaR Controls Expression of the vgrR-vgrS Operon of Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:299-310. [PMID: 29077520 DOI: 10.1094/mpmi-07-17-0187-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MarR (multiple antibiotic resistance regulator)-family transcription factors (TFs), which regulate the expression of virulence factors and other physiological pathways in pathogenic bacteria, are regarded as ideal molecular targets for the development of novel antimicrobial strategies. In the plant bacterial pathogen Xanthomonas campestris pv. campestris, HpaR, a typical MarR-family TF, is associated with bacterial virulence, but its mechanism of virulence regulation remains unclear. Here, we dissected the HpaR regulon using high-throughput RNA sequencing and chromatin immunoprecipitation sequencing. HpaR directly or indirectly controls the expression of approximately 448 genes; it acts both as a transcriptional activator and a repressor to control the expression of downstream genes by directly binding to their promoter regions. The consensus HpaR-binding DNA motifs contain imperfect palindromic sequences similar to [G/T]CAACAATT[C/T]TTG. In-depth analysis revealed that HpaR positively modulates transcription level of the vgrR-vgrS operon that encodes an important two-component signal transduction system to sense iron depletion and regulate bacterial virulence. Epistasis analysis demonstrated that vgrR-vgrS is a core downstream component of HpaR regulation, as overexpression of vgrR restored the phenotypic deficiencies caused by a hpaR mutation. This dissection of the HpaR regulon should facilitate future studies focused on the activating mechanism of HpaR during bacterial infection.
Collapse
Affiliation(s)
- Yue Pan
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Fang Liang
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Ru-Jiao Li
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Wei Qian
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Allosteric histidine switch for regulation of intracellular zinc(II) fluctuation. Proc Natl Acad Sci U S A 2017; 114:13661-13666. [PMID: 29229866 DOI: 10.1073/pnas.1708563115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Metalloregulators allosterically control transcriptional activity through metal binding-induced reorganization of ligand residues and/or hydrogen bonding networks, while the coordination atoms on the same ligand residues remain seldom changed. Here we show that the MarR-type zinc transcriptional regulator ZitR switches one of its histidine nitrogen atoms for zinc coordination during the allosteric control of DNA binding. The Zn(II)-coordination nitrogen on histidine 42 within ZitR's high-affinity zinc site (site 1) switches from Nε2 to Nδ1 upon Zn(II) binding to its low-affinity zinc site (site 2), which facilitates ZitR's conversion from the nonoptimal to the optimal DNA-binding conformation. This histidine switch-mediated cooperation between site 1 and site 2 enables ZitR to adjust its DNA-binding affinity in response to a broad range of zinc fluctuation, which may allow the fine tuning of transcriptional regulation.
Collapse
|
33
|
Rodionova IA, Vetting MW, Li X, Almo SC, Osterman AL, Rodionov DA. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea. Nucleic Acids Res 2017; 45:3785-3799. [PMID: 28073944 PMCID: PMC5397151 DOI: 10.1093/nar/gkw1331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro. The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.
Collapse
Affiliation(s)
- Irina A Rodionova
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoqing Li
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei L Osterman
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
| |
Collapse
|
34
|
Orlova N, Gerding M, Ivashkiv O, Olinares PDB, Chait BT, Waldor MK, Jeruzalmi D. The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 2017; 45:3724-3737. [PMID: 28031373 PMCID: PMC5397143 DOI: 10.1093/nar/gkw1288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/18/2016] [Indexed: 01/23/2023] Open
Abstract
The conserved DnaA-oriC system is used to initiate replication of primary chromosomes throughout the bacterial kingdom; however, bacteria with multipartite genomes evolved distinct systems to initiate replication of secondary chromosomes. In the cholera pathogen, Vibrio cholerae, and in related species, secondary chromosome replication requires the RctB initiator protein. Here, we show that RctB consists of four domains. The structure of its central two domains resembles that of several plasmid replication initiators. RctB contains at least three DNA binding winged-helix-turn-helix motifs, and mutations within any of these severely compromise biological activity. In the structure, RctB adopts a head-to-head dimeric configuration that likely reflects the arrangement in solution. Therefore, major structural reorganization likely accompanies complex formation on the head-to-tail array of binding sites in oriCII. Our findings support the hypothesis that the second Vibrionaceae chromosome arose from an ancestral plasmid, and that RctB may have evolved additional regulatory features.
Collapse
Affiliation(s)
- Natalia Orlova
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA
| | - Matthew Gerding
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Olha Ivashkiv
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
| | - Paul Dominic B Olinares
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Brian T Chait
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Biology, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, NY 10016, USA
| |
Collapse
|
35
|
Structural analysis of the regulatory mechanism of MarR protein Rv2887 in M. tuberculosis. Sci Rep 2017; 7:6471. [PMID: 28743871 PMCID: PMC5526998 DOI: 10.1038/s41598-017-01705-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
MarR family proteins are transcriptional regulators that control expression of bacterial proteins involved in metabolism, virulence, stress responses and multi-drug resistance, mainly via ligand-mediated attenuation of DNA binding. Greater understanding of their underlying regulatory mechanism may open up new avenues for the effective treatment of bacterial infections. To gain molecular insight into the mechanism of Rv2887, a MarR family protein in M. tuberculosis, we first showed that it binds salicylate (SA) and para-aminosalicylic acid (PAS), its structural analogue and an antitubercular drug, in a 1:1 stoichiometry with high affinity. Subsequent determination and analysis of Rv2887 crystal structures in apo form, and in complex with SA, PAS and DNA showed that SA and PAS bind to Rv2887 at similar sites, and that Rv2887 interacts with DNA mainly by insertion of helix α4 into the major groove. Ligand binding triggers rotation of the wHTH domain of Rv2887 toward the dimerization domain, causing changes in protein conformation such that it can no longer bind to a 27 bp recognition sequence in the upstream region of gene Rv0560c. The structures provided here lay a foundation for the design of small molecules that target Rv2887, a potential new approach for the development of anti-mycobacterials.
Collapse
|
36
|
Dorman CJ, Dorman MJ. Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium. Environ Microbiol 2017. [PMID: 28631437 PMCID: PMC5655915 DOI: 10.1111/1462-2920.13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix-turn-helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet 'wing' into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non-invasive Gram-negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T-rich horizontally acquired virulence genes that are silenced by the nucleoid-associated protein H-NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Matthew J Dorman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
37
|
Deochand DK, Grove A. MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol 2017; 52:595-613. [PMID: 28670937 DOI: 10.1080/10409238.2017.1344612] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Members of the multiple antibiotic resistance regulator (MarR) family of transcription factors are critical for bacterial cells to respond to chemical signals and to convert such signals into changes in gene activity. Obligate dimers belonging to the winged helix-turn-helix protein family, they are critical for regulation of a variety of functions, including degradation of organic compounds and control of virulence gene expression. The conventional regulatory paradigm is based on a genomic locus in which the gene encoding the MarR protein is divergently oriented from a gene under its control; MarR binding to the intergenic region controls expression of both genes by changing the interaction of RNA polymerase with gene promoters. MarR protein oxidation or binding of a small molecule ligand adversely affects DNA binding, resulting in altered expression of the divergent genes. The generality of this simple paradigm, including the regulation of Escherichia coli MarR by direct binding of antibiotics, has been challenged by reports published in recent years. In addition, structural and biochemical analyses of ligand binding to numerous MarR homologs are converging to identify a shared ligand-binding "hot-spot". This review highlights recent research advances that point to shared features, yet at the same time highlights the remarkable flexibility with which members of this protein family implement responses to inducing signals. A more comprehensive understanding of protein function will pave the way towards the development of both antibacterial agents and biosensors that are based on MarR family proteins.
Collapse
Affiliation(s)
- Dinesh K Deochand
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Anne Grove
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
38
|
Pagliai FA, Coyle JF, Kapoor S, Gonzalez CF, Lorca GL. LdtR is a master regulator of gene expression in Liberibacter asiaticus. Microb Biotechnol 2017; 10:896-909. [PMID: 28503858 PMCID: PMC5481520 DOI: 10.1111/1751-7915.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/02/2023] Open
Abstract
Huanglongbing or citrus greening disease is causing devastation to the citrus industry. Liberibacter asiaticus, an obligate intracellular pathogen of citrus, is one the causative agents of the disease. Most of the knowledge about this bacterium has been deduced from the in silico exploration of its genomic sequence. L. asiaticus differentially expresses genes during its transmission from the psyllid vector, Diaphorina citri, to the plant. However, the regulatory mechanisms for the adaptation of the bacterium into either hosts remain unknown. Here we show that LdtR, a MarR family transcriptional regulator, activates or represses transcription genome-wide. We performed a double approach to identify the components of the LdtR regulon: a transcriptome analysis in both the related bacterium Liberibacter crescens and citrus-infected leaves, strengthened with an in silico prediction of LdtR regulatory sites. Our results demonstrated that LdtR controls the expression of nearly 180 genes in L. asiaticus, distributed in processes such as cell motility, cell wall biogenesis, energy production, and transcription. These results provide new evidence about the regulatory network of L. asiaticus, where the differential expression of genes from these functional categories could be of great importance during the adaptation of the bacterium to either hosts.
Collapse
Affiliation(s)
- Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Sharan Kapoor
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| |
Collapse
|
39
|
Zhu R, Hao Z, Lou H, Song Y, Zhao J, Chen Y, Zhu J, Chen PR. Structural characterization of the DNA-binding mechanism underlying the copper(II)-sensing MarR transcriptional regulator. J Biol Inorg Chem 2017; 22:685-693. [DOI: 10.1007/s00775-017-1442-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/03/2017] [Indexed: 01/29/2023]
|
40
|
Structural and functional analysis of BF2549, a PadR-like transcription factor from Bacteroides fragilis. Biochem Biophys Res Commun 2016; 483:264-270. [PMID: 28027933 DOI: 10.1016/j.bbrc.2016.12.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 11/21/2022]
Abstract
A phenolic acid decarboxylase (padC) regulator, PadR and its homologs proteins belong to the PadR family. Despite the growing numbers of the PadR family members and their various roles in bacteria, such as detoxifications, drug transports and circadian rhythms, biochemical and biophysical studies of the PadR family are very limited. Thus, a ligand-induced regulatory mechanism of the PadR family transcription factors remains to be elucidated. Here, we report a crystal structure of a Bacteroides fragilis PadR-like protein, BF2549 and revealed its interaction with putative operator DNA and ligand molecules. Comparative structural and primary sequence analyses provide a PadR-specific motif that is conserved in the PadR family but deviated from the MarR family. Furthermore, putative ligand binding sites are observed in the BF2549 structure. Finally, a homology-based structure model of BF2549 and 29-mer dsDNA propose regulatory mechanisms of the PadR family in transcriptional derepression.
Collapse
|
41
|
Dorman CJ, Dorman MJ. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:89-100. [PMID: 28510216 DOI: 10.1007/s12551-016-0238-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Matthew J Dorman
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
42
|
Gao D, Li Y, Zheng E, Liu N, Shao Z, Lu C. Eha, a regulator of Edwardsiella tarda, required for resistance to oxidative stress in macrophages. FEMS Microbiol Lett 2016; 363:fnw192. [PMID: 27511959 DOI: 10.1093/femsle/fnw192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 01/29/2023] Open
Abstract
Edwardsiella tarda is distributed widely in a variety of hosts. Eha has recently been found to be its virulence regulator. In order to explore the mechanism of its regulation, we investigated the survival rates of wild type strain ET13, and its eha mutant and complemented strains in RAW264.7 macrophages under light microscopic observation as well as by counting bacterial CFUs on the plates. All of the different strains could live within the macrophages; however, the intracellular numbers of the wild type were significantly higher than the mutant when the incubation time extended 4 h or 6 h (P < 0.05). Furthermore, more ROS were produced by the mutant-infected cells, indicating that Eha may enhance ET13's capacity to detoxify ROS. In agreement with this, we found that the mutant exhibited more sensitivity by H2O2 disk inhibitory assay and less survival ability with H2O2 treatment. We further demonstrated that the bacterial antioxidant enzymes SodC and KatG were regulated by Eha with qRT-PCR and β-galactosidase assay. Collectively, our data show Eha is required for E. tarda to resist the oxidative stress from the macrophages.
Collapse
Affiliation(s)
- Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Yuhong Li
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Enjin Zheng
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Nian Liu
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Zeye Shao
- Department of Clinical Lab, Southeast University School of Medicine, Nanjing, China
| | - Chengping Lu
- NanJing Agricultural University, College of Veterinary Medicine, Nanjing, China
| |
Collapse
|
43
|
Anandapadamanaban M, Pilstål R, Andresen C, Trewhella J, Moche M, Wallner B, Sunnerhagen M. Mutation-Induced Population Shift in the MexR Conformational Ensemble Disengages DNA Binding: A Novel Mechanism for MarR Family Derepression. Structure 2016; 24:1311-1321. [DOI: 10.1016/j.str.2016.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 12/01/2022]
|
44
|
Roy A, Reddi R, Sawhney B, Ghosh DK, Addlagatta A, Ranjan A. Expression, Functional Characterization and X-ray Analysis of HosA, A Member of MarR Family of Transcription Regulator from Uropathogenic Escherichia coli. Protein J 2016; 35:269-82. [DOI: 10.1007/s10930-016-9670-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:209-220. [PMID: 28510224 DOI: 10.1007/s12551-016-0205-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
|
46
|
Gao D, Li Y, Xu Z, Sheng A, Zheng E, Shao Z, Liu N, Lu C. The role of regulator Eha in Edwardsiella tarda pathogenesis and virulence gene transcription. Microb Pathog 2016; 95:216-223. [DOI: 10.1016/j.micpath.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
|
47
|
Kim Y, Joachimiak G, Bigelow L, Babnigg G, Joachimiak A. How Aromatic Compounds Block DNA Binding of HcaR Catabolite Regulator. J Biol Chem 2016; 291:13243-56. [PMID: 27129205 DOI: 10.1074/jbc.m115.712067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
Bacterial catabolism of aromatic compounds from various sources including phenylpropanoids and flavonoids that are abundant in soil plays an important role in the recycling of carbon in the ecosystem. We have determined the crystal structures of apo-HcaR from Acinetobacter sp. ADP1, a MarR/SlyA transcription factor, in complexes with hydroxycinnamates and a specific DNA operator. The protein regulates the expression of the hca catabolic operon in Acinetobacter and related bacterial strains, allowing utilization of hydroxycinnamates as sole sources of carbon. HcaR binds multiple ligands, and as a result the transcription of genes encoding several catabolic enzymes is increased. The 1.9-2.4 Å resolution structures presented here explain how HcaR recognizes four ligands (ferulate, 3,4-dihydroxybenzoate, p-coumarate, and vanillin) using the same binding site. The ligand promiscuity appears to be an adaptation to match a broad specificity of hydroxycinnamate catabolic enzymes while responding to toxic thioester intermediates. Structures of apo-HcaR and in complex with a specific DNA hca operator when combined with binding studies of hydroxycinnamates show how aromatic ligands render HcaR unproductive in recognizing a specific DNA target. The current study contributes to a better understanding of the hca catabolic operon regulation mechanism by the transcription factor HcaR.
Collapse
Affiliation(s)
- Youngchang Kim
- From the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | | | | | - Gyorgy Babnigg
- From the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- From the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
48
|
Otani H, Stogios PJ, Xu X, Nocek B, Li SN, Savchenko A, Eltis LD. The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Nucleic Acids Res 2015; 44:595-607. [PMID: 26400178 PMCID: PMC4737184 DOI: 10.1093/nar/gkv955] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
CouR, a MarR-type transcriptional repressor, regulates the cou genes, encoding p-hydroxycinnamate catabolism in the soil bacterium Rhodococcus jostii RHA1. The CouR dimer bound two molecules of the catabolite p-coumaroyl-CoA (Kd = 11 ± 1 μM). The presence of p-coumaroyl-CoA, but neither p-coumarate nor CoASH, abrogated CouR's binding to its operator DNA in vitro. The crystal structures of ligand-free CouR and its p-coumaroyl-CoA-bound form showed no significant conformational differences, in contrast to other MarR regulators. The CouR-p-coumaroyl-CoA structure revealed two ligand molecules bound to the CouR dimer with their phenolic moieties occupying equivalent hydrophobic pockets in each protomer and their CoA moieties adopting non-equivalent positions to mask the regulator's predicted DNA-binding surface. More specifically, the CoA phosphates formed salt bridges with predicted DNA-binding residues Arg36 and Arg38, changing the overall charge of the DNA-binding surface. The substitution of either arginine with alanine completely abrogated the ability of CouR to bind DNA. By contrast, the R36A/R38A double variant retained a relatively high affinity for p-coumaroyl-CoA (Kd = 89 ± 6 μM). Together, our data point to a novel mechanism of action in which the ligand abrogates the repressor's ability to bind DNA by steric occlusion of key DNA-binding residues and charge repulsion of the DNA backbone.
Collapse
Affiliation(s)
- Hiroshi Otani
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw Nocek
- Structural Biology Center, Biosciences Division, Argonne National Laboratory and the Midwest Center for Structural Genomics, Lemont, IL 60439, USA
| | - Shu-Nan Li
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
49
|
Hirooka K. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Biosci Biotechnol Biochem 2015; 78:1471-84. [PMID: 25209494 DOI: 10.1080/09168451.2014.943689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacillus subtilis collectively inhabits the rhizosphere, where it contributes to the promotion of plant growth, although it does not have a direct symbiotic relationship to plants as observed in the case of rhizobia between leguminous plants. As rhizobia sense the flavonoids released from their host roots through the NodD transcriptional factor, which triggers transcription of the nod genes involved in the symbiotic processes, we supposed that B. subtilis utilizes certain flavonoids as signaling molecules to perceive and adapt to the rhizospheric environment that it is in. Our approaches to identify the flavonoid-responsive transcriptional regulatory system from B. subtilis resulted in the findings that three transcriptional factors (LmrA/QdoR, YetL, and Fur) are responsive to flavonoids, with the modes of action being different from each other. We also revealed a unique regulatory system by two transcriptional factors, YcnK and CsoR, for copper homeostasis in B. subtilis. In this review, we summarize the molecular mechanisms of these regulatory systems with the relevant information and discuss their physiological significances in the mutually beneficial interaction between B. subtilis and plants, considering the possibility of their application for plant cultivation.
Collapse
Affiliation(s)
- Kazutake Hirooka
- a Department of Biotechnology, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Hiroshima , Japan
| |
Collapse
|
50
|
Structure analysis of Bacillus cereus MepR-like transcription regulator, BC0657, in complex with pseudo-ligand molecules. Biochem Biophys Res Commun 2015; 458:644-649. [DOI: 10.1016/j.bbrc.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
|