1
|
Inguscio CR, Carton F, Cisterna B, Rizzi M, Boccafoschi F, Tabaracci G, Malatesta M. Low ozone concentrations do not exert cytoprotective effects on tamoxifen-treated breast cancer cells in vitro. Eur J Histochem 2024; 68. [PMID: 39252536 PMCID: PMC11445695 DOI: 10.4081/ejh.2024.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Medical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents. In this study, the effect of low ozone concentrations on tamoxifen-treated MCF7 human breast cancer cells has been investigated in vitro by histochemical and molecular techniques. Results demonstrated that cell viability, proliferation and migration were generally similar in tamoxifen-treated cells as in cells concomitantly treated with tamoxifen and ozone. Notably, low ozone concentrations were unable to overstimulate the antioxidant response through the Nfr2 pathway, thus excluding a possible ozone-driven cytoprotective effect that would lead to increased tumor cell survival during the antineoplastic treatment. These findings, though obtained in an in vitro model, support the hypothesis that low ozone concentrations do not interfere with the tamoxifen-induced effects on breast cancer cells.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
2
|
Switching of Redox Signaling by Prdx6 Expression Decides Cellular Fate by Hormetic Phenomena Involving Nrf2 and Reactive Oxygen Species. Cells 2022; 11:cells11081266. [PMID: 35455944 PMCID: PMC9028283 DOI: 10.3390/cells11081266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in intracellular reactive oxygen species (ROS) levels due to remodeling of antioxidant defense can affect the status of biological homeostasis in aging/oxidative stress. Peroxiredoxin 6 (Prdx6), an antioxidant gene downstream target for the Nrf2 pathway, plays a role in regulating ROS homeostasis. Using aging human (h) lens epithelial cells (LECs) or Prdx6-deficient (Prdx6-/-) mouse (m) LECs, here we showed that dichlorofluorescein (DCF) oxidation or H2O2 were strictly controlled by Prdx6. We observed that a moderate degree of oxidative stress augmented Nrf2-mediated Prdx6 expression, while higher doses of H2O2 (≥100 µM) caused a dramatic loss of Prdx6 expression, resulting in increased DCF oxidation and H2O2 amplification and cell death. Mechanistically, at increased oxidative stress, Nrf2 upregulated transcriptional factor Klf9, and that Klf9 bound to the promoter and repressed the Prdx6 gene. Similarly, cells overexpressing Klf9 displayed Klf9-dependent Prdx6 suppression and DCF oxidation with H2O2 amplification, while ShKlf9 reversed the process. Our data revealed that H2O2 and DCF oxidation levels play a hormetical role, and the Nrf2-Klf9-Prdx6 pathway is pivotal for the phenomena under the conditions of oxidative load/aging. On the whole, the results demonstrate that oxidative hormetical response is essentially based on levels of oxidative triggering and the status of Klf9-Prdx6 pathway activation; thus, Klf9 can be considered as a therapeutic target for hormetic shifting of cellular defense to improve protective resilience to oxidative stress.
Collapse
|
3
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
4
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
5
|
Involvement of NRF2 in Breast Cancer and Possible Therapeutical Role of Polyphenols and Melatonin. Molecules 2021; 26:molecules26071853. [PMID: 33805996 PMCID: PMC8038098 DOI: 10.3390/molecules26071853] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is defined as a disturbance in the prooxidant/antioxidant balance in favor of the former and a loss of control over redox signaling processes, leading to potential biomolecular damage. It is involved in the etiology of many diseases, varying from diabetes to neurodegenerative diseases and cancer. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor and reported as one of the most important oxidative stress regulators. Due to its regulatory role in the expression of numerous cytoprotective genes involved in the antioxidant and anti-inflammatory responses, the modulation of NRF2 seems to be a promising approach in the prevention and treatment of cancer. Breast cancer is the prevalent type of tumor in women and is the leading cause of death among female cancers. Oxidative stress-related mechanisms are known to be involved in breast cancer, and therefore, NRF2 is considered to be beneficial in its prevention. However, its overactivation may lead to a negative clinical impact on breast cancer therapy by causing chemoresistance. Some known “oxidative stress modulators”, such as melatonin and polyphenols, are suggested to play an important role in the prevention and treatment of cancer, where the activation of NRF2 is reported as a possible underlying mechanism. In the present review, the potential involvement of oxidative stress and NRF2 in breast cancer will be reviewed, and the role of the NRF2 modulators—namely, polyphenols and melatonin—in the treatment of breast cancer will be discussed.
Collapse
|
6
|
Aluru N, Karchner SI. PCB126 Exposure Revealed Alterations in m6A RNA Modifications in Transcripts Associated With AHR Activation. Toxicol Sci 2021; 179:84-94. [PMID: 33064826 PMCID: PMC8453794 DOI: 10.1093/toxsci/kfaa158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3' UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3' UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
7
|
Knockdown of nrf2 Exacerbates TNF- α-Induced Proliferation and Invasion of Rheumatoid Arthritis Fibroblast-Like Synoviocytes through Activating JNK Pathway. J Immunol Res 2020; 2020:6670464. [PMID: 33426091 PMCID: PMC7772017 DOI: 10.1155/2020/6670464] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Fibroblast-like synoviocytes (FLS) in the synovial tissue of rheumatoid arthritis (RA) exhibit over-proliferative and aggressive phenotypes, which participate in the pathophysiology of RA. In RA, little is known about the nonantioxidant effect of nuclear factor erythroid 2-related factor 2 (nrf2), the master regulator of redox homeostasis. In this study, we aimed to explore the expression and upstream regulatory factors of nrf2 and revealed its functions in modulating the proliferation and invasion in RA-FLS. FLS were isolated from RA and osteoarthritis patients. Expression of nrf2 in the synovial tissues and FLS was analyzed by immunohistochemistry, real-time PCR, Western blotting, and immunofluorescence staining. Cell proliferation was examined by Cell Counting Kit-8. Cell invasion was tested by transwell assay. Phosphorylation of JNK was determined by Western blotting. The results showed that nrf2 expression in the RA synovial tissues was upregulated. TNF-α promoted expression and nuclear translocation of nrf2 in RA-FLS and increased the intracellular reactive oxygen species (ROS) level. Nrf2 nuclear translocation was blocked by ROS inhibitor N-acetylcysteine. Both knockdown of nrf2 by siRNA and inhibition of nrf2 by ML385 significantly promoted the TNF-α-induced proliferation and invasion of RA-FLS. Activation of nrf2 by sulforaphane (SFN) profoundly inhibited the TNF-α-induced proliferation and invasion of RA-FLS. Knockdown of nrf2 also enhanced the TNF-α-induced matrix metalloproteinases (MMPs) expression and phosphorylation of JNK in RA-FLS. Proliferation and invasion of RA-FLS incubated with TNF-α and nrf2 siRNA were inhibited by pretreatment with JNK inhibitor SP600125. In conclusion, nrf2 is overexpressed in synovial tissues of RA patients, which may be promoted by TNF-α and ROS levels. Activation of nrf2 may suppress TNF-α-induced proliferation, invasion, and MMPs expression in RA-FLS by inhibiting JNK activation, indicating that nrf2 plays a protective role in relieving the severity of synovitis in RA. Our results might provide novel insights into the treatment of RA.
Collapse
|
8
|
Zhang X, Li T, Gong ES, Liu RH. Antiproliferative Activity of Ursolic Acid in MDA-MB-231 Human Breast Cancer Cells through Nrf2 Pathway Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7404-7415. [PMID: 32551573 DOI: 10.1021/acs.jafc.0c03202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential mechanisms of action of ursolic acid (UA) in regulating cell proliferation in MDA-MB-231 human breast cancer cells through Nrf2 pathway were investigated. UA significantly inhibited the proliferation of MDA-MB-231 cells at a dose ≥10 μM in a dose-dependent manner, and no cytotoxicity was observed at concentrations below 29.87 ± 2.60 μM. The expressions of Nrf2 and p-Nrf2, in whole cell and nucleus, and NQO1 were inhibited by UA treatment, whereas the Keap1 expression was upregulated. No significant difference was observed in the Nrf2 mRNA levels, indicating that UA reduced Nrf2 expression not through mRNA but through a post-translational mechanism. Additionally, EGF-induced p-Nrf2 and its downstream NQO1 and SOD1 enzymes were abolished by UA. However, EGF or p-EGFR had no effect on the expressions of Keap1. These results suggested that the proliferative inhibitory effect of UA might be partially through downregulating Nrf2 via the Keap1/Nrf2 pathway and EGFR/Nrf2 pathway in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, New York 14853-7201, United States
| | - Tong Li
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, New York 14853-7201, United States
| | - Er Sheng Gong
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, New York 14853-7201, United States
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, New York 14853-7201, United States
- Institute of Comparative and Environmental Toxicology, Cornell University, Ithaca, New York 14853-7201, United States
| |
Collapse
|
9
|
NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer's models. Proc Natl Acad Sci U S A 2019; 116:12516-12523. [PMID: 31164420 DOI: 10.1073/pnas.1819541116] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACE1 is the rate-limiting enzyme for amyloid-β peptides (Aβ) generation, a key event in the pathogenesis of Alzheimer's disease (AD). By an unknown mechanism, levels of BACE1 and a BACE1 mRNA-stabilizing antisense RNA (BACE1-AS) are elevated in the brains of AD patients, implicating that dysregulation of BACE1 expression plays an important role in AD pathogenesis. We found that nuclear factor erythroid-derived 2-related factor 2 (NRF2/NFE2L2) represses the expression of BACE1 and BACE1-AS through binding to antioxidant response elements (AREs) in their promoters of mouse and human. NRF2-mediated inhibition of BACE1 and BACE1-AS expression is independent of redox regulation. NRF2 activation decreases production of BACE1 and BACE1-AS transcripts and Aβ production and ameliorates cognitive deficits in animal models of AD. Depletion of NRF2 increases BACE1 and BACE1-AS expression and Aβ production and worsens cognitive deficits. Our findings suggest that activation of NRF2 can prevent a key early pathogenic process in AD.
Collapse
|
10
|
Haodang L, Lianmei Q, Ranhui L, Liesong C, Jun H, Yihua Z, Cuiming Z, Yimou W, Xiaoxing Y. HO-1 mediates the anti-inflammatory actions of Sulforaphane in monocytes stimulated with a mycoplasmal lipopeptide. Chem Biol Interact 2019; 306:10-18. [PMID: 30965051 DOI: 10.1016/j.cbi.2019.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
Abstract
Exposure to Mycoplasma pneumoniae leads to lung inflammation through a host defense pathway. Increasing evidence has indicated that the mycoplasma-derived membrane lipoprotein, or its analogue macrophage-activating lipopeptide-2 (MALP-2), excretes LPS as an immune system-stimulating substance and plays a crucial role in pathological injury during M. pneumoniae infection. It has been established that Sulforaphane confers anti-inflammatory properties. However, the underlying mechanism responsible for the inhibitory actions of Sulforaphane in the context of mycoplasmal pneumoniae are poorly understood. Here, we report that Sulforaphane is an inducer of heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme through signaling pathways in human monocytes. Sulforaphane stimulated NF-E2-related factor 2 (Nrf2) translocation from the cytosol to the nucleus, and small interfering RNA-mediated knock-down of Nrf2 significantly inhibited Sulforaphane-induced HO-1 expression. Additionally, PI3K/Akt and ROS were also involved in Sulforaphane-induced Nrf2 activation and HO-1 expression, as revealed by the pharmacological inhibitors LY294002 and NAC. Moreover, Sulforaphane treatment inhibited MALP-2-induced pro-inflammatory cytokine secretion and pulmonary inflammation in mice, as well as MALP-2-triggered NF-κB activation. Furthermore, SnPP, a selective inhibitor of HO-1, reversed the inhibitory actions of Sulforaphane, while a carbon monoxide-releasing molecule, CORM-2, caused a significant decrease in MALP-2-induced cytokine secretion. Collectively, these results suggest that Sulforaphane functions as a suppressor of the MALP-2-induced inflammatory response, not only by inhibiting the expression of cytokines and the induction of HO-1 but also by diminishing NF-κB activation in cultured monocytes and the lungs of mice.
Collapse
Affiliation(s)
- Luo Haodang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Li Ranhui
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Chen Liesong
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - He Jun
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, 421001, China
| | - Zeng Yihua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Wu Yimou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
11
|
Liu P, Rojo de la Vega M, Sammani S, Mascarenhas JB, Kerins M, Dodson M, Sun X, Wang T, Ooi A, Garcia JGN, Zhang DD. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 2018; 115:E10352-E10361. [PMID: 30309964 PMCID: PMC6217430 DOI: 10.1073/pnas.1812125115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NRF2 regulates cellular redox homeostasis, metabolic balance, and proteostasis by forming a dimer with small musculoaponeurotic fibrosarcoma proteins (sMAFs) and binding to antioxidant response elements (AREs) to activate target gene transcription. In contrast, NRF2-ARE-dependent transcriptional repression is unreported. Here, we describe NRF2-mediated gene repression via a specific seven-nucleotide sequence flanking the ARE, which we term the NRF2-replication protein A1 (RPA1) element (NRE). Mechanistically, RPA1 competes with sMAF for NRF2 binding, followed by interaction of NRF2-RPA1 with the ARE-NRE and eduction of promoter activity. Genome-wide in silico and RNA-seq analyses revealed this NRF2-RPA1-ARE-NRE complex mediates negative regulation of many genes with diverse functions, indicating that this mechanism is a fundamental cellular process. Notably, repression of MYLK, which encodes the nonmuscle myosin light chain kinase, by the NRF2-RPA1-ARE-NRE complex disrupts vascular integrity in preclinical inflammatory lung injury models, illustrating the translational significance of NRF2-mediated transcriptional repression. Our findings reveal a gene-suppressive function of NRF2 and a subset of negatively regulated NRF2 target genes, underscoring the broad impact of NRF2 in physiological and pathological settings.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | | | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Joseph B Mascarenhas
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Michael Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Ting Wang
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721;
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721;
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
12
|
Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct 2018; 9:2589-2606. [PMID: 29701207 DOI: 10.1039/c8fo00018b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review recent evidence about the beneficial effects of sulforaphane (SFN), which is the most studied member of isothiocyanates, on both in vivo and in vitro models of different diseases, mainly diabetes and cancer. The role of SFN on oxidative stress, inflammation, and metabolism is discussed, with emphasis on those nuclear factor E2-related factor 2 (Nrf2) pathway-mediated mechanisms. In the case of the anti-inflammatory effects of SFN, the point of convergence seems to be the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), with the consequent amelioration of other pathogenic processes such as hypertrophy and fibrosis. We emphasized that SFN shows opposite effects in normal and cancer cells at many levels; for instance, while in normal cells it has protective actions, in cancer cells it blocks the induction of factors related to the malignity of tumors, diminishes their development, and induces cell death. SFN is able to promote apoptosis in cancer cells by many mechanisms, the production of reactive oxygen species being one of the most relevant ones. Given its properties, SFN could be considered as a phytochemical at the forefront of natural medicine.
Collapse
Affiliation(s)
- Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
13
|
Xu H, Zhu X, Bao H, Wh Shek T, Huang Z, Wang Y, Wu X, Wu Y, Chang Z, Wu S, Tang Q, Zhang H, Han A, Mc Cheung K, Zou C, Yau R, Ho WY, Huang G, Batalha S, Lu J, Song G, Kang Y, Shao YW, Lam YL, Shen J, Wang J. Genetic and clonal dissection of osteosarcoma progression and lung metastasis. Int J Cancer 2018; 143:1134-1142. [PMID: 29569716 DOI: 10.1002/ijc.31389] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Huaiyuan Xu
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
- Department of Musculoskeletal Oncology; Sun Yat-Sen University Cancer Center; Guangzhou Guangdong China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Hua Bao
- Translational Medicine Research Institute, Geneseeq Technology Inc.; Toronto Ontario Canada
| | - Tony Wh Shek
- Department of Pathology; University of Hong Kong, Queen Mary Hospital; Hong Kong China
| | - Zongwen Huang
- Department of Orthopaedics; the Fifth Affiliated Hospital of Sun Yat-Sen University; Zhuhai China
| | - Yongqian Wang
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc.; Toronto Ontario Canada
| | - Yong Wu
- Nanjing Geneseeq Technology Inc.; Nanjing Jiangsu China
| | - Zhili Chang
- Nanjing Geneseeq Technology Inc.; Nanjing Jiangsu China
| | - Shuyu Wu
- Nanjing Geneseeq Technology Inc.; Nanjing Jiangsu China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
- Department of Musculoskeletal Oncology; Sun Yat-Sen University Cancer Center; Guangzhou Guangdong China
| | - Huizhong Zhang
- Department of Pathology; Sun Yat-Sen University Cancer Center; Guangzhou China
| | - Anjia Han
- Department of Pathology; the first Affiliated Hospital, Sun Yat-Sen University; Guangzhou China
| | - Kenneth Mc Cheung
- Department of Orthopaedics and Traumatology; University of Hong Kong, Queen Mary Hospital; Hong Kong China
| | - Changye Zou
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Raymond Yau
- Department of Orthopaedics and Traumatology; University of Hong Kong, Queen Mary Hospital; Hong Kong China
| | - Wai-Yip Ho
- Department of Orthopaedics and Traumatology; University of Hong Kong, Queen Mary Hospital; Hong Kong China
| | - Gang Huang
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Sellma Batalha
- Department of Anatomic Pathology; Centro Hospitalar Conde de Sao Januario; Macau China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Guohui Song
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
- Department of Musculoskeletal Oncology; Sun Yat-Sen University Cancer Center; Guangzhou Guangdong China
| | - Yao Kang
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Yang W. Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc.; Toronto Ontario Canada
- School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Ying Lee Lam
- Department of Orthopaedics and Traumatology; University of Hong Kong, Queen Mary Hospital; Hong Kong China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
| | - Jin Wang
- Department of Musculoskeletal Oncology; the First Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong China
- Department of Musculoskeletal Oncology; Sun Yat-Sen University Cancer Center; Guangzhou Guangdong China
| |
Collapse
|
14
|
Zhao Q, Mao A, Guo R, Zhang L, Yan J, Sun C, Tang J, Ye Y, Zhang Y, Zhang H. Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis. Oncotarget 2018; 8:36603-36613. [PMID: 28402268 PMCID: PMC5482680 DOI: 10.18632/oncotarget.16622] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/09/2017] [Indexed: 01/23/2023] Open
Abstract
Nuclear factor E2 related factor 2 (Nrf2) is a transcription factor that is associated with tumor growth and resistance to radiation. The canonical Notch signaling pathway is also crucial for maintaining non-small cell lung cancer (NSCLC). Aberrant Nrf2 and Notch signaling has repeatedly been showed to facilitate metastasis of NSCLC. Here, we show that radiation induce Nrf2 and Notch1 expression in NSCLC. Knockdown of Nrf2 enhanced radiosensitivity of NSCLC and reduced epithelial-to-mesenchymal transition. Importantly, we found that knockdown of Nrf2 dramatically decreased radiation-induced NSCLC invasion and significantly increased E-cadherin, but reduced N-cadherin and matrix metalloproteinase (MMP)-2/9 expression. We found that Notch1 knockdown also upregulated E-cadherin and suppressed N-cadherin expression. Nrf2 contributes to NSCLC cell metastatic properties and this inhibition correlated with reduced Notch1 expression. These results establish that Nrf2 and Notch1 downregulation synergistically inhibit radiation-induced migratory and invasive properties of NSCLC cells.
Collapse
Affiliation(s)
- Qiuyue Zhao
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Aihong Mao
- Institute of Gansu Medical Science Research, Lanzhou 730000, China
| | - Ruoshui Guo
- South China Normal University, Guangzhou 510642, China
| | - Liping Zhang
- Northwest Normal University, Lanzhou 730000, China
| | - Jiawei Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | | | - Yancheng Ye
- Gansu Wuwei Institute of Medical Sciences, Gansu Province, Wuwei 733000, China
| | - Yanshan Zhang
- Gansu Wuwei Institute of Medical Sciences, Gansu Province, Wuwei 733000, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Gansu Wuwei Institute of Medical Sciences, Gansu Province, Wuwei 733000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| |
Collapse
|
15
|
Jadkauskaite L, Coulombe PA, Schäfer M, Dinkova-Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age-related hair disorders and beyond? Bioessays 2017; 39. [PMID: 28685843 DOI: 10.1002/bies.201700029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Widespread expression of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (NRF2), which maintains redox homeostasis, has recently been identified in the hair follicle (HF). Small molecule activators of NRF2 may therefore be useful in the management of HF pathologies associated with redox imbalance, ranging from HF greying and HF ageing via androgenetic alopecia and alopecia areata to chemotherapy-induced hair loss. Indeed, NRF2 activation has been shown to prevent peroxide-induced hair growth inhibition. Multiple parameters can increase the levels of reactive oxygen species in the HF, for example melanogenesis, depilation-induced trauma, neurogenic and autoimmune inflammation, toxic drugs, environmental stressors such as UV irradiation, genetic defects and aging-associated mitochondrial dysfunction. In this review, the potential mechanisms whereby NRF2 activation could prove beneficial in treatment of redox-associated HF disorders are therefore discussed.
Collapse
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, Swiss Institute of Technology (ETH), Zürich, Switzerland
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| | - Iain S Haslam
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Biological Sciences, School of Applied Science, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
16
|
Refaat A, Pararasa C, Arif M, Brown JEP, Carmichael A, Ali SS, Sakurai H, Griffiths HR. Bardoxolone-methyl inhibits migration and metabolism in MCF7 cells. Free Radic Res 2017; 51:211-221. [PMID: 28277986 DOI: 10.1080/10715762.2017.1295452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bardoxolone-methyl (BAR) is reported to have anti-inflammatory, anti-proliferative and anti-fibrotic effects. BAR activates Nrf2 and may ameliorate oxidative stress through induction of antioxidant genes. However, off-target effects, probably concentration and NFkB-dependent, have limited the clinical use of BAR. Nrf2 regulates expression of antioxidant and mitochondrial genes and has been proposed as a target for both obesity and breast cancer. Therefore, we explored whether BAR can alter migration and proliferation in the MCF7 cell line and whether metabolic function is affected by BAR. Incubation with BAR caused a time-dependent migratory inhibition and an associated decrease in mitochondrial respiration. Both migratory and mitochondrial inhibition by BAR were further enhanced in the presence of fatty acids. In addition to the activation of Nrf2, BAR altered the expression of target mRNA GCLC and UCP1. After 24 h, BAR inhibited both glycolytic capacity, reserve (p < 0.05) and oxidative phosphorylation (p < 0.001) with an associated increase in mitochondrial ROS and loss of intracellular glutathione in MCF7 cells; however, impairment of mitochondrial activity was prevented by N-acetyl cysteine. The fatty acid, palmitate, increased mitochondrial ROS, impaired migration and oxidative phosphorylation but palmitate toxicity towards MCF7 could not be inhibited by N-acetyl cysteine suggesting that they exert effects through different pathways. BAR-activated AKT, induced DNA damage and inhibited cell proliferation. When the proteasome was inhibited, there was loss of BAR-mediated changes in p65 phosphorylation and SOD2 expression suggesting non-canonical NFkB signaling effects. These data suggest that BAR-induced ROS are important in inhibiting MCF7 migration and metabolism by negatively affecting glycolytic capacity and mitochondrial function.
Collapse
Affiliation(s)
- Alaa Refaat
- a Life & Health Sciences , Aston University , Birmingham , UK.,b Helmy Institute of Medical Sciences, Zewail City of Science and Technology , Giza , Egypt.,c Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | | | - Muhammed Arif
- a Life & Health Sciences , Aston University , Birmingham , UK
| | - James E P Brown
- a Life & Health Sciences , Aston University , Birmingham , UK
| | | | - Sameh S Ali
- b Helmy Institute of Medical Sciences, Zewail City of Science and Technology , Giza , Egypt
| | - Hiroaki Sakurai
- c Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Helen R Griffiths
- a Life & Health Sciences , Aston University , Birmingham , UK.,d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| |
Collapse
|
17
|
Sarkar R, Mukherjee S, Biswas J, Roy M. Phenethyl isothiocyanate, by virtue of its antioxidant activity, inhibits invasiveness and metastatic potential of breast cancer cells: HIF-1α as a putative target. Free Radic Res 2015; 50:84-100. [DOI: 10.3109/10715762.2015.1108520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Chiarella P, Carbonari D, Iavicoli S. Utility of checklist to describe experimental methods for investigating molecular biomarkers. Biomark Med 2015; 9:989-95. [DOI: 10.2217/bmm.15.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: In research articles, detailed description of experimental methods and reagents is fundamental for correct reproducibility of the published data. This becomes even more important when such data contribute to identify molecular targets and toxicity biomarkers whose role is crucial in the physiology and pathology of human health. Methods & Objectives: To achieve good reproducibility of data we took advantage of others’ experiences and analyzed molecular biology and immunodetection techniques in 32 journal articles investigating the human NRF2 and Keap1 genes involved in the cell response to oxidative stress. Results & Conclusions: In conclusion of the analysis, we assessed deficiency of information in the published methods, making it difficult to select appropriate protocols. Underlining the importance of assay reproducibility, this paper proposes the utility of a minimum information checklist of methods for biomarker detection.
Collapse
Affiliation(s)
- Pieranna Chiarella
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| | - Damiano Carbonari
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| | - Sergio Iavicoli
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| |
Collapse
|
19
|
Probst BL, Trevino I, McCauley L, Bumeister R, Dulubova I, Wigley WC, Ferguson DA. RTA 408, A Novel Synthetic Triterpenoid with Broad Anticancer and Anti-Inflammatory Activity. PLoS One 2015; 10:e0122942. [PMID: 25897966 PMCID: PMC4405374 DOI: 10.1371/journal.pone.0122942] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022] Open
Abstract
Semi-synthetic triterpenoids are antioxidant inflammation modulator (AIM) compounds that inhibit tumor cell growth and metastasis. Compounds in the AIM class bind to Keap1 and attenuate Nrf2 degradation. In the nucleus, Nrf2 increases antioxidant gene expression and reduces pro-inflammatory gene expression. By increasing Nrf2 activity, AIMs reduce reactive oxygen species and inflammation in the tumor microenvironment, which reverses tumor-mediated immune evasion and inhibits tumor growth and metastasis. AIMs also directly inhibit tumor cell growth by modulating oncogenic signaling pathways, such as IKKβ/NF-κB. Here, we characterized the in vitro antioxidant, anti-inflammatory, and anticancer activities of RTA 408, a novel AIM that is currently being evaluated in patients with advanced malignancies. At low concentrations (≤ 25 nM), RTA 408 activated Nrf2 and suppressed nitric oxide and pro-inflammatory cytokine levels in interferon-γ-stimulated RAW 264.7 macrophage cells. At higher concentrations, RTA 408 inhibited tumor cell growth (GI50 = 260 ± 74 nM) and increased caspase activity in tumor cell lines, but not in normal primary human cells. Consistent with the direct effect of AIMs on IKKβ, RTA 408 inhibited NF-κB signaling and decreased cyclin D1 levels at the same concentrations that inhibited cell growth and induced apoptosis. RTA 408 also increased CDKN1A (p21) levels and JNK phosphorylation. The in vitro activity profile of RTA 408 is similar to that of bardoxolone methyl, which was well-tolerated by patients at doses that demonstrated target engagement. Taken together, these data support clinical evaluation of RTA 408 for cancer treatment.
Collapse
Affiliation(s)
| | - Isaac Trevino
- Reata Pharmaceuticals Inc., Irving, Texas, United States of America
| | - Lyndsey McCauley
- Reata Pharmaceuticals Inc., Irving, Texas, United States of America
| | - Ron Bumeister
- Reata Pharmaceuticals Inc., Irving, Texas, United States of America
| | - Irina Dulubova
- Reata Pharmaceuticals Inc., Irving, Texas, United States of America
| | - W. Christian Wigley
- Reata Pharmaceuticals Inc., Irving, Texas, United States of America
- * E-mail: (WCW); (DAF)
| | - Deborah A. Ferguson
- Reata Pharmaceuticals Inc., Irving, Texas, United States of America
- * E-mail: (WCW); (DAF)
| |
Collapse
|
20
|
Cichon AC, Brown DR. Nrf-2 regulation of prion protein expression is independent of oxidative stress. Mol Cell Neurosci 2014; 63:31-7. [PMID: 25242137 DOI: 10.1016/j.mcn.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/18/2014] [Accepted: 09/12/2014] [Indexed: 12/13/2022] Open
Abstract
Cellular expression of host prion protein (PrP) is essential to infection with prion disease. Understanding the mechanisms that regulate prion protein expression at both the transcriptional and translational levels is therefore an important goal. The cellular prion protein has been associated with resistance to oxidative, and its expression is also increased by oxidative stress. The transcription factor Nrf-2 is associated with cellular responses to oxidative stress and is known to induce upregulation of antioxidant defense mechanisms. We have identified an Nrf-2 binding site in the prion protein promoter (Prnp) and shown that Nrf-2 downregulated PrP expression. However, this effect is independent of oxidative stress as oxidative stress can up-regulate PrP expression regardless of the level of Nrf-2 expression. Furthermore, Nrf-2 has no impact on PrP expression when cells are infected with scrapie. These findings highlight that Nrf-2 can regulate PrP expression, but that this regulation becomes uncoupled during cellular stress.
Collapse
Affiliation(s)
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
21
|
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X, Zhou M. Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review). Oncol Rep 2014; 32:443-50. [PMID: 24926991 DOI: 10.3892/or.2014.3259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.
Collapse
Affiliation(s)
- Jianhong Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
22
|
Park CK, Lee Y, Kim KH, Lee ZH, Joo M, Kim HH. Nrf2 is a novel regulator of bone acquisition. Bone 2014; 63:36-46. [PMID: 24521946 DOI: 10.1016/j.bone.2014.01.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/15/2014] [Accepted: 01/31/2014] [Indexed: 12/31/2022]
Abstract
Nuclear factor E2 p45-related factor 2 (Nrf2) is a transcription factor involved in the expression of cytoprotective genes induced by external stresses. We investigated the role of Nrf2 in osteoclast and osteoblast differentiation. Nrf2 knockdown or deletion increased osteoclastic differentiation from bone marrow-derived macrophages (BMMs) through the upregulation of NF-κB, c-Fos, and NFATc1 transcription factors. Nrf2 also inhibited osteoblast differentiation and mineralization via suppression of key regulatory proteins, such as Runx2, osteocalcin, and osterix. Micro-computed tomography and histomorphometric analyses showed an increase in bone mass of Nrf2 knockout compared to that of wild type mice. In addition, the mineral apposition rate and the number of osteoblasts in bone were higher in Nrf2 knockout mice. However, bone resorption parameters, namely DPD and CTX levels, were not affected by Nrf2 deletion. In a coculture condition where calvarial osteoblasts and BMMs from wild type and Nrf2 knockout mice were grown, deletion of Nrf2 in osteoblasts markedly reduced osteoclast formation. This effect was due to an increase in OPG expression in Nrf2 knockout osteoblasts. Taken as a whole, these results indicate that Nrf2 is intrinsically inhibitory to both osteoblast and osteoclast differentiation but its effect on osteoblasts is dominant to its effect on osteoclasts in vivo.
Collapse
Affiliation(s)
- Cheol Kyu Park
- Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | - Kyun Ha Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | - Myungsoo Joo
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea.
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
23
|
Funes JM, Henderson S, Kaufman R, Flanagan JM, Robson M, Pedley B, Moncada S, Boshoff C. Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival. Mol Cancer 2014; 13:20. [PMID: 24491031 PMCID: PMC4015761 DOI: 10.1186/1476-4598-13-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/27/2014] [Indexed: 12/15/2022] Open
Abstract
Background The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains contentious. Methods We employed a well-characterized model of stepwise human mesenchymal stem cell (MSC) transformation and breast cancer cell lines to investigate oxidative stress and the role of Nrf2 during tumorigenesis. The Nrf2 pathway was studied by microarray analyses, qRT-PCR, and western-blotting. To assess the contribution of Nrf2 to transformation, we established tumor xenografts with transformed MSC expressing Nrf2 (n = 6 mice per group). Expression and survival data for Nrf2 in different cancers were obtained from GEO and TCGA databases. All statistical tests were two-sided. Results We found an accumulation of reactive oxygen species during MSC transformation that correlated with the transcriptional down-regulation of antioxidants and Nrf2-downstream genes. Nrf2 was repressed in transformed MSC and in breast cancer cells via oncogene-induced activation of the RAS/RAF/ERK pathway. Furthermore, restoration of Nrf2 function in transformed cells decreased reactive oxygen species and impaired in vivo tumor growth (P = 0.001) by mechanisms that included sensitization to apoptosis, and a decreased hypoxic/angiogenic response through HIF-1α destabilization and VEGFA repression. Microarray analyses showed down-regulation of Nrf2 in a panel of human tumors and, strikingly, low Nrf2 expression correlated with poorer survival in patients with melanoma (P = 0.0341), kidney (P = 0.0203) and prostate (P = 0.00279) cancers. Conclusions Our data indicate that oncogene-induced Nrf2 repression is an adaptive response for certain cancers to acquire a pro-oxidant state that favors cell survival and in vivo tumor growth.
Collapse
Affiliation(s)
- Juan M Funes
- UCL Cancer Institute, University College London, Paul O'Gorman Building, Huntley Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin YS, Lin CH, Huang LD, Chao T, Kuo CD, Hung LC, Wong FH, Lin CC, Fu SL. The suppression of thoc1 in cancer cell apoptosis mediated by activated macrophages is nitric oxide-dependent. Biochem Pharmacol 2013; 86:242-52. [DOI: 10.1016/j.bcp.2013.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
|
25
|
Abstract
Since the discovery of MSP (macrophage-stimulating protein; also known as MST1 and hepatocyte growth factor-like (HGFL)) as the ligand for the receptor tyrosine kinase RON (also known as MST1R) in the early 1990s, the roles of this signalling axis in cancer pathogenesis has been extensively studied in various model systems. Both in vitro and in vivo evidence has revealed that MSP-RON signalling is important for the invasive growth of different types of cancers. Currently, small-molecule inhibitors and antibodies blocking RON signalling are under investigation. Substantial responses have been achieved in human tumour xenograft models, laying the foundation for clinical validation. In this Review, we discuss recent advances that demonstrate the importance of MSP-RON signalling in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hang-Ping Yao
- Viral Oncogenesis Section in State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | | | | | | |
Collapse
|
26
|
Taha R, Blaise GA. Update on the pathogenesis of complex regional pain syndrome: role of oxidative stress. Can J Anaesth 2012; 59:875-81. [PMID: 22798149 DOI: 10.1007/s12630-012-9748-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/14/2012] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Complex regional pain syndrome (CRPS) is a chronic inflammatory pain syndrome that affects one or more extremities of the body. It is characterized by burning pain and abnormalities in the sensory, motor, and autonomic nervous systems. This review illustrates how oxidative stress and nuclear factor erythroid 2-related factor (Nrf2) activation might contribute to understanding the etiopathogenesis of CRPS. PRINCIPAL FINDINGS The precise cause of CRPS remains unclear, and current treatments are not effective in many patients. The mechanism underlying CRPS may differ across patients and even within a single patient over time. Inflammatory and neuronal mechanisms have been suggested as key contributors to CRPS. Recent evidence demonstrates that oxidative stress is associated with clinical symptoms in patients with CRPS-I. Oxidative stress plays a key role in CRPS pathogenesis. The Nrf2 factor is a master regulator of the transcription of multiple antioxidants, which protects against oxidative stress and inflammation by inducing antioxidant and detoxifying genes through binding with an antioxidant response element. It has antinociceptive effects against inflammatory pain in an animal model. CONCLUSION This review summarises the effect of oxidative stress and mitochondrial dysfunction in the pathogenesis of CRPS. It also addresses the question of whether there is a potential role for Nrf2 (activated by pharmacological or nutritional activators) in alleviating the clinical features of CRPS or preventing its progression.
Collapse
Affiliation(s)
- Rame Taha
- Multinnova Medical Centre, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
27
|
Timme-Laragy AR, Karchner SI, Franks DG, Jenny MJ, Harbeitner RC, Goldstone JV, McArthur AG, Hahn ME. Nrf2b, novel zebrafish paralog of oxidant-responsive transcription factor NF-E2-related factor 2 (NRF2). J Biol Chem 2011; 287:4609-27. [PMID: 22174413 DOI: 10.1074/jbc.m111.260125] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
NF-E2-related factor 2 (NRF2; also called NFE2L2) and related NRF family members regulate antioxidant defenses by activating gene expression via antioxidant response elements (AREs), but their roles in embryonic development are not well understood. We report here that zebrafish (Danio rerio), an important developmental model species, possesses six nrf genes, including duplicated nrf1 and nrf2 genes. We cloned a novel zebrafish nrf2 paralog, nrf2b. The predicted Nrf2b protein sequence shares several domains with the original Nrf2 (now Nrf2a) but lacks the Neh4 transactivation domain. Zebrafish-human comparisons demonstrate conserved synteny involving nrf2 and hox genes, indicating that nrf2a and nrf2b are co-orthologs of human NRF2. nrf2a and nrf2b displayed distinct patterns of expression during embryonic development; nrf2b was more highly expressed at all stages. Embryos in which Nrf2a expression had been knocked down with morpholino oligonucleotides were more sensitive to tert-butylhydroperoxide but not tert-butylhydroquinone, whereas knockdown of Nrf2b did not affect sensitivity of embryos to either chemical. Gene expression profiling by microarray identified a specific role for Nrf2b as a negative regulator of several genes, including p53, cyclin G1, and heme oxygenase 1, in embryos. Nrf2a and Nrf2b exhibited different mechanisms of cross-talk with the Ahr2 signaling pathway. Together, these results demonstrate distinct roles for nrf2a and nrf2b, consistent with subfunction partitioning, and identify a novel negative regulatory role for Nrf2b during development. The identification of zebrafish nrf2 co-orthologs will facilitate new understanding of the multiple roles of NRF2 in protecting vertebrate embryos from oxidative damage.
Collapse
Affiliation(s)
- Alicia R Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| | | | | | | | | | | | | | | |
Collapse
|