1
|
Li Y, Wang J, Xing H, Bao J. Selenium Mitigates Ammonia-Induced Neurotoxicity by Suppressing Apoptosis, Immune Imbalance, and Gut Microbiota-Driven Metabolic Disturbance in Fattening Pigs. Biol Trace Elem Res 2023; 201:3341-3355. [PMID: 36224318 PMCID: PMC9556289 DOI: 10.1007/s12011-022-03434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
Abstract
Ammonia could be regarded as one detrimental pollutant with an acrid smell in livestock sheds. So far, the pig breeding industry became the main source of atmospheric ammonia. Previous literature demonstrated that excessive ammonia inhalation might cause a series of physiological damage to multiple organs. Unfortunately, the toxicity mechanisms of gaseous ammonia to the porcine nervous system need further research to elucidate. Selenium (Se) involves in many essential physiological processes and has a mitigative effect on the exogenous toxicant. There were scant references that corroborated whether organic Se could intervene in the underlying toxicity of ammonia to the hypothalamus. In the present study, multi-omics tools, ethology, and molecular biological techniques were performed to clarify the detailed mechanisms of relaxation effects of L-selenomethionine on ammonia poisoning. Our results showed that ammonia inhalation caused the clinical symptoms and the increment of positive apoptosis rate in the hypothalamus with the dysfunction of mitochondrial dynamics factors, while obvious mitochondria structure defects were observed. In parallel, the inflammation medium levels and gut microbes-driven metabolism function were altered to mediate the neurotoxicity in fattening pigs through the initiation of inflammation development. Interestingly, L-selenomethionine could attenuate ammonia toxicity by activating the PI3K/Akt/PPAR-γ pathway to inhibit the mitochondria-mediated apoptosis process, blocking the abnormal immune response and the accumulation of reactive oxygen species in the nucleus. Meanwhile, Se could enhance the production performance of fattening sows. Taken together, our study verified the novel hypothesis for the toxicity identification of aerial ammonia and provided a therapeutic strategy for the treatment of occupational poisoning.
Collapse
Affiliation(s)
- Yutao Li
- College of Life Science, Northeast Normal University, Changchun, 130117, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| |
Collapse
|
2
|
Hunt EN, Kopacz JP, Vestal DJ. Unraveling the Role of Guanylate-Binding Proteins (GBPs) in Breast Cancer: A Comprehensive Literature Review and New Data on Prognosis in Breast Cancer Subtypes. Cancers (Basel) 2022; 14:cancers14112794. [PMID: 35681772 PMCID: PMC9179834 DOI: 10.3390/cancers14112794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
At least one member of the Guanylate-Binding Protein (GBP) family of large interferon-induced GTPases has been classified as both a marker of good prognosis and as a potential drug target to treat breast cancers. However, the activity of individual GBPs appears to not just be tumor cell type–specific but dependent on the growth factor and/or cytokine environment in which the tumor cells reside. To clarify what we do and do not know about GBPs in breast cancer, the current literature on GBP-1, GBP-2, and GBP-5 in breast cancer has been assembled. In addition, we have analyzed the role of each of these GBPs in predicting recurrence-free survival (RFS), overall survival (OS), and distance metastasis-free survival (DMFS) as single gene products in different subtypes of breast cancers. When a large cohort of breast cancers of all types and stages were examined, GBP-1 correlated with poor RFS. However, it was the only GBP to do so. When smaller cohorts of breast cancer subtypes grouped into ER+, ER+/Her2-, and HER2+ tumors were analyzed, none of the GBPs influenced RFS, OS, or DMSF as single agents. The exception is GBP-5, which correlated with improved RFS in Her2+ breast cancers. All three GBPs individually predicted improved RFS, OS, and DMSF in ER- breast cancers, regardless of the PR or HER2 status, and TNBCs.
Collapse
|
3
|
The Large GTPase, GBP-2, Regulates Rho Family GTPases to Inhibit Migration and Invadosome Formation in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13225632. [PMID: 34830789 PMCID: PMC8616281 DOI: 10.3390/cancers13225632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Too many women still die of breast cancer each year. Those breast cancers that kill are those with cells that have migrated away from the primary tumor in the breast and established new tumors at other sites in the body. These tumors are not reached when the original tumor in the breast is removed. This study was designed to determine why some breast cancers move away from their primary tumor and others do not. We have identified a protein that inhibits this movement. Understanding this finding may provide us with ways to inhibit tumor cell movement in patients. Abstract Breast cancer is the most common cancer in women. Despite advances in early detection and treatment, it is predicted that over 43,000 women will die of breast cancer in 2021. To lower this number, more information about the molecular players in breast cancer are needed. Guanylate-Binding Protein-2 has been correlated with better prognosis in breast cancer. In this study, we asked if the expression of GBP-2 in breast cancer merely provided a biomarker for improved prognosis or whether it actually contributed to improving outcome. To answer this, the 4T1 model of murine breast cancer was used. 4T1 cells themselves are highly aggressive and highly metastatic, while 67NR cells, isolated from the same tumor, do not leave the primary site. The expression of GBP-2 was examined in the two cell lines and found to be inversely correlated with aggressiveness/metastasis. Proliferation, migration, and invadosome formation were analyzed after altering the expression levels of GBP-2. Our experiments show that GBP-2 does not alter the proliferation of these cells but inhibits migration and invadosome formation downstream of regulation of Rho GTPases. Together these data demonstrate that GBP-2 is responsible for cell autonomous activities that make breast cancer cells less aggressive.
Collapse
|
4
|
Ma Y, Cao X, Shi G, Shi T. MiRNA-145 and Its Direct Downstream Targets in Digestive System Cancers: A Promising Therapeutic Target. Curr Pharm Des 2021; 27:2264-2273. [PMID: 33121400 DOI: 10.2174/1381612826666201029095702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating the expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles in cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as a valuable biomarker for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.
Collapse
Affiliation(s)
- Yini Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiu Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guojuan Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tianlu Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
5
|
Haque M, Siegel RJ, Fox DA, Ahmed S. Interferon-stimulated GTPases in autoimmune and inflammatory diseases: promising role for the guanylate-binding protein (GBP) family. Rheumatology (Oxford) 2021; 60:494-506. [PMID: 33159795 DOI: 10.1093/rheumatology/keaa609] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human IFNs are secreted cytokines shown to stimulate the expression of over one thousand genes. These IFN-inducible genes primarily encode four major protein families, known as IFN-stimulated GTPases (ISGs), namely myxovirus-resistance proteins, guanylate-binding proteins (GBPs), p47 immunity-related GTPases and very large inducible guanosine triphosphate hydrolases (GTPases). These families respond specifically to type I or II IFNs and are well reported in coordinating immunity against some well known as well as newly discovered viral, bacterial and parasitic infections. A growing body of evidence highlights the potential contributory and regulatory roles of ISGs in dysregulated inflammation and autoimmune diseases. Our focus was to draw attention to studies that demonstrate increased expression of ISGs in the serum and affected tissues of patients with RA, SS, lupus, IBD and psoriasis. In this review, we analysed emerging literature describing the potential roles of ISGs, particularly the GBP family, in the context of autoimmunity. We also highlighted the promise and implications for therapeutically targeting IFNs and GBPs in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Mahamudul Haque
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Ruby J Siegel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - David A Fox
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
6
|
Rahvar F, Salimi M, Mozdarani H. Plasma GBP2 promoter methylation is associated with advanced stages in breast cancer. Genet Mol Biol 2020; 43:e20190230. [PMID: 33211060 PMCID: PMC7783727 DOI: 10.1590/1678-4685-gmb-2019-0230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Blood methylated cell-free DNA (cfDNA) as a minimally invasive cancer biomarker
has great importance in cancer management. Guanylate binding protein 2 (GBP2)
has been considered as a possible controlling factor in tumor development.
GBP2 gene expression and its promoter methylation status in
both plasma cfDNA and tumor tissues of ductal carcinoma breast cancer patients
were analyzed using SYBR green comparative Real-Time RT-PCR and, Methyl-specific
PCR techniques, respectively in order to find a possible cancer-related marker.
The results revealed that GBP2 gene expression and promoter
methylation were inversely associated. GBP2 was down-regulated
in tumors with emphasis on triple negative status, nodal involvement and higher
cancer stages (p<0.0001). GBP2 promoter
methylation on both cfDNA and tumor tissues were positively correlated and was
detected in about 88% of breast cancer patients mostly in (Lymph node positive)
LN+ and higher stages. Data provided shreds of evidence that
GBP2 promoter methylation in circulating DNA may be
considered as a possible effective non-invasive molecular marker in poor
prognostic breast cancer patients with the evidence of its relation to disease
stage and lymph node metastasis. However further studies need to evaluate the
involvement of GBP2 promoter methylation in progression-free
survival or overall survival of the patients.
Collapse
Affiliation(s)
- Farzaneh Rahvar
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Institute of Medical Biotechnology, Department of Medical Genetics, Tehran, Iran
| | - Mahdieh Salimi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Institute of Medical Biotechnology, Department of Medical Genetics, Tehran, Iran
| | - Hossein Mozdarani
- Tarbiat Modares University, Faculty of Medical Sciences, Department of Medical Genetics, Tehran, Iran
| |
Collapse
|
7
|
Rajan S, Pandita E, Mittal M, Sau AK. Understanding the lower GMP formation in large GTPase hGBP-2 and role of its individual domains in regulation of GTP hydrolysis. FEBS J 2019; 286:4103-4121. [PMID: 31199074 DOI: 10.1111/febs.14957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/28/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
The interferon γ-inducible large GTPases, human guanylate-binding protein (hGBP)-1 and hGBP-2, mediate antipathogenic and antiproliferative effects in human cells. Both proteins hydrolyse GTP to GDP and GMP through successive cleavages of phosphate bonds, a property that functionally distinguishes them from other GTPases. However, it is unclear why hGBP-2 yields lower GMP than hGBP-1 despite sharing a high sequence identity (~ 78%). We previously reported that the hGBP-1 tetramer is crucial for enhanced GMP formation. We show here that the hGBP-2 tetramer has no role in GMP formation. Using truncated hGBP-2 variants, we found that its GTP-binding domain alone hydrolyses GTP only to GDP. However, this domain along with the intermediate region enabled dimerization and hydrolysed GTP further to GMP. We observed that unlike in hGBP-1, the helical domain of hGBP-2 has an insignificant role in the regulation of GTP hydrolysis, suggesting that the differences in GMP formation between hGBP-2 and hGBP-1 arise from differences in their GTP-binding domains. A large sequence variation seen in the guanine cap may be responsible for the lower GMP formation in hGBP-2. Moreover, we identified the sites in the hGBP-2 domains that are critical for both dimerization and tetramerization. We also found the existence of hGBP-2 tetramer in mammalian cells, which might have a role in the suppression of the carcinomas. Our study suggests that sequence variation near the active site in these two close homologues leads to differential second phosphate cleavage and highlights the role of individual hGBP-2 domains in the regulation of GTP hydrolysis.
Collapse
Affiliation(s)
| | - Esha Pandita
- National Institute of Immunology, New Delhi, India
| | | | | |
Collapse
|
8
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
9
|
Jing H, Gao X, Xu L, Lin H, Zhang Z. H 2S promotes a glycometabolism disorder by disturbing the Th1/Th2 balance during LPS-induced inflammation in the skeletal muscles of chickens. CHEMOSPHERE 2019; 222:124-131. [PMID: 30703651 DOI: 10.1016/j.chemosphere.2019.01.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/28/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is a common environmental pollutant. In humans, H2S enters the body and is transported to different tissues and organs, inducing various types of damage such as chronic inflammatory reactions. Glucose metabolism disorders have been shown to be closely associated with chronic inflammation. The goal of the present study was to investigate the effects and mechanisms of H2S on glycometabolism disorders and chronic inflammatory responses. A chronic inflammation model in the skeletal muscles of chickens was induced using lipopolysaccharide (LPS), after which the animals were exposed to exogenous H2S. Subsequently, the glucose metabolism and the pathways associated with chronic inflammation were analyzed. The pathological analysis showed that significant inflammatory injury to skeletal muscles occurred after animals exposed to H2S. The Th1/Th2 ratio imbalance was exacerbated after exposure to H2S with IFNγ downregulated and IL-1, IL-4, and IL-6 upregulated. In addition, the level of IκBα was suppressed and induced the expression of NF-κB, significantly activating the inflammatory pathway, while the expression of heat shock proteins was elevated. In addition, glucose metabolism factors were analyzed. IRS1 phosphorylation was inhibited in animals exposed to H2S, and the expression of insulin-like growth factor (IGF) signaling pathway-related factors was upregulated to promote insulin resistance, causing glucose metabolism disorders. The results of this study revealed that H2S can trigger changes in the ratio of Th1/Th2 to produce more proinflammatory cytokines that disturb the insulin signaling pathway, causing glycometabolism disorders during the inflammatory response in the skeletal muscles of chickens.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuejiao Gao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Liqiang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
10
|
Yang Q, Wu G, Han L, Feng Y, Lin S, Lv Q, Yang J, Hu J. Taurine Reverses Atrial Structural Remodeling in Ach-Cacl 2 Induced Atrial Fibrillation Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:831-841. [PMID: 28849503 DOI: 10.1007/978-94-024-1079-2_65] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Taurine has been reported to have anti-arrhythmia effects, but the anti-atrial fibrillation (AF) effects and its mechanism remain incompletely understood. In the present study, the therapy effects and partly mechanisms were investigated. AF animal model was established by intravenous administered with the mixture of acetylcholine (Ach) and CaCl2 (66 μg/mL + 10 mg/mL) (i.v.) for 7 days. The actions of taurine (99 mg/kg∙d, introgastric administration) on the levels of Hs-CRP, IL-6, TNF-α, MMP-9, AngII, the extent of the fibrosis and ultrastructural changes in left atrial were studied. The data showed that the serum levels of TNF-α, IL-6, AngII and the plasma levels of Hs-CRP and MMP-9 were significantly elevated in automatic recovery group relative to the control group (p < 0.01), which were all decreased by taurine administration (p < 0.01) similar to Verapamil treatment. Masson's trichrome staining of the left atrial tissue showed an obvious interstitial fibrosis in rats of automatic recovery group. The alteration could be reversed by additional taurine. Electron microscopy revealed that taurine administration could significantly alleviate the ultrastructural damage of atrial cells, and the effects were similar to the Verapamil treatment. In conclusion, the results suggested that taurine could inhibit the structural remodeling of AF in rats partly by decreasing the levels of inflammatory factors and profibrotic molecules, attenuating the extent of myocardial fibrosis and protecting the integrity of myocardial ultrastructure.
Collapse
Affiliation(s)
- Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Limei Han
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Ying Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Qiufeng Lv
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China.
| |
Collapse
|
11
|
Guo H, Dai Y, Wang A, Wang C, Sun L, Wang Z. Association between expression of MMP-7 and MMP-9 and pelvic lymph node and para-aortic lymph node metastasis in early cervical cancer. J Obstet Gynaecol Res 2018; 44:1274-1283. [PMID: 29767419 DOI: 10.1111/jog.13659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the association of matrix metalloproteinase (MMP)-7 and MMP-9 with pelvic lymph node and para-aortic lymph node metastasis in early cervical cancer. METHODS A total of 137 patients with early cervical cancer (Stage Ia2-IIa2) were recruited from the Department of Gynecology and Obstetrics, Tumor Hospital of Liaoning Province from January 2009 to May 2014. We evaluated the expression of MMP-7 and MMP-9 by immunohistochemistry and their association with the clinicopathological parameters such as pelvic, common iliac and para-aortic lymph node metastasis. Spearman correlation was performed to analyze the correlation between MMP-7 and MMP-9 in cervical cancer. Finally, the areas under the receiver operating characteristic curve (ROC) of MMP-7 and MMP-9 in pelvic lymph node metastasis were assessed. RESULTS MMP-7 expression was significantly higher in patients with adenocarcinomas and adenosquamous carcinomas (P = 0.014), vascular cancer embolus (P = 0.041), pelvic lymph node metastasis (P = 0.000) and a higher level of Ki-67 (P = 0.000). MMP-9 expression was significantly associated with vascular cancer embolus (P = 0.003), depth of stromal invasion (P = 0.001), pelvic lymph node metastasis (P = 0.003), common iliac lymph node metastasis (P = 0.001) and para-aortic lymph nodes metastasis (P = 0.004). Coexpression of MMP-7 and MMP-9 was significantly associated with vascular cancer embolus (P < 0.001), higher expression of Ki-67 (P < 0.001) and pelvic lymph node metastasis (P < 0.001). Spearman correlation analysis indicated a positive correlation between MMP-7 and MMP-9 (r = 0.263, P = 0.002). Areas under the ROC of MMP-7 and MMP-9 were 0.707 and 0.646, respectively. CONCLUSION MMP-7 and MMP-9 expressions were associated with lymph node metastasis in patients with early cervical cancers, suggesting a positive correlation of MMP-7 and MMP-9 with invasive potential in early cervical cancers.
Collapse
Affiliation(s)
- Hui Guo
- Department of Gynecologic Oncology, Cancer Hospital of China Medical University & Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yifei Dai
- Department of Gynecologic Oncology, Cancer Hospital of China Medical University & Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Anna Wang
- Department of Gynecologic Oncology, Cancer Hospital of China Medical University & Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Chunyan Wang
- Department of Gynecologic Oncology, Cancer Hospital of China Medical University & Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lili Sun
- Department of Pathology, Cancer Hospital of China Medical University & Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Zheng Wang
- Department of Pathology, Cancer Hospital of China Medical University & Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
12
|
Xiang Z, Li W, Wang L, Yi J, Chen K, Hong M. Identification of a NF κB Inhibition Site on the Proximal Promoter Region of Human Organic Anion Transporting Polypeptide 1A2 Coding Gene SLCO1A2. Drug Metab Dispos 2018; 46:643-651. [PMID: 29549185 DOI: 10.1124/dmd.117.078832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Organic anion transporting polypeptides (OATPs; gene symbol SLCO) are membrane transporters that mediate the transport of wide ranges of compounds. The expression of different OATP members has been reported in the kidney, liver, placenta, brain, and intestine. Because of their broad substrate spectra and wide distribution within the human body, these transporters have been proposed to play key roles in the influx transport of many oral drugs. Inflammation is known to regulate the expression and functions of many drug-metabolizing enzymes and drug transporters. As a proinflammatory cytokine, tumor necrosis factor-α (TNFα) has been shown to affect the expression of different drug transporters, including OATP family members. In the present study, a putative nuclear factor-κB (NFκB) binding site ranging from -1845 to -1836 was identified at the proximal promoter region of OATP1A2 coding gene SLCO1A2 Electrophoretic mobility shift assays and chromatin immunoprecipitation showed that nuclear extracts from both breast cancer cell MCF7 and liver cancer cell HepG2 interacted with an oligonucleotide probe containing the putative NFκB binding site and that the DNA-protein complexes contained both p65 and p50 subunits of NFκB. Further study revealed that the binding site may be responsible in part for the suppression effect of TNFα toward SLCO1A2 expression because the treatment of TNFα significantly increased. Treatment of TNFα significantly increased formation of the DNA-protein complexes and mutations at essential bases of the putative NFκB binding site abolished responsiveness to the TNFα neutralizing antibody, suggesting that the binding site may be responsible in part for the suppression effect of TNFα towars SLCO1A2 expression.
Collapse
Affiliation(s)
- Zhaojian Xiang
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Weike Li
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Lixue Wang
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Jicai Yi
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Kaiwen Chen
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Mei Hong
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis 2017; 8:e3151. [PMID: 29072687 PMCID: PMC5680924 DOI: 10.1038/cddis.2017.559] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 02/05/2023]
Abstract
Guanylate-binding protein 2 (GBP2) is a member of the large GTPase superfamily that is strongly induced by interferon-γ (IFN-γ). Although the biochemical characteristics of GBP2 have been reported in detail, its biological function has not been thoroughly elucidated to date. To the best of our knowledge, this study presents the first demonstration that GBP2 inhibits mitochondrial fission and cell metastasis in breast cancer cells both in vitro and in vivo. Our previous work demonstrated that dynamin-related protein 1 (Drp1)-dependent mitochondrial fission has a key role in breast cancer cell invasion. In this study, we demonstrate that GBP2 binds directly to Drp1. Elimination of Drp1 by shRNA or Mdivi-1 (a Drp1-specific inhibitor) suppressed GBP2's regulatory function. Furthermore, GBP2 blocks Drp1 translocation from the cytosol to mitochondria, thereby attenuating Drp1-dependent mitochondrial fission and breast cancer cell invasion. In summary, our data provide new insights into the function and molecular mechanisms underlying GBP2's regulation of breast cancer cell invasion.
Collapse
|
14
|
Miao Q, Ge M, Huang L. Up-regulation of GBP2 is Associated with Neuronal Apoptosis in Rat Brain Cortex Following Traumatic Brain Injury. Neurochem Res 2017; 42:1515-1523. [PMID: 28239766 DOI: 10.1007/s11064-017-2208-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/05/2023]
Abstract
Guanylate binding protein 2 (GBP2) is one member of GBP family. Recently, GBP2 has been proposed to be a novel target of anti-cancer drugs. However, the role of GBP2 in the traumatic brain injury (TBI) is very limited. In this study, we sought to define GBP2's role in brain injury. GBP2 protein levels were significantly increased in the brain 3 days after injury, suggesting a functional role for GBP2 in TBI. Neuronal cells overexpressing GBP2 exhibited up-regulation of co-location of GBP2 and NeuN following TBI, suggesting that GBP2 potentiates the neuron apoptosis. To confirm the role of GBP2 in neuron apoptosis process, we employed a highly potent inhibitor of GBP2 (GBP2 RNAi). In H2O2-stimulated PC12 cells, in vitro blockade of GBP2 activity using GBP2 RNAi markedly attenuated the neuron apoptosis number. GBP2 RNAi also inhibited the expression levels of active caspase3 and p-Stat1. Furthermore, we found the expression of p-Stat1 in line with GBP2 and GBP2 interacted with p-Stat1 following TBI. The Jak2 inhibitor, AG490 inhibited this interaction and decreased the active caspase3 expression as well as promoted the functional recovery. Taken together, these data suggest that GBP2 RNAi has a protective effect in a rat TBI. This study demonstrates that GBP2 is an important positive regulator of TBI and is a promising therapeutic target for brain injury.
Collapse
Affiliation(s)
- Qi Miao
- Department of Education and Science, The Second Peoples' Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Meihong Ge
- ICU, The Second Peoples' Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Lili Huang
- ICU, Affiliated of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
15
|
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36:1481-507. [PMID: 27323783 PMCID: PMC5012524 DOI: 10.1177/0271678x16655551] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.
Collapse
Affiliation(s)
- Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
16
|
Mori G, Sasaki H, Makabe Y, Yoshinari M, Yajima Y. The genes Scgb1a1, Lpo and Gbp2 characteristically expressed in peri-implant epithelium of rats. Clin Oral Implants Res 2015; 27:e190-e198. [DOI: 10.1111/clr.12601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Gentaro Mori
- Department of Oral and Maxillofacial Implantology; Tokyo Dental College; Tokyo Japan
- Division of Oral Implants Research; Oral Health Science Center; Tokyo Dental College; Tokyo Japan
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology; Tokyo Dental College; Tokyo Japan
- Division of Oral Implants Research; Oral Health Science Center; Tokyo Dental College; Tokyo Japan
| | - Yasushi Makabe
- Department of Oral and Maxillofacial Implantology; Tokyo Dental College; Tokyo Japan
- Division of Oral Implants Research; Oral Health Science Center; Tokyo Dental College; Tokyo Japan
| | - Masao Yoshinari
- Division of Oral Implants Research; Oral Health Science Center; Tokyo Dental College; Tokyo Japan
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology; Tokyo Dental College; Tokyo Japan
- Division of Oral Implants Research; Oral Health Science Center; Tokyo Dental College; Tokyo Japan
| |
Collapse
|
17
|
Leal RF, Planell N, Kajekar R, Lozano JJ, Ordás I, Dotti I, Esteller M, Masamunt MC, Parmar H, Ricart E, Panés J, Salas A. Identification of inflammatory mediators in patients with Crohn's disease unresponsive to anti-TNFα therapy. Gut 2015; 64:233-42. [PMID: 24700437 DOI: 10.1136/gutjnl-2013-306518] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Anti-tumour necrosis factor α (TNFα) therapy effectively induces and maintains remission in Crohn's disease (CD). Up to 40% of patients, however, fail to respond to anti-TNFα. OBJECTIVE To identify the mechanisms underlying the persistence of mucosal lesions in patients who fail to respond to anti-TNFα therapy. DESIGN An observational study based on whole-genome transcriptional analysis was carried out using intestinal biopsy specimens from patients with CD receiving (n=12) or not (n=10) anti-TNFα therapy. The transcriptional signature of responders was compared with that of non-responders after anti-TNFα therapy. Controls with non-inflammatory bowel disease (non-IBD) (n=17) were used for comparisons. Genes of interest were validated by real-time RT-PCR in an independent cohort of patients with CD receiving (n=17) or not (n=16) anti-TNFα and non-IBD controls (n=7). RESULTS We confirmed that response to anti-TNFα is accompanied by significant regulation of a large number of genes, including IL1B, S100A8, CXCL1, which correlated with endoscopic activity. Remarkably, patients who failed to respond to anti-TNFα showed a mixed signature, maintaining increased expression of IL1B, IL17A and S100A8, while showing significant modulation of other genes commonly upregulated in active CD, including IL6 and IL23p19. CONCLUSIONS Our results show that anti-TNFα therapy significantly downregulates a subset of inflammatory genes even in patients who fail to achieve endoscopic remission, suggesting that these genes may not be dominant in driving inflammation in non-responders. On the other hand, we identified IL1B and IL17A as genes that remained altered in non-responders, pointing to potentially more relevant targets for modulating mucosal damage in refractory patients.
Collapse
Affiliation(s)
- Raquel Franco Leal
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain Postdoctoral CAPES fellow, Brazil
| | - Núria Planell
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain Bioinformatics Platform, CIBERehd, Barcelona, Spain
| | - Radhika Kajekar
- Hoffmann-La Roche, Nutley, New Jersey, USA Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Ingrid Ordás
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Isabella Dotti
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Miriam Esteller
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - M Carme Masamunt
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Harsukh Parmar
- Hoffmann-La Roche, Nutley, New Jersey, USA EMD Serono Research & Development Institute, Boston, Massachusetts, USA
| | - Elena Ricart
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Julián Panés
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| |
Collapse
|
18
|
Breyne K, Cool SK, Demon D, Demeyere K, Vandenberghe T, Vandenabeele P, Carlsen H, Van Den Broeck W, Sanders NN, Meyer E. Non-classical proIL-1beta activation during mammary gland infection is pathogen-dependent but caspase-1 independent. PLoS One 2014; 9:e105680. [PMID: 25162221 PMCID: PMC4146512 DOI: 10.1371/journal.pone.0105680] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/22/2014] [Indexed: 01/15/2023] Open
Abstract
Infection of the mammary gland with live bacteria elicits a pathogen-specific host inflammatory response. To study these host-pathogen interactions wild type mice, NF-kappaB reporter mice as well as caspase-1 and IL-1beta knockout mice were intramammarily challenged with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The murine mastitis model allowed to compare the kinetics of the induced cytokine protein profiles and their underlying pathways. In vivo and ex vivo imaging showed that E. coli rapidly induced NF-kappaB inflammatory signaling concomitant with high mammary levels of TNF-alpha, IL-1 alpha and MCP-1 as determined by multiplex analysis. In contrast, an equal number of S. aureus bacteria induced a low NF-kappaB activity concomitant with high mammary levels of the classical IL-1beta fragment. These quantitative and qualitative differences in local inflammatory mediators resulted in an earlier neutrophil influx and in a more extensive alveolar damage post-infection with E. coli compared to S. aureus. Western blot analysis revealed that the inactive proIL-1beta precursor was processed into pathogen-specific IL-1beta fragmentation patterns as confirmed with IL-1beta knockout animals. Additionally, caspase-1 knockout animals allowed to investigate whether IL-1beta maturation depended on the conventional inflammasome pathway. The lack of caspase-1 did not prevent extensive proIL-1beta fragmentation by either of S. aureus or E. coli. These non-classical IL-1beta patterns were likely caused by different proteases and suggest a sentinel function of IL-1beta during mammary gland infection. Thus, a key signaling nodule can be defined in the differential host innate immune defense upon E. coli versus S. aureus mammary gland infection, which is independent of caspase-1.
Collapse
Affiliation(s)
- Koen Breyne
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Steven K. Cool
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Demon
- Department of Medical Protein Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, Ghent, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tom Vandenberghe
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, Zwijnaarde, Belgium
| | - Peter Vandenabeele
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, Zwijnaarde, Belgium
| | - Harald Carlsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Wim Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N. Sanders
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Liu Y, Wu C, Wang Y, Wen S, Wang J, Chen Z, He Q, Feng D. MicroRNA-145 inhibits cell proliferation by directly targeting ADAM17 in hepatocellular carcinoma. Oncol Rep 2014; 32:1923-30. [PMID: 25174729 DOI: 10.3892/or.2014.3424] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators in cell processes. Emerging evidence has suggested that there is a direct association between miRNAs and cancer. However, the exact regulatory mechanisms of miRNAs in tumorigenesis are poorly understood. In the present study, we showed that miR-145 is able to significantly reduce mRNA and protein expression levels of A disintegrin and metalloproteinase 17 (ADAM17) in liver cancer cells (SMMC-7721, BEL-7402 and Huh-7). Dual luciferase reporter assays confirmed that ADAM17 is a direct target of miR-145. Notably, we found that miR-145 inhibits cell proliferation and growth activity in SMMC-7721 cells. These results demonstrated that it may be exert the function of tumor suppression in a particular link of cancer cell growth. Further studies revealed that the silencing of ADAM17 decreased the proliferation and growth activity of SMMC-7721 cells. Moreover, it reduced the expression of MMP-9. In conclusion, miR-145 inhibits liver cancer cell proliferation by directly targeting ADAM17. Thus, it may become a promising biological target in the treatment strategy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuwu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chang Wu
- Department of Pathology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Shenzhen, Guangdong 518052, P.R. China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Sailan Wen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhihong Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiongqiong He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Deyun Feng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
20
|
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 2014; 34:BSR20140021. [PMID: 24877606 PMCID: PMC4069681 DOI: 10.1042/bsr20140021] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine.
Collapse
|
21
|
Mabbott NA, Gray D. Identification of co-expressed gene signatures in mouse B1, marginal zone and B2 B-cell populations. Immunology 2014; 141:79-95. [PMID: 24032749 PMCID: PMC3893852 DOI: 10.1111/imm.12171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/09/2023] Open
Abstract
In mice, three major B-cell subsets have been identified with distinct functionalities: B1 B cells, marginal zone B cells and follicular B2 B cells. Here, we used the growing body of publicly available transcriptomics data to create an expression atlas of 84 gene expression microarray data sets of distinct mouse B-cell subsets. These data were subjected to network-based cluster analysis using BioLayout Express(3D). Using this analysis tool, genes with related functions clustered together in discrete regions of the network graph and enabled the identification of transcriptional networks that underpinned the functional activity of distinct cell populations. Some gene clusters were expressed highly by most of the cell populations included in this analysis (such as those with activity related to house-keeping functions). Others contained genes with expression patterns specific to distinct B-cell subsets. While these clusters contained many genes typically associated with the activity of the cells they were specifically expressed in, many novel B-cell-subset-specific candidate genes were identified. A large number of uncharacterized genes were also represented in these B-cell lineage-specific clusters. Further analysis of the activities of these uncharacterized candidate genes will lead to the identification of novel B-cell lineage-specific transcription factors and regulators of B-cell function. We also analysed 36 microarray data sets from distinct human B-cell populations. These data showed that mouse and human germinal centre B cells shared similar transcriptional features, whereas mouse B1 B cells were distinct from proposed human B1 B cells.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of EdinburghMidlothian, UK
| | - David Gray
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of EdinburghEdinburgh, UK
| |
Collapse
|
22
|
Gubelmann C, Waszak SM, Isakova A, Holcombe W, Hens K, Iagovitina A, Feuz JD, Raghav SK, Simicevic J, Deplancke B. A yeast one-hybrid and microfluidics-based pipeline to map mammalian gene regulatory networks. Mol Syst Biol 2013; 9:682. [PMID: 23917988 PMCID: PMC3779800 DOI: 10.1038/msb.2013.38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
The comprehensive mapping of gene promoters and enhancers has significantly improved our understanding of how the mammalian regulatory genome is organized. An important challenge is to elucidate how these regulatory elements contribute to gene expression by identifying their trans-regulatory inputs. Here, we present the generation of a mouse-specific transcription factor (TF) open-reading frame clone library and its implementation in yeast one-hybrid assays to enable large-scale protein-DNA interaction detection with mouse regulatory elements. Once specific interactions are identified, we then use a microfluidics-based method to validate and precisely map them within the respective DNA sequences. Using well-described regulatory elements as well as orphan enhancers, we show that this cross-platform pipeline characterizes known and uncovers many novel TF-DNA interactions. In addition, we provide evidence that several of these novel interactions are relevant in vivo and aid in elucidating the regulatory architecture of enhancers.
Collapse
Affiliation(s)
- Carine Gubelmann
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Furuya DT, Neri EA, Poletto AC, Anhê GF, Freitas HS, Campello RS, Rebouças NA, Machado UF. Identification of nuclear factor-κB sites in the Slc2a4 gene promoter. Mol Cell Endocrinol 2013; 370:87-95. [PMID: 23462193 DOI: 10.1016/j.mce.2013.01.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/26/2012] [Accepted: 01/22/2013] [Indexed: 11/15/2022]
Abstract
Glucose transporter GLUT4 protein, codified by Slc2a4 gene plays a key role in glycemic homeostasis. Insulin resistance, as in obesity, has been associated to inflammatory state, in which decreased GLUT4 is a feature. Inflammatory NF-κB transcriptional factor has been proposed as a repressor of Slc2a4; although, the binding site(s) in Slc2a4 promoter and the direct repressor effect have never been reported yet. A motif-based sequence analysis of mouse Slc2a4 promoter revealed two putative κB sites located inside -83/-62 and -134/-113 bp. Eletrophoretic mobility assay showed that p50 and p65 NF-κB subunits bind to both putative κB sites. Chromatin immunoprecipitation assay using genomic DNA from adipocytes confirmed p50- and p65-binding to Slc2a4 promoter. Moreover, transfection experiments revealed that NF-κB binds to the -134/-113bp region of the mouse Slc2a4 gene promoter, inhibiting the Slc2a4 gene transcription. The current findings demonstrate the existence of two κB sites in Slc2a4 gene promote, and that NF-κB has a direct repressor effect upon the Slc2a4 gene, providing an important link between insulin resistance and inflammation.
Collapse
Affiliation(s)
- D T Furuya
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li YQ, Yan JP, Xu WL, Wang H, Xia YJ, Wang HJ, Zhu YY, Huang XJ. ADAM17 mediates MMP9 expression in lung epithelial cells. PLoS One 2013; 8:e51701. [PMID: 23341882 PMCID: PMC3544892 DOI: 10.1371/journal.pone.0051701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
The purposes were to study the role of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α/nuclear factor-κB (NF-κB) signaling in matrix metalloproteinase 9 (MMP9) expression in A549 cells and to investigate the effects of lentivirus-mediated RNAi targeting of the disintegrin and metalloproteinase 17 (ADAM17) gene on LPS-induced MMP9 expression. MMP9 expression induced by LPS in A549 cells was significantly increased in a dose- and time-dependent manner (p<0.05). Pyrrolidine dithiocarbamate (PDTC) and a TNFR1 blocking peptide (TNFR1BP) significantly inhibited LPS-induced MMP9 expression in A549 cells (p<0.05). TNFR1BP significantly inhibited LPS-induced TNF-α production (p<0.05). Both PDTC and TNFR1BP significantly inhibited the phosphorylation of IκBα and expression of phosphorylation p65 protein in response to LPS (p<0.05), and the level of IκBα in the cytoplasm was significantly increased (p<0.05). Lentivirus mediated RNA interference (RNAi) significantly inhibited ADAM17 expression in A549 cells. Lentivirus-mediated RNAi targeting of ADAM17 significantly inhibited TNF-α production in the supernatants (p<0.05), whereas the level of TNF-α in the cells was increased (p<0.05). Lentiviral ADAM17 RNAi inhibited MMP9 expression, IκBα phosphorylation and the expression of phosphorylation p65 protein in response to LPS (p<0.05). PDTC significantly inhibited the expression of MMP9 and the phosphorylation of IκBα, as well as the expression of phosphorylation p65 protein in response to TNF-α (p<0.05). Lentiviral RNAi targeting of ADAM17 down-regulates LPS-induced MMP9 expression in lung epithelial cells via inhibition of TNF-α/NF-κB signaling.
Collapse
Affiliation(s)
- Ya-qing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jian-ping Yan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Wu-lin Xu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
- * E-mail:
| | - Hong Wang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ying-jie Xia
- Zhejiang Provincial Gastroenterology Key Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Hui-jun Wang
- Zhejiang Provincial Gastroenterology Key Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yue-yan Zhu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiao-jun Huang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
25
|
Godoy P, Cadenas C, Hellwig B, Marchan R, Stewart J, Reif R, Lohr M, Gehrmann M, Rahnenführer J, Schmidt M, Hengstler JG. Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer 2012; 21:491-9. [PMID: 23001506 DOI: 10.1007/s12282-012-0404-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/17/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recently, interferon-inducible guanylate binding protein (GBP2) has been discussed as a possible control factor in tumor development, which is controlled by p53, and inhibits NF-Kappa B and Rac protein as well as expression of matrix metalloproteinase 9. However, the potential role that GBP2 plays in tumor development and prognosis has not yet been studied. METHODS We analyzed whether GBP2 mRNA levels are associated with metastasis-free interval in 766 patients with node negative breast carcinomas who did not receive systemic chemotherapy. Furthermore, response to anthracycline-based chemotherapy was studied in 768 breast cancer patients. RESULTS High expression of GBP2 in breast carcinomas was associated with better prognosis in the univariate (P < 0.001, hazard ratio 0.763, 95 % CI 0.650-0.896) as well as in the multivariate Cox analysis (P = 0.008, hazard ratio 0.731, 95 % CI 0.580-0.920) adjusted to the established clinical factors age, pT stage, grading, hormone and ERBB2 receptor status. The association was particularly strong in subgroups with high proliferation and positive estrogen receptor status but did not reach significance in carcinomas with low expression of proliferation associated genes. Besides its prognostic capacity, GBP2 also predicted pathologically complete response to anthracycline-based chemotherapy (P = 0.0037, odds ratio 1.39, 95 % CI 1.11-1.74). Interestingly, GBP2 correlated with a recently established T cell signature, indicating tumor infiltration with T cells (R = 0.607, P < 0.001). CONCLUSION GBP2 is associated with better prognosis in fast proliferating tumors and probably represents a marker of an efficient T cell response.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 76, 44139, Dortmund, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
miR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation. Leukemia 2012; 27:344-52. [PMID: 22864358 DOI: 10.1038/leu.2012.224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BCR-ABL-negative myeloproliferative neoplasms (MPNs) are most frequently characterized by the JAK2V617F gain-of-function mutation, but several studies showed that JAK2V617F may not be the initiating event in MPN development, and recent publications indicate that additional alterations such as chromatin modification and microRNA (miRNA) deregulation may have an important role in MPN pathogenesis. Here we report that 61 miRNAs were significantly deregulated in CD34+ cells from MPN patients compared with controls (P<0.01). Global miRNA analysis also revealed that polycythemia vera (JAKV617F) and essential thrombocythemia (JAK2 wild type) patients have significantly different miRNA expression profiles from each other. Among the deregulated miRNAs, expression of miR-134, -214 and -433 was not affected by changes in JAK2 activity, suggesting that additional signaling pathways are responsible for the deregulation of these miRNAs in MPN. Despite its upregulation in MPN CD34+ and during normal erythropoiesis, both overexpression and knockdown studies suggest that miR-433 negatively regulates CD34+ proliferation and differentiation ex vivo. Its novel target GBP2 is downregulated during normal erythropoiesis and regulates proliferation and erythroid differentiation in TF-1 cells, indicating that miR-433 negatively regulates hematopoietic cell proliferation and erythropoiesis by directly targeting GBP2.
Collapse
|
27
|
Wang J, O'Sullivan S, Harmon S, Keaveny R, Radomski MW, Medina C, Gilmer JF. Design of barbiturate-nitrate hybrids that inhibit MMP-9 activity and secretion. J Med Chem 2012; 55:2154-62. [PMID: 22248361 DOI: 10.1021/jm201352k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe a new type of barbiturate-based matrix metalloproteinase (MMP) inhibitor incorporating a nitric oxide (NO) donor/mimetic group (series 1). The compounds were designed to inhibit MMP at enzyme level and to attenuate MMP-9 secretion arising from inflammatory signaling. To detect effects related to the nitrate, we prepared and studied an analogous series of barbiturate C5-alkyl alcohols that were unable to release NO (series 2). Both series inhibited recombinant human MMP-2/9 activity with nanomolar potency. Series 1 consistently inhibited the secretion of MMP-9 from TNFα/IL1β stimulated Caco-2 cells at 10 μM, which could be attributed to NO related effects because the non-nitrate panel did not affect enzyme levels. Several compounds from series 1 (10 μM) inhibited tumor cell invasion but none from the non-nitrate panel did. The work shows that MMP-inhibitory barbiturates are suitable scaffolds for hybrid design, targeting additional facets of MMP pathophysiology, with potential to improve risk-benefit ratios.
Collapse
Affiliation(s)
- Jun Wang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
28
|
Friedrichs K, Klinke A, Baldus S. Inflammatory pathways underlying atrial fibrillation. Trends Mol Med 2011; 17:556-63. [DOI: 10.1016/j.molmed.2011.05.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/09/2011] [Accepted: 05/20/2011] [Indexed: 01/29/2023]
|
29
|
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Crit Rev Biochem Mol Biol 2000; 48:222-72. [PMID: 10947989 DOI: 10.3109/10409238.2013.770819] [Citation(s) in RCA: 572] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.
Collapse
Affiliation(s)
- G A McQuibban
- Department of Biochemistry and Molecular Biology, Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|